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Abstract: The Hosoya index of a graph is defined by the total number of the matchings of the graph.
In this paper, we determine the maximum Hosoya index of unicyclic graphs with n vertices and
diameter 3 or 4. Our results somewhat answer a question proposed by Wagner and Gutman in 2010
for unicyclic graphs with small diameter.
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1. Introduction

Numerous topological and chemical indices/measures have been used for analyzing molecular
graphs [1–4]. A prominent example is the Hosoya index introduced by Hosoya [5] in 1971 as
a molecular-graph based structure descriptor. Hosoya discovered that certain physico-chemical
properties of alkanes (= saturated hydrocarbons)—in particular, their boiling points—are well
correlated with this index. Gutman et al. further considered it in the chemical view [6]. As is
known, structural graph descriptors have been investigated extensively in chemistry, drug design and
related disciplines [1–4].

The Hosoya index got much attention by many researchers in the past decades. They have been
interested in identifying the maximum or minimum value of Hosoya index for various classes of
graphs (with certain restrictions), such as trees [7–9], unicyclic graphs [10–14], bicyclic graphs [15] and
so on. For an exhaustive survey for this topic, we refer to [16].

Even though there is a considerable amount of literature on the topic of maximizing or minimizing
the Hosoya index, there are still many interesting open questions left. In [16], it is mentioned that:

- It seems to be difficult to obtain results of the maximum Hosoya index among trees with a given number
of leaves or given diameter. However, partial results are available, so the problem might not be totally
intractable, and results in this direction would definitely be interesting.

- If the aforementioned questions can be answered for trees, then it is also natural to consider the analogous
questions for treelike graphs (such as unicyclic graphs).

For two vertices u, v in a graph G, the distance d(u, v) between u and v is the length of a
shortest path connecting them. The diameter of G is max{d(u, v) | u, v ∈ V(G)}. Confirming a
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conjecture proposed by Ou [12], Liu [8] considered the maximum Hosoya index of trees with diameter
4. Motivated by this line of research, we here consider the maximal Hosoya index of unicyclic graphs
with small diameter. It seems that unicyclic graphs are only one more edge than trees, however,
some of their properties change drastically such as the girth.

At the end of this section, we define some notation as well as some preliminary results that we
frequently use in the sequel.

Let G be a simple connected graph with vertex set V(G). For u ∈ V(G), we denote its
neighborhood by NG(u), and denote dG(u) := NG(u). A pendent vertex is a vertex of degree 1.
For two vertices u1 and u2, the distance between u1 and u2 is the number of edges in a shortest path
joining u1 and u2. We use G− u to denote the graph that arises from G by deleting the vertex u ∈ V(G).
For other undefined notations, we refer to [17].

Given a molecular graph G, let m(G, k) be the number of k matchings of G. It would be convenient
to define m(G, 0) = 1, m(G, 1) = e(G). The Hosoya index z = z(G) is defined as the number of subsets
of E(G) in which no edges are incident, in other words, the total number of the matchings of the graph
G. Then,

z(G) = ∑
k≥0

m(G, k).

For the star K1,p of order p+ 1, when k ≥ 2, we have m(G, k) = 0. Then, z(K1,p) = ∑k≥0 m(G, k) =
m(G, 0) + m(G, 1) = 1 + p.

The double star Sp,q is a tree of order n obtained from K1,p and K1,q−1, by identifying a pendent
vertex of K1,p with the center of K1,q−1, where p + q = n. For Sp,q, when k ≥ 3, we have
m(G, k) = 0, therefore

z(Sp,q) = ∑
k≥0

m(G, k) = m(G, 0) + m(G, 1) + m(G, 2)

= 1 + (p + q− 1) + (p− 1)(q− 1) = pq + 1.

The following two lemmas are needed in this paper, which can be found on page 337 of [16].

Lemma 1. Let G be a graph and v be a vertex of G. Then,

z(G) = z(G− v) + ∑
u∈NG(v)

z(G− {u, v}).

Lemma 2. If G1, G2, . . . , Gt are the components of a graph G, then

z(G) = Πt
i=1z(Gi).

For n ≥ 6, the unique unicyclic graph with diameter two is obtained from the star K1,n−1 by
adding an edge. For unicyclic graphs with diameter at least 5, things become more complicated,
and we believe more techniques are needed. Thus, we only consider the cases for diameter 3 and 4.
In Section 2, we determine the maximal Hosoya index of unicyclic graphs with n vertices and diameter
3 (see Theorem 5). In Section 3, we determine the maximal Hosoya index of unicyclic graphs with n
vertices and diameter 4 (see Theorem 15).

2. The Unicyclic Graphs with Diameter 3

In this section, we study the maximal Hosoya index of unicyclic graphs with n vertices and
diameter 3.

Let U 3
n be the set of all unicyclic graphs with n vertices and diameter 3. According to the length

of the unique cycle and the distribution of other vertices, we may classify all the members in U 3
n . Let Ui
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be the set of unicyclic graph of the form Gi, i = 1, 2, 3, 4. It is easy to see that the graphs from U1, U2,
U3, and U4, and C5, C6, and C7 are all unicyclic graphs with diameter 3.

Let U1 be the set of unicyclic graphs of the form G1 (as depicted in Figure 1), where a + b + c = n,
a, b, c ≥ 1 and at least two of a, b, c are greater than 2. Let G∗1 be the graph of the form G1 satisfying
a, b, c almost equal (hereafter “almost equal” means the difference of any two numbers is at most one).
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Figure 1. Four unicyclic graphs with diameter 3.

Theorem 1. The graph G∗1 has the maximum Hosoya index among all graphs in U1.

Proof. Assume G1 ∈ U1 with 1 ≤ a ≤ b ≤ c. By Lemmas 1 and 2, we obtain

z(G1) = z(G1 − v1) + ∑
w∈NG1

(v1)

z(G1 − {v1, w})

= z(G1 − v1) + z(G1 − {v1, v2}) + z(G1 − {v1, v3})
+ (a− 1)z(G1 − {v1, y})
= (bc + 1) + c + b + (a− 1)(bc + 1)

= abc + a + b + c := f1(a, b, c),

where y is one of pendent vertex adjacent to v1 in G1.
If b− a ≥ 2, then we get

f1(a + 1, b− 1, c)− f1(a, b, c) = (b− a− 1)c > 0.

As a, b, c have the same status as shown in the graph, we conclude that, when a, b, c are almost
equal, G1 has the maximal Hosoya index.

Let U2 be the set of unicyclic graphs of the form G2 (as depicted in Figure 1), where a + b = n− 2,
a ≥ 2, b ≥ 1. Let G∗2 be the graph of the form G2 satisfying 0 ≤ a− b ≤ 2.

Theorem 2. The graph G∗2 has the maximum Hosoya index among all graphs in U2.

Proof. Assume G2 ∈ U2. By Lemmas 1 and 2, we obtain

z(G2) = z(G2 − v1) + ∑
v′∈NG2 (v1)

z(G2 − {v1, v′})

= z(G2 − v1) + z(G2 − {v1, v2}) + z(G2 − {v1, v3})
+ z(G2 − {v1, v4}) + (b− 1)z(G2 − {v1, y})
= 2a + a + a + 2 + 2a(b− 1)

= 2ab + 2a + 2 := f2(a, b),
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where y is one of pendent vertexs adjacent to v1 in G2.
If b− a ≥ 1, then we get

f2(a + 1, b− 1)− f2(a, b) = 2(b− a) > 0.

If a− b ≥ 3, then we get

f2(a− 1, b + 1)− f2(a, b) = 2(a− b− 2) > 0.

Thus, we obtain the result.

Let U3 be the set of unicyclic graph of the form G3 (as depicted in Figure 1), where v1 and v2 are
two vertices with a− 1, b− 1 pendent vertices satisfying a + b = n− 2, a, b ≥ 1, one of a and b is at
least 2. Let G∗3 be the graph of the form G3 satisfying a, b almost equal.

Theorem 3. The graph G∗3 has the maximum Hosoya index among all graphs in U3.

Proof. For G3 ∈ U3 with a ≥ b ≥ 1, by Lemmas 1 and 2, we obtain

z(G3) = z(G3 − v1) + ∑
v′∈NG3 (v1)

z(G3 − {v1, v′})

= z(G3 − v1) + z(G3 − {v1, v2}) + z(G3 − {v1, v4})
+ (a− 1)z(G3 − {v1, y})
= (2b + 1) + 2 + (b + 1) + (a− 1)(2b + 1)

= 2ab + a + b + 3 := f3(a, b),

where y is one of pendent vertex adjacent to v1 in G3.
If a− b ≥ 2, then we get

f3(a− 1, b + 1)− f3(a, b) = 2(a− b− 1) > 0.

Therefore, when a and b are almost equal, G2 has the maximal Hosoya index.

Let U4 be the set of unicyclic graphs of the form G4 (as depicted in Figure 1), where v1 and v2 are
two vertices with a− 1, b− 1 pendent vertices, respectively, a + b = n− 3, a, b ≥ 1. Let G∗4 be the
graph of the form G4 satisfying |a− b| ≤ 1.

Theorem 4. The graph G∗4 has the maximum Hosoya index among all graphs in U4.
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Proof. Assume G4 ∈ U4 with a ≥ 2, b ≥ 1. By Lemmas 1 and 2, we obtain

z(G4) = z(G4 − v1) + ∑
v′∈NG4

(v1)

z(G4 − {v1, v′})

= z(G4 − v1 − v2) + ∑
y∈NG4−v1

(v2)

z(G4 − v1 − {v2, y})

+ ∑
v′∈NG4

(v1)

z(G4 − {v1, v′})

= z(G4 − v1 − v2) + [z(G4 − v1 − {v2, v3})
+ (b− 1)z(G4 − v1 − {v2, y})]
+ [z(G4 − {v1, v2}) + z(G4 − {v1, v5})
+ (a− 1)z(G4 − {v1, v′})]
= [3 + 2 + 3(b− 1)] + [3 + 2b + 1 + (a− 1)(3b + 2)]

= 3ab + 2a + 2b + 4 := f4(a, b),

where v′ is a pendent vertex adjacent to v1, y is a pendent vertex adjacent to v2.
If a− b ≥ 2, then we get

f4(a− 1, b + 1)− f4(a, b) = 3(a− b− 1) > 0.

This implies the result.

Theorem 5. The graph G∗1 has the maximum Hosoya index among all graphs in U 3
n if n ≥ 17.

Proof. We only need to compare the Hosoya indices of G∗i for i = 1, 2, 3, 4.
For G∗1 , we assume that a ≤ b ≤ c. As a, b, c are almost equal and a + b + c = n, then we have

a ≥ n−2
3 . Thus,

z(G∗1 ) = abc + a + b + c

≥ (n− 2)3

27
+ n := g1(n).

For G∗2 , as 0 ≤ a− b ≤ 2 and a + b = n− 2, we have a− 2 ≤ b ≤ a and thus a ≤ n
2 . Thus

z(G∗2 ) = 2ab + 2a + 2

≤ 2a2 + 2a + 2

≤ n2

2
+ n + 2 := g2(n).

The last inequality holds for a function f (a) = 2a2 + 2a+ 2 that is strictly increasing for 1 ≤ a ≤ n
2 .

For G∗3 , as a, b are almost equal and a + b = n− 2, then we have

z(G∗3 ) = 2ab + a + b + 3

≤ (a + b)2

2
+ a + b + 3

=
(n− 2)2

2
+ n + 1 := g3(n).
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For G∗4 , as a, b are almost equal and a + b = n− 3, then we have

z(G∗4 ) = 3ab + 2a + 2b + 4

≤ 3(a + b)2

4
+ 2(a + b) + 4

=
3(n− 3)2

4
+ 2n− 2 := g4(n).

By using the software “Mathematica”, we see g4(n) > g2(n) > g3(n) for n ≥ 14, g1(n) > g4(n)
for n ≥ 17. A direct computation yields to z(C5) = 11, z(C6) = 18, z(C7) = 29.

From above, we obtain the result.

3. The Unicyclic Graphs with Diameter 4

In this section, we aim to determine the maximal Hosoya index of unicyclic graphs with n vertices
and diameter 4.

Let V4
n be the set of all unicyclic graphs with n vertices and diameter 4. According to the length

of the unique cycle and the distribution of other vertices, we may classify all the members in V4
n . Let Vi

be the set of unicyclic graphs of the form Hi, i = 1, 2, 3, 4, 5, 6, 7, 8. It is easy to see that the graphs from
V1, V2, V3, V4, V5, V6, V7, V8, and V9 and two cycles C8 and C9 are all members of the unicyclic graphs
with diameter 4.

Let V1 be the set of unicyclic graphs of the form H1 (as depicted in Figure 2), where v1, v4, and v5

are three vertices with c− 1, b− 1, and a− 1 pendent vertices, a + b + c = n− 2, a ≥ 2, b ≥ 1, c ≥ 1.
Let H∗1 be the graph of the form H1 satisfying 0 ≤ a− b ≤ 1, 0 ≤ a− c ≤ 2, 0 ≤ b− c ≤ 1.
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Figure 2. Eight unicyclic graphs with diameter 4.

Theorem 6. The graph H∗1 has the maximum Hosoya index among all graphs in V1.
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Proof. For H1 ∈ V1, by Lemmas 1 and 2, we have

z(H1) = z(H1 − v1) + ∑
v′∈NH1 (v1)

z(H1 − {v1, v′})

= z(H1 − v1) + z(H1 − {v1, v2}) + z(H1 − {v1, v3})
+ z(H1 − {v1, v4}) + (c− 1)z(H1 − {v1, y})
= 2(ab + 1) + (ab + 1) + (ab + 1) + 2a + 2(c− 1)(ab + 1)

= 2abc + 2ab + 2a + 2c + 2 := g1(a, b, c),

where y is one pendent vertex adjacent to v1 in H1.
Case 1. If b− a ≥ 1, then

g1(a + 1, b− 1, c)− g1(a, b, c) = (b− a− 1)(2c + 2) + 2 > 0.

Case 2. If a− b ≥ 2, then

g1(a− 1, b + 1, c)− g1(a, b, c) = (a− b− 1)(2c + 2)− 2 ≥ 2c > 0.

Cases 1 and 2 imply that, if H1 has maximum Hosoya index, then we infer 0 ≤ a− b ≤ 1.
Case 3. If c− a ≥ 1, then

g1(a + 1, b, c− 1)− g1(a, b, c) = 2b(c− a− 1) + 2b > 0.

Case 4. If a− c ≥ 3, then

g1(a− 1, b, c + 1)− g1(a, b, c) = 2b(a− c− 2) ≥ 2b > 0.

Cases 3 and 4 imply that, if H1 has maximum Hosoya index, then we infer 0 ≤ a− c ≤ 2.
Case 5. If c− b ≥ 1, then

g1(a, b + 1, c− 1)− g1(a, b, c) = 2a(c− b)− 2 > 0.

Case 6. If b− c ≥ 2, then

g1(a, b− 1, c + 1)− g1(a, b, c) = 2a(b− c− 2) + 2 > 0.

Cases 5 and 6 imply that if H1 has maximum Hosoya index, then we infer 0 ≤ b− c ≤ 1 are
almost equal.

From the above, we get the result.

Let V2 be the set of unicyclic graphs of the form H2 (as depicted in Figure 2), where v4, v1, v2, and
v3 are four vertices with a− 1, b− 1, c− 1, and d− 1 pendent vertices, respectively, a + b + c + d = n.
As the diameter is 4, we infer a ≥ 2 and one value of c and d is at least 2. Let H∗2 be the graph of the
form H2 satisfying 0 ≤ a− b ≤ 2, 0 ≤ a− c ≤ 1, |c− d| ≤ 1.

Theorem 7. The graph H∗2 has the maximum Hosoya index among all graphs in V2.
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Proof. For H2 ∈ V2, by Lemmas 1 and 2, we have

z(H2) = z(H2 − v1) + ∑
v′∈NH2 (v1)

z(H2 − {v1, v′})

= z(H2 − v1) + z(H2 − {v1, v2}) + z(H2 − {v1, v3})
+ z(H2 − {v1, v4}) + (b− 1)z(H2 − {v1, y})
= a(cd + 1) + ad + ac + (cd + 1) + a(b− 1)(cd + 1)

= abcd + ab + ac + ad + cd + 1 := g2(a, b, c, d),

where y is one of pendent vertex adjacent to v1 in H2.
Case 1. If c− d ≥ 2, then

g2(a, b, c− 1, d + 1)− g2(a, b, c, d) = (ab + 1)(c− d− 1) > 0.

Case 2. If d− c ≥ 2, we infer

g2(a, b, c + 1, d− 1)− g2(a, b, c, d) = (ab + 1)(d− c− 1) > 0.

Cases 1 and 2 imply that, if H2 has maximum Hosoya index, then we infer |c− d| ≤ 1.
Case 3. If a− b ≥ 3, then

g2(a− 1, b + 1, c, d)− g2(a, b, c, d) = (a− b− 1)cd

+ (a− b− 1)− c− d

≥ 2cd + 2− c− d

= cd + 1 + (c− 1)(d− 1) > 0.

Case 4. If b− a ≥ 1, then

g2(a + 1, b− 1, c, d)− g2(a, b, c, d) = (b− a− 1)cd

+ (b− a− 1) + c + d

≥ c + d > 0.

Cases 3 and 4 imply that, if H2 has maximum Hosoya index, then infer 0 ≤ a− b ≤ 2.
Case 5. If a− c ≥ 2, then

g2(a− 1, b, c + 1, d)− g2(a, b, c, d) = (a− c− 1)bd

− b + (a− c− 1)

≥ bd− b + 1 > 0.

Case 6. If c− a ≥ 1, then

g2(a + 1, b, c− 1, d)− g2(a, b, c, d) = (c− a− 1)bd

+ b + (c− a− 1)

≥ b > 0.

Cases 5 and 6 imply that, if H2 has maximum Hosoya index, then we infer 0 ≤ a− c ≤ 1.
From the above cases, we get the result.

Let V3 be the set of unicyclic graphs of the form H3 (as depicted in Figure 2), where v1, v2, v3, and
v4 are four vertices with a− 1, b− 1, c− 1, and d− 1 pendent vertices, a + b + c + d = n, a, b, c, d ≥ 1.
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As the diameter is 4, a and c, or b and d, are at least 2. Let H∗3 be the graph of the form H3 satisfying
a, b, c, d almost equal.

Theorem 8. The graph H∗3 has the maximum Hosoya index among all graphs in V3.

Proof. For H3 ∈ V3, by Lemmas 1 and 2, we have

z(H3) = z(H3 − v1) + ∑
v′∈NH3 (v1)

z(H3 − {v1, v′}).

For z(H3 − v1), by Lemma 1, we have

z(H3 − v1) = z(H3 − v1 − v2) + ∑
v′∈NH3−v1 (v2)

z(H3 − v1 − {v2, v′})

= z(H3 − v1 − v2)

+ z(H3 − v1 − {v2, v3})
+ (b− 1)z(H3 − v1 − {v2, y})
= (cd + 1) + d + (b− 1)(cd + 1)

= bcd + b + d,

where y is one pendent vertex adjacent to v2 in H3.
For ∑v′∈NH3 (v1)

z(H3 − {v1, v′}), by Lemmas 1 and 2, we have

∑
v′∈NH3 (v1)

z(H3 − {v1, v′})

= z(H3 − {v1, v2}) + z(H3 − {v1, v4}) + (a− 1)z(H3 − {v1, w})
= (cd + 1) + (bc + 1) + (a− 1)(bcd + b + d),

where w is one of pendent vertex adjacent to v1 in H3. Therefore,

z(H3) = z(H3 − v1) + ∑
v′∈NH3 (v1)

z(H3 − {v1, v′})

= (bcd + b + d) + [(cd + 1) + (bc + 1) + (a− 1)(bcd + b + d)]

= abcd + ab + ad + bc + cd + 2 := g3(a, b, c, d).

Case 1. If a− c ≥ 2, then

g3(a− 1, b, c + 1, d)− g3(a, b, c, d) = bd(a− c− 1) > 0.

From Case 1, we have, when a and c are almost equal, H3 has larger Hosoya index. Similarly,
as b, d have the same status as shown in the graph, we conclude that, when b and d are almost equal,
H3 has larger Hosoya index.

Case 2. If a− b ≥ 2, then

g3(a− 1, b + 1, c, d)− g3(a, b, c, d) = (a− b− 1)cd

+ (a− b− 1)− d + c

≥ cd + 1− d + c

= (c− 1)(d + 1) + 2 > 0.
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Therefore, from Case 2, when H3 has maximum Hosoya index, we infer that a and b are almost
equal, and, similarly, a and d are almost equal.

From Case 1, b and d are almost equal, so a, b and d are almost equal. Similarly, a, b and c are
almost equal. Hence, we get a, b, c, d are almost equal.

Let V4 be the set of unicyclic graphs of the form H4 (as depicted in Figure 2), where v5, v1, v2,
and v4 are four vertices with a− 1, b− 1, c− 1, and d− 1 pendent vertices with a + b + c + d = n,
a ≥ 2, b, c, d ≥ 1. Let H∗4 be the graph of the form H4 satisfying 0 ≤ a− b ≤ 2, |c− d| ≤ 1, 0 ≤ a− c ≤ 1.

Theorem 9. The graph H∗4 has the maximum Hosoya index among all graphs in V4.

Proof. For H4 ∈ V4, by Lemmas 1 and 2, we have

z(H4) = z(H4 − v1) + ∑
v′∈NH4 (v1)

z(H4 − {v1, v′}).

For z(H4 − v1), by Lemma 1, we get

z(H4 − v1) = z(H4 − v1 − v2) + ∑
v′∈NH4−v1 (v2)

z(H4 − v1 − {v2, v′})

= z(H4 − v1 − v2) + z(H4 − v1 − {v2, v3})
+ (c− 1)z(H4 − v1 − {v2, y})
= a(d + 1) + ad + (c− 1)a(d + 1)

= acd + ac + ad,

where y is one pendent vertex adjacent to v2 in H4. For ∑v′∈NH4 (v1)
z(H4 − {v1, v′}),

by Lemmas 1 and 2,

∑
v′∈NH4 (v1)

z(H4 − {v1, v′}) = z(H4 − {v1, v2}) + z(H4 − {v1, v4})

+ z(H4 − {v1, v5})
+ (b− 1)z(H4 − {v1, vb−1})
= z(H4 − {v1, v2})
+ z(H4 − {v1, v4})
+ [z(H4 − {v1, v5} − v2)

+ z(H4 − {v1, v5} − {v2, v3})
+ (c− 1)z(H4 − {v1, v5} − {v2, y})]
+ (b− 1)z(H4 − {v1, w})
= a(d + 1) + a(c + 1)

+ (cd + c + d)

+ (b− 1)(acd + ac + ad),

where w is one pendent vertex adjacent to v1 in H4. Hence, it follows that
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z(H4) = z(H4 − v1) + ∑
v′∈NH4 (v1)

z(H4 − {v1, v′})

= (acd + ac + ad)

+ [a(d + 1) + a(c + 1)

+ (cd + c + d) + (b− 1)(acd + ac + ad)]

= abcd + abc + abd + ac + ad + cd + 2a + c + d

:= g4(a, b, c, d).

Case 1. If c− d ≥ 2, then

g4(a, b, c− 1, d + 1)− g4(a, b, c, d)− (abcd + abc

+ abd + ac + ad

+ cd + 2a + c + d)

= (ab + 1)(c− d− 1) > 0.

Similarly, if d− c ≥ 2, then we have

g4(a, b, c + 1, d− 1)− g4(a, b, c, d) = (ab + 1)(d− c− 1) > 0.

Cases 1 implies that, if H4 has the maximum Hosoya index, we conclude |d− c| ≤ 1.
Case 2. If a− b ≥ 3, then

g4(a− 1, b + 1, c, d)− g4(a, b, c, d) = (a− b− 1)cd

+ (a− b− 1)(c + d)

− c− d− 2

≥ 2cd + c + d− 2 > 0.

Case 3. If b− a ≥ 1, then

g4(a + 1, b− 1, c, d)− g4(a, b, c, d)

= (b− a− 1)cd + (b− a− 1)(c + d) + c + d + 2

≥ c + d + 2 > 0.

Cases 2 and 3 imply that, if H4 has the maximum Hosoya index, we conclude 0 ≤ a− b ≤ 2.
Case 4. If a− c ≥ 2, then

g4(a− 1, b, c + 1, d)− g4(a, b, c, d) = (a− c− 1)bd

+ (a− c− 1)b

− bd + (a− c− 1)− 1 > 0.

.
Case 5. If c− a ≥ 1, then

g4(a + 1, b, c− 1, d)− g4(a, b, c, d) = (c− a− 1)bd

+ (c− a− 1)b + bd

+ (c− a− 1) + 1 > 0.

Thus, we have z(H46) > z(H4).
Cases 4 and 5 imply that, if H4 has the maximum Hosoya index, we conclude 0 ≤ a− c ≤ 1.
All the above cases imply the desired result.
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Let V5 be the set of unicyclic graphs of the form H5 (as depicted in Figure 2), where v6, v1, v2, and
v5 are four vertices with a− 1, b− 1, c− 1, and d− 1 pendent vertices, a + b + c + d = n− 2, and a ≥
2, b, c, d ≥ 1. Let H∗5 be the graph of the form H5 satisfying 0 ≤ a− b ≤ 2, |c− d| ≤ 1, 0 ≤ a− c ≤ 1.

Theorem 10. The graph H∗5 has the maximum Hosoya index among all graphs in V5.

Proof. For H5 ∈ V5, by Lemmas 1 and 2,

z(H5) = z(H5 − v1) + ∑
v′∈NH5 (v1)

z(H5 − {v1, v′})

= z(H5 − v1) + z(H5 − {v1, v2}) + z(H5 − {v1, v5})
+ z(H5 − {v1, v6}) + (b− 1)z(H5 − {v1, y}),

where y is one pendent vertex adjacent to v1 in H5.
For z(H5 − v1), By Lemma 1, we have

z(H5 − v1) = z(H5 − v1 − v2) + ∑
v′∈NH5−v1 (v2)

z(H5 − v1 − {v2, v′})

= z(H5 − v1 − v2) + z(H5 − v1 − {v2, v3})
+ (c− 1)z(H5 − v1 − {v2, w})
= a(2d + 1) + a(d + 1) + (c− 1)a(2d + 1)

= 2acd + ac + ad + a,

where w is one pendent vertex adjacent to v2 in H5, z(H5 − {v1, v2}) = a(2d + 1), and z(H5 −
{v1, v3}) = a(2c + 1). Therefore,

z(H5) = (2acd + ac + ad + a) + a(2d + 1) + a(2c + 1)

+ (2cd + c + d + 1) + (b− 1)(2acd + ac + ad + a)

= 2abcd + abc + abd + ab + 2ac

+ 2ad + 2cd + 2a + c + d + 1 := g5(a, b, c, d).

Case 1. If c− d ≥ 2, then

g5(a, b, c− 1, d + 1)− g5(a, b, c, d) = (2ab + 2)(c− d− 1) > 0.

Case 2. If d− c ≥ 2, this yields to

g5(a, b, c + 1, d− 1)− g5(a, b, c, d) = (2ab + 2)(d− c− 1) > 0.

Cases 1 and 2 imply that, if H5 has the maximum Hosoya index, we infer |d− c| ≤ 1.
Case 3. If a− b ≥ 3, then

g5(a− 1, b + 1, c, d)− g5(a, b, c, d) = (2cd + c + d + 1)(a− b− 1)

− 2c− 2d− 2

≥ 4cd > 0.

Case 4. If b− a ≥ 1, then

g5(a + 1, b− 1, c, d)− g5(a, b, c, d) = (2cd + c + d + 1)(b− a− 1)

+ 2c + 2d + 2 > 0.
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Cases 3 and 4 imply that, if H5 has the maximum Hosoya index, we conclude 0 ≤ a− b ≤ 2.
Case 5. If a− c ≥ 2, then

g5(a− 1, b, c + 1, d)− g5(a, b, c, d) = (2bd + b + 2)(a− c− 1)

− bd− b− 1 ≥ bd + 1 > 0.

Case 6. If c− a ≥ 1, then

g5(a + 1, b, c− 1, d)− g5(a, b, c, d) = (2bd + b + 2)(c− a− 1)

+ bd + b + 1 > 0.

Cases 5 and 6 imply that, if H5 has the maximum Hosoya index, we conclude 0 ≤ a− c ≤ 1.
From all above, we get the result.

Let V6 be the set of unicyclic graphs of the form H6 (as depicted in Figure 2), where v1, v2, v3, v4,
and v5 are five vertices with a− 1, b− 1, c− 1, d− 1, and e− 1 pendent vertices, a + b + c + d + e = n,
and a, b, c, d, e ≥ 1. As the diameter is 4, from symmetry, we may assume a and c, or a and d, are at
least 2. Let H∗6 be the graph of the form H6 satisfying a, b, c, d, e almost equal.

Theorem 11. The graph H∗6 has the maximum Hosoya index among all graphs in V6.

Proof. For H6 ∈ V6, by Lemmas 1 and 2, we have

z(H6) = z(H6 − v1) + ∑
v′∈NH6 (v1)

z(H6 − {v1, v′})

= z(H6 − v1) + z(H6 − {v1, v2}) + z(H6 − {v1, v5})
+ (a− 1)z(H6 − {v1, y}),

where y is one pendent vertex adjacent to v1 in H6.
For z(H6 − v1), by Lemma 1, we have

z(H6 − v1) = z(H6 − v1 − v2) + ∑
v′∈NH6−v1 (v2)

z(H6 − v1 − {v2, v′})

= z(H6 − v1 − v2) + z(H6 − v1 − {v2, v3})
+ (b− 1)z(H6 − v1 − {v2, vb−1})
= [z(H6 − v1 − v2 − v3) + z(H6 − v1 − v2 − {v3, v4})
+ (c− 1)z(H6 − v1 − v2 − {v3, vc−1})]
+ z(H6 − v1 − {v2, v3})
+ (b− 1)z(H6 − v1 − {v2, vb−1})
= [(de + 1) + e + (c− 1)(de + 1)]

+ (de + 1) + (b− 1)(cde + c + e)

= bcde + bc + be + de + 1,

where vb−1 is one pendent vertex adjacent to v2 in H6, vc−1 is one pendent vertex adjacent to v3,
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z(H6 − {v1, v2}) = cde + c + e, and

z(H6 − {v1, v5}) = z(H6 − {v1, v5} − v4) + z(H6 − {v1, v5}
− {v4, v3}) + (d− 1)z(H6 − {v1, v5}
− {v4, vd−1})
= (bc + 1) + b + (d− 1)(bc + 1)

= bcd + b + d.

Therefore, we obtain

z(H6) = (bcde + bc + be + de + 1)

+ (cde + c + e) + (bcd + b + d)

+ (a− 1)(bcde + bc + be + de + 1)

= abcde + abc + abe + ade

+ bcd + cde + a + b + c + d + e.

If a− b ≥ 2, let H′6 be the graph obtained from H6 by removing a pendent edge at v1 to v2. Then,
we get

z(H′6)− z(H6) = (a− b− 1)cde + (a− b− 1)(c + e)− de + cd

≥ cde + c + e− de + cd

= (c− 1)de + cd + c + e > 0.

As a, b, c, d, e have the same status as depicted in Figure 2, we obtain that , when a, b, c, d, e are
almost equal, H6 has the maximal Hosoya index.

Let V7 be the set of unicyclic graphs of the form H7 (as depicted in Figure 2), where v1, v2, and v3

are three vertices with a− 1, b− 1, and c− 1 pendent vertices, a + b + c = n− 3, a, b, c ≥ 1, and one
of a, b, c is at least 2. Let H∗7 be the graph of the form H7 satisfying a, b, c almost equal.

Theorem 12. The graph H∗7 has the maximum Hosoya index among all graphs in V7.

Proof. For H7 ∈ V7, by Lemmas 1 and 2, we have

z(H7) = z(H7 − v1) + ∑
v′∈NH7 (v1)

z(H7 − {v1, v′})

= z(H7 − v1) + z(H7 − {v1, v2})
+ z(H7 − {v1, v6}) + (a− 1)z(H7 − {v1, va−1}),

where va−1 is one pendent vertex adjacent to v1 in H7.
For z(H7 − v1), by Lemma 1, we have

z(H7 − v1) = z(H7 − v1 − v2) + ∑
v′∈NH7−v1 (v2)

z(H7 − v1 − {v2, v′})

= [3 + 2 + 3(c− 1)] + 3 + (b− 1)(3c + 2)

= 3bc + 2b + 3,

where vc−1 is one pendent vertex adjacent to v3, vb−1 is one pendent vertex adjacent to v2 in H7,
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z(H7 − {v1, v2}) = 3c + 2, and

z(H7 − {v1, v6}) = [b(c + 1) + 1] + b(c + 1)

= 2bc + b + 2.

Therefore, we obtain

z(H7) = (3bc + 2b + 3) + (3c + 2)

+ (2bc + b + 2) + (a− 1)(3bc + 2b + 3)

= 3abc + 2ab + 2bc + 3a + b + 3c + 4 := g7(a, b, c).

Case 1. If a− b ≥ 2, then

g7(a− 1, b + 1, c)− g7(a, b, c) = (3c + 2)(a− b− 1)

+ 2c− 2 ≥ 5c > 0.

Case 2. If b− a ≥ 2, then we conclude

g7(a + 1, b− 1, c)− g7(a, b, c) = (3c + 2)(b− a− 1)

− 2c + 2 > 0.

Cases 1 and 2 imply that, if H7 has the maximum Hosoya index, we conclude |a− b| ≤ 1. Similarly,
by using symmetry, we may obtain |c− b| ≤ 1.

Case 3. If a− c ≥ 2, then

g7(a− 1, b, c + 1)− g7(a, b, c) = 3b(a− c− 1) > 0.

Case 4. If c− a ≥ 2, then get

g7(a + 1, b, c− 1)− g7(a, b, c) = 3b(c− a− 1) > 0.

Cases 3 and 4 imply that, if H7 has the maximum Hosoya index, we conclude |a− c| ≤ 1.
In conclusion, when a, b, c are almost equal, H7 has the maximal Hosoya index.

Let V8 be the set of unicyclic graphs of the form H8 (as depicted in Figure 2), where v1, v2, and v3

are three vertices with a− 1, b− 1, and c− 1 pendent vertices, a + b + c = n− 4, a, b, c ≥ 1, NS one of
a, b, c is at least 2. Let H∗8 be the graph of the form H8 satisfying a, b, c almost equal.

Theorem 13. The graph H∗8 has the maximum Hosoya index among all graphs in V8.

Proof. For H8 ∈ V8, by Lemmas 1 and 2, we have

z(H8) = z(H8 − v1) + ∑
v′∈NH8 (v1)

z(H8 − {v1, v′})

= z(H8 − v1) + z(H8 − {v1, v2})
+ z(H8 − {v1, v7}) + (a− 1)z(H8 − {v1, v1,a−1}),

where va−1 is one pendent vertex adjacent to v1 in H8.
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For z(H8 − v1), by Lemma 1, we have

z(H8 − v1) = z(H8 − v1 − v2)

+ ∑
v′∈NH8−v1 (v2)

z(H8 − v1 − {v2, v′})

= z(H8 − v1 − v2) + z(H8 − v1 − {v2, v3})
+ (b− 1)z(H8 − v1 − {v2, vb−1})
= [z(H8 − v1 − v2 − v3)

+ z(H8 − v1 − v2 − {v3, v4})
+ (c− 1)z(H8 − v1 − v2 − {v3, vc−1})]
+ z(H8 − v1 − {v2, v3})
+ (b− 1)z(H8 − v1 − {v2, vb−1})
= [5 + 3 + 5(c− 1)] + 5 + (b− 1)(5c + 3)

= 5bc + 3b + 5,

where vc−1 is one pendent vertex adjacent to v3 in H8, vb−1 is one pendent vertex adjacent to v2 in H8,
z(H8 − {v1, v2}) = 5c + 3, and

z(H8 − {v1, v7}) = z(H8 − {v1, v7} − v6)

+ z(H8 − {v1, v7} − {v6, v5})
= z(H8 − {v1, v7} − v6 − v5)

+ z(H8 − {v1, v7} − v6 − {v5, v4})]
+ z(H8 − {v1, v7} − {v6, v5})
= 2[b(c + 1) + 1] + bc + 1

= 3bc + 2b + 3.

Therefore,

z(H8) = (5bc + 3b + 5) + (5c + 3)

+ (3bc + 2b + 3) + (a− 1)(5bc + 3b + 5)

= 5abc + 3ab + 3bc + 5a + 2b + 5c + 6 := g8(a, b, c).

Case 1. If a− b ≥ 2, then

g8(a− 1, b + 1, c)− g8(a, b, c) = (5c + 3)(a− b− 1)

+ 3c− 3 ≥ 8c > 0.

Case 2. If b− a ≥ 2, then

g8(a + 1, b− 1, c)− g8(a, b, c) = (5c + 3)(b− a− 1)

− 3c + 3 ≥ 2c + 6 > 0.

Cases 1 and 2 imply that, if H8 has the maximum Hosoya index, we conclude |a− b| ≤ 1. Similarly,
we obtain |c− b| ≤ 1.

Case 3. If a− c ≥ 2, then

g8(a− 1, b, c + 1)− g8(a, b, c) = 5b(a− c− 1) > 0.
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Case 4. If c− a ≥ 2, then we have

g8(a + 1, b, c− 1)− g8(a, b, c) = 5b(c− a− 1) > 0.

Cases 3 and 4 imply that, if H8 has the maximum Hosoya index, we conclude |a− c| ≤ 1.
In conclusion, when a, b, c are almost equal, H8 has the maximal Hosoya index.

Let V9 be the set of unicyclic graphs of the form H9 (as depicted in Figure 2), where v1, v3, and
v5 are three vertices with a− 1, b− 1, and c− 1 pendent vertices, a + b + c = n− 3, a, b, c ≥ 1, and
one of a, b, c is at least 2. Let H∗9 be the graph of the form H9 satisfying a, b, c almost equal.

Theorem 14. The graph H∗9 has the maximum Hosoya index among all graphs in V9.

Proof. For H9 ∈ V9, from Lemmas 1 and 2, we have

z(H9) = z(H9 − v1) + ∑
v′∈NH9 (v1)

z(H9 − {v1, v′})

= z(H9 − v1) + z(H9 − {v1, v2})
+ z(H9 − {v1, v6}) + (a− 1)z(H9 − {v1, v1,a−1}).

For z(H9 − v1), by Lemmas 1 and 2, we have

z(H9 − v1) = z(H9 − v1 − v2)

+ ∑
v′∈NH9−v1 (v2)

z(H9 − v1 − {v2, v′})

= z(H9 − v1 − v2) + z(H9 − v1 − {v2, v3})
= [z(H9 − v1 − v2 − v3) + z(H9 − v1 − v2 − {v3, v4})
+ (b− 1)z(H9 − v1 − v2 − {v3, x})]
+ z(H9 − v1 − {v2, v3})
= [(c + 2) + (c + 1) + (b− 1)(c + 2)] + (c + 2)

= bc + 2b + 2c + 3.

Here, x is a pendent vertex attached at v3.
Observe that z(H9 − {v1, v2}) = bc + 2b + c + 1,

z(H9 − {v1, v6}) = z(H9 − {v1, v6} − v5)

+ z(H9 − {v1, v6} − {v5, v4})
+ (c− 1)z(H9 − {v1, v6} − {v5, y})
= (b + 2) + (b + 1) + (c− 1)(b + 2)

= bc + b + 2c + 1,

where y is one pendent vertex attached at v5.
Thus, we obtain

z(H9) = z(H9 − v1) + z(H9 − {v1, v2})
+ z(H9 − {v1, v6}) + (a− 1)z(H9 − {v1, v1,a−1})
= (bc + 2b + 2c + 3) + (bc + 2b + c + 1)

+ (bc + b + 2c + 1) + (a− 1)(bc + 2b + 2c + 3)

= abc + 2ab + 2ac + 2bc + 3a + 3b + 3c + 2 := g9(a, b, c).
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If a− b ≥ 2, then we have

g9(a− 1, b + 1, c)− g9(a, b, c)

= [(a− 1)(b + 1)c + 2(a− 1)(b + 1)

+ 2(a− 1)c + 2(b + 1)c + 3(a− 1)

+ 3(b + 1) + 3c + 2]

− (abc + 2ab + 2ac + 2bc + 3a + 3b + 3c + 2)

= (c + 2)(a− b− 1)

≥ 0.

Thus, we have z(H91) > z(H9).
This implies that, if H9 has the maximum Hosoya index, we conclude |a− c| ≤ 1.
As b, c (resp. a, c) have the same status as shown in Figure 2, we also have |b− c| ≤ 1. |a− c| ≤ 1.

This is the desired result.

Theorem 15. The graph H∗6 has the maximum Hosoya index among all graphs in V4
n for n ≥ 50.

Proof. We need only compare z(H∗i ) for 1 ≤ i ≤ 8.
For H∗1 , as 0 ≤ a − b ≤ 1, 0 ≤ a − c ≤ 2, 0 ≤ b − c ≤ 1, we have b ≤ a, c ≤ a, c ≤ b ≤ a,

and b ≥ a− 1, c ≥ a− 2. Since a+ b+ c = n− 2, we get n− 2 = a+ b+ c ≥ a+ a− 1+ a− 2 = 3a− 3,
this leads to a ≤ n+1

3 . Therefore,

z(H∗1 ) = 2abc + 2ab + 2a + 2c + 2

≤ 2a3 + 2a2 + 4a + 2

≤ 2(n + 1)3

27
+

2(n + 1)2

9
+

4(n + 1)
3

+ 2 := h1(n)

The last inequality holds for a function f1(a) = 2a3 + 2a2 + 4a + 2 that is strictly increasing for
2 ≤ a ≤ n+1

3 .
For H∗2 , we have 0 ≤ a− b ≤ 2, 0 ≤ a− c ≤ 1, |c− d| ≤ 1. We may assume 0 ≤ c− d ≤ 1 without

loss of generality. Then, b ≤ a, c ≤ a, d ≤ c ≤ a, and b ≥ a − 2, c ≥ a − 1, d ≥ c − 1 ≥ a − 2.
Thus, n = a + b + c + d ≥ a + a− 2 + a− 1 + a− 2 = 4a− 5, and hence a ≤ n+5

4 . Therefore,

z(H∗2 ) = abcd + ab + ac + ad + cd + 1

≤ a4 + 4a2 + 1

≤ (n + 5)4

256
+

(n + 5)2

4
+ 1 := h2(n).

The last inequality holds for a function f2(a) = a4 + 4a2 + 1 that is strictly increasing for
2 ≤ a ≤ n+5

4 .
For H∗3 , as a, b, c, d are almost equal and a + b + c + d = n, we have a, b, c, d ≤ n+3

4

z(H∗3 ) = abcd + ab + ad + bc + cd + 2

≤ (n + 3)4

256
+

(n + 3)2

4
+ 2 := h3(n).
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For H∗4 , 0 ≤ a − b ≤ 2, |c − d| ≤ 1, 0 ≤ a − c ≤ 1. We may assume 0 ≤ c − d ≤ 1 without
loss of generality. Then, b ≤ a, c ≤ a, d ≤ c ≤ a, and b ≥ a − 2, c ≥ a − 1, d ≥ c − 1 ≥ a − 2.
Thus, n− 1 = a + b + c + d ≥ a + a− 2 + a− 1 + a− 2 = 4a− 5, and hence a ≤ n+4

4 . Therefore,

z(H∗4 ) = abcd + abc + abd + ac + ad + cd + 2a + c + d

≤ a4 + 2a3 + 3a2 + 4a

≤
(

n + 4
4

)4
+ 2

(
n + 4

4

)3
+ 3

(
n + 4

4

)2
+ 4

n + 4
4

=
(n + 4)4

256
+

(n + 4)3

32
+

3(n + 4)2

16
+ n + 4 := h4(n).

The last inequality holds for a function f3(a) = a4 + 2a3 + 3a2 + 4a that is strictly increasing for
2 ≤ a ≤ n+4

4 .
For H∗5 , 0 ≤ a − b ≤ 2, |c − d| ≤ 1, 0 ≤ a − c ≤ 1. We may assume 0 ≤ c − d ≤ 1 without

loss of generality. Then, b ≤ a, c ≤ a, d ≤ c ≤ a, and b ≥ a − 2, c ≥ a − 1, d ≥ c − 1 ≥ a − 2.
Thus, n− 2 = a + b + c + d ≥ a + a− 2 + a− 1 + a− 2 = 4a− 5, and hence a ≤ n+3

4 . Therefore,

z(H∗5 ) = 2abcd + abc + abd + ab

+ 2ac + 2ad + 2cd + 2a + c + d + 1

≤ 2a4 + 2a3 + 7a2 + 4a + 1

≤ 2
(

n + 3
4

)4
+ 2

(
n + 3

4

)3

+ 7
(

n + 3
4

)2
+ 4

(
n + 3

4

)
+ 1 := h5(n).

The last inequality holds for a function f4(a) = 2a4 + 2a3 + 7a2 + 4a + 1 that is strictly increasing
for 2 ≤ a ≤ n+3

4 .
For H∗6 , a, b, c, d, e are almost equal. Then, a, b, c, d, e ≥ n−4

5 as a + b + c + d + e = n. Therefore,

z(H∗6 ) = abcde + abc + abe + ade + bcd + cde

+ a + b + c + d + e

≥
(

n− 4
5

)5
+ 5

(
n− 4

5

)3
+ 5

n− 4
5

:= h6(n).

For H∗7 , a, b, c are almost equal. We may assume a− 1 ≤ b ≤ a + 1, 0 ≤ a− c ≤ 1. Then, we have
b ≤ a + 1, c ≤ a, and b ≥ a− 1, c ≥ a− 1. Thus, n− 3 = a + b + c ≥ a + a− 1 + a− 1 = 3a− 2,
and hence a ≤ n−1

3 . Therefore,

z(H∗7 ) = 3abc + 2ab + 2bc + 3a + b + 3c + 4

≤ 3a2(a + 1) + 2a(a + 1) + 2a(a + 1)

+ 3a + a + 1 + 3a + 4

= 3a3 + 7a2 + 11a + 5

≤ 3
(

n− 1
3

)3
+ 7

(
n− 1

3

)2
+ 11

n− 1
3

+ 5 := h7(n).

The last inequality holds for a function f5(a) = 3a3 + 7a2 + 11a + 5 which is strictly increasing for
1 ≤ a ≤ n−1

3 .
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Let H∗8 , a, b, c are almost equal. We may assume a− 1 ≤ b ≤ a + 1, 0 ≤ a− c ≤ 1. Then, we have
b ≤ a + 1, c ≤ a, and b ≥ a− 1, c ≥ a− 1. Thus, n− 4 = a + b + c ≥ a + a− 1 + a− 1 = 3a− 2,
and hence a ≤ n−2

3 . Therefore,

z(H∗8 ) = 5abc + 3ab + 3bc + 5a + 2b + 5c + 6

≤ 5a2(a + 1) + 3a(a + 1) + 3a(a + 1)

+ 5a + 2(a + 1) + 5a + 6

= 5a3 + 11a2 + 18a + 8

≤ 5
(

n− 2
3

)3
+ 11

(
n− 2

3

)2
+ 18

n− 2
3

+ 8 := h8(n).

The last inequality holds for a function f6(a) = 5a3 + 11a2 + 18a + 8 is strictly increasing for
1 ≤ a ≤ n−2

3 .
For H∗9 , since a, b, c are almost equal, We may assume a − 1 ≤ b ≤ a + 1, 0 ≤ a − c ≤ 1.

Then b ≤ a + 1, c ≤ a, b ≥ a − 1, c ≥ a − 1. As n − 3 = a + b + c ≥ a + a − 1 + a − 1 = 3a − 2,
therefore a ≤ n−1

3 . Thus, we have

z(H∗9 ) =abc + 2ab + 2ac + 2bc + 3a + 3b + 3c + 2

≤ a2(a + 1) + 2a(a + 1) + 2a2 + 2a(a + 1)

+ 3a + 3(a + 1) + 3a + 2

= a3 + 7a2 + 13a + 5

≤
(

n− 1
3

)3
+ 7

(
n− 1

3

)2
+ 13

n− 1
3

+ 5 := h9(n).

The last inequality holds as f7(a) = a3 + 7a2 + 13a + 5 is strictly increasing for 1 ≤ a ≤ n−1
3 .

By using the software “Mathematica”, we obtain the following comparison.
h2(n)− h1(n) = 1

6912 (41,889 + 16,956n + 2706n2 + 28n3 + 27n4) > 0.
h2(n)− h3(n) = 1

32 (164 + 81n + 12n2 + n3) > 0.
h4(n)− h2(n) = 1

256 (79 + 140n + 26n2 + 4n3) > 0.
h6(n)− h4(n) = 1

800,000 (−13,510,144− 1,336,320n− 1,297,840n2 − 2040n3 − 8245n4 + 256n5) > 0
for n ≥ 37.

h8(n)− h7(n) = 1
27 (−70 + 24n− 9n2 + 2n3) > 0 for n ≥ 4.

h7(n)− h9(n) = 1
27 (16− 12n− 6n2 + 2n3) ≥ 0 for n ≥ 4.

h6(n)− h8(n) = 1
84,375 (−531,148− 315n− 67,155n2 − 7390n3 − 540n4 + 27n5) > 0 for n ≥ 32.

h6(n)− h5(n) = 1
400,000 (−6,520,697− 793,160n− 730,170n2− 13,520n3− 5685n4 + 128n5) > 0 for

n ≥ 50.
The direct computation yields to z(C8) = 47, z(C9) = 76.
From the above discussion, we get the result.

4. Summary and Conclusions

In this paper, we investigate extremal properties of the famous Hosoya index for unicyclic
graphs with diameter at most four. There is no doubt that topological indices have been proven
useful for analyzing molecules by means of their graph structure. Especially the Hosoya index is
demanding to calculate for general graphs. Thus, special analytical results for the Hosoya index
contribute to a better understanding of molecular topology when using this measure. Because of the
problem of calculating the Hosoya index efficiently, we also believe that our results can be used for
QSAR/QSPR problems. Moreover, the Hosoya index could be calculated on existing drugbanks to
determine the value distributions and using them within QSAR/QSPR. Note that this index has a
meaningful structural interpretation. As future work, we would like to continue to prove analytical
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results when establishing interrelations between the Hosoya index and known graph measures which
have been proven useful for drug design and QSAR/QSPR.
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