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Abstract: With the advent of mobile robots in commercial applications, the problem of path-planning
has acquired significant attention from the research community. An optimal path for a mobile robot
is measured by various factors such as path length, collision-free space, execution time, and the total
number of turns. MEA* is an efficient variation of A* for optimal path-planning of mobile robots.
RRT*-AB is a sampling-based planner with rapid convergence rate, and improved time and space
requirements than other sampling-based methods such as RRT*. The purpose of this paper is the
review and performance comparison of these planners based on metrics, i.e., path length, execution
time, and memory requirements. All planners are tested in structured and complex unstructured
environments cluttered with obstacles. Performance plots and statistical analysis have shown that
MEA* requires less memory and computational time than other planners. These advantages of
MEA* make it suitable for off-line applications using small robots with constrained power and
memory resources. Moreover, performance plots of path length of MEA* is comparable to RRT*-AB
with less execution time in the 2D environment. However, RRT*-AB will outperform MEA* in
high-dimensional problems because of its inherited suitability for complex problems.
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1. Introduction

Over the past decade, mobile robots have been effectively adapted to carry out vital unmanned
tasks in various fields. Application areas of path-planning algorithms include but are not confined to
security, vigilance [1], planetary exploration [2], route planning of Unmanned Aerial Vehicle (UAV) [3,4],
and molecular simulation [5]. Path-planning for mobile robots deals with feasible path generation from
a starting position to a goal position by avoiding collision with obstacles in an environment [6]. Canny and
Reif [7] proved that global optimal motion planning is a NP-hard problem. Therefore, it is often preferred
to acquire a feasible solution rather than to achieve optimality. The criteria of optimal path for mobile
robots is often based on one or more features such as shortest distance, low risk, smoothness, maximum
area coverage, and fewer energy requirements considering different application constraints [3,6]. One path
quality may be desirable based on the type of application. For example, the shortest route would be
preferred for a robotic vehicle on the road, whereas path smoothness would be required in case of rough
terrain [8]. Time and memory-efficient mobile robot path-planning also saves mobile robot wear and
capital expenditure [9].

Several planners have been used for mobile robots such as potential field, visibility graph,
evolutionary meta-heuristic methods, sampling-based methods, and grid-based methods [3]. Each of
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them has their own advantages and disadvantages. Classic methods such as potential field and
visibility graphs are complex, and computationally expensive to deal with real-time applications and
high-dimensional problems. Nature-inspired meta-heuristic approaches such as Genetic Algorithm
(GA) [10], and Artificial Bee Colony (ABC) algorithm [11] are suitable for the optimization of
multi-objective planning problems. A major drawback of these approaches is pre-mature convergence,
trapping in a local optimum, high computational cost, and complex mapping of data [3,11–13].
Recently, reinforcement learning has also emerged, but it is more suitable for robots learning new skills
than for path-planning applications [14,15]. Sampling-based Planning (SBP) approaches such as RRT*
(Rapidly exploring Random Tree Star) [16] are successful for high-dimensional complex problems [3].
A major limitation of sampling-based algorithms is their slow convergence rate [3,13]. RRT*-AB [12] is
a recent sampling-based planner which has resolved this issue and has improved convergence rate
as compared to other SBP variants [12]. Grid-based methods are another class of planning technique
applicable to low-dimensional space. A* [17] is a popular grid-based algorithm and is usually preferred
to solve planning problems of mobile robots in low dimensions [1,4,18,19]. However, A* does not
always find the shortest path because the path is constrained to grid edges. Its memory requirements
also expand vigorously for complex problems [4,6]. Memory-Efficient A* (MEA*) [20] is a variant of A*
which has addressed these limitations and its performance is also comparable to A* as compared to
other variants [20]. However, there is always a trade-off between processing time and robustness.

This paper is an extended version of the work presented in [20] with a detailed evaluation of
performance parameters for MEA*. The purpose of this paper is to perform a comparative analysis
of MEA* [20] with A*, HPA*, RRT, RRT*, and state-of-the-art sampling-based planning algorithm
RRT*-AB [12] in a 2D environment as per defined metrics. The main focus of result discussion is MEA*
and RRT*-AB.The assumption of application for mobile robots are as follows: 1. The environment is
closed and known to the autonomous mobile robot. 2. The obstacles in the environment are stationary.
3. Planners will perform off-line, i.e., they do not rely on online sensor capabilities. The rest of the paper
is as follows: Related work is described in Section 2. Section 3 presents the methodology. Section 4
describes the simulation results followed by a conclusion in Section 5.

2. Related Work

Grid-based planners map the configuration space into the grid formation by subdividing it into
cells. These planners use discrete techniques for path-planning. They generate a route as a series
of adjacent cells [21]. Dijkstra [22] and Extended Dijkstra [23] were early grid-based methods but
they were not practical for real-time path-planning applications due to poor search efficiency [23].
Dijkstra variants led to a popular grid-based planner named A* [17]. However, efficiency of A* is
highly dependent upon its heuristic cost function. Moreover, a path generated by A* can be longer
than the true shortest paths in the environment because of artificially constrained headings to the
edges, i.e., multiples of 45 degrees, as shown in Figure 1.

Different variations of A* [24–28] have been presented to address these limitations in the
advancement of grid-based heuristic planners. A variant of iterative-deepening depth-first search
and A* called iterative-deepening A* (IDA*) [28] resolved the issue of large memory requirements.
However, it often ends up exploring the same nodes multiple times that makes it slower than A*.
Another variant Theta* [18] was proposed to address the issue of a path being constrained to grid
edges. However, Theta* [18,26]-based variants consume less memory than A* but are much slower
than A*. Another variant Field D* (FD*) [29] also does not constrain the path to grid edges and the
generated path also comprises unnecessary turns. Two other recent variants MEA* [20] and HPA* [24]
used a pruning process on a planned path. The performance of MEA* is better than A* and HPA* and
it consumes less memory and computational time [20]. Optimality guarantee of grid-based algorithms
such as A* is ensured up to resolution of grid. As the grid dimension increases, the run time of
grid-based algorithms also increases drastically [6].
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Figure 1. Path constrained to edges vs true shortest path in grid [20].

Sampling-based algorithms such as RRT [30] and RRT* [16] have gained much success due to
their suitability for high-dimensional complex problems. Karaman et al. [16] proved the asymptotic
optimal properties of RRT*. RRT* discovers the initial path very quickly and then enhances its quality
in consecutive iterations. It produces a near-optimal path as the number of iterations approaches
infinity. It has become expedient for real-time applications due to its asymptotic optimal property.
However, its convergence rate is slower than basic RRT because it requires many iterations to optimize
the initial path [3,13]. Another RRT* variant named RRT*-Smart [31] resolved this issue to some extent
and acquired a near-optimal path in shorter time than RRT*. RRT*-AB [12] is a recent variation of
RRT* which rapidly converges to an optimal or near-optimal path as compared to other RRT*-based
approaches [12].

3. Methodology

MEA* and RRT*-AB along with other variations were executed in an environment cluttered with
obstacles of different shapes. The operating system used for simulation was 64-bit Windows 10 on PC
with 4 GB internal RAM and an Intel i5. A graphical simulation environment was built using MATLAB
version 2017 to perform numerical and graphical comparison and analysis. We have compared the
performance parameters of time, path length, and number of turns for MEA* [20] and RRT*-AB [12].
Both algorithms are implemented and tested in MATLAB. During tests, 2D environment maps of
different cases are provided as an input to the respective planner. Algorithms of MEA* and RRT*-AB
are described in the following subsections.

3.1. MEA* Algorithm

Start and goal positions are provided to planner MEA*. When the planner starts, it sets a goal
state Zg as the current node by assigning it a cost value equal to 2. Three lists are maintained during
the path-finding process. OpenList contains the nodes which are unexplored. closeList contains nodes
which are already explored, whereas parentList contains the parent of the current node. Initially, all the
lists are set to empty. The openList is initialized with start position. Its cost function is based on

f (n) = g(n) + h(n), (1)

where g(n) is cost from start to current node and h(n) is the heuristic estimation of cost from current
node to goal. The g(n) cost of start position is initialized with zero, and g(n) cost of every other vertex
in the map is set to infinity. If openList is found empty, then the algorithm terminates, reporting that
no path exists. If openList is not empty, then it originates a continuous process from goal position
Zg towards start position Zs to build a cost matrix based on minimum Euclidean distance. In each
iteration, the node with minimum f (n) cost is added in the openList; this process continues until source
Es is visited. If the visited vertex is not in goal position then it is removed from openList and placed in
closeList for further expansion. If the visited vertex is a goal position then the grid cells are backtracked
to generate a linear piece-wise path from goal position to source position. During this backtracking,
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fewer grid cells are traversed and processed than previous grid-based approaches. This phenomenon
leads to path generation with much improved time and memory efficiency. Long openList and heavily
populated cost matrix in previous approaches such as A* and HPA* require planner to explore whole
grid matrix during the planning process, as shown in Figure 2. However, MEA* inserts only nodes with
minimum cost in the openList and generates a path with efficient grid matrix exploration; see Figure 3.

Figure 2. Cost Matrix of A* after grid expansion [20].

Figure 3. Cost Matrix of MEA* after grid expansion [20].

Once a path is found, a pruning process similar to HPA* is applied to the solution path. The pruning
selects points that are directly connectable by collision-free straight lines using the line-of-sight algorithm
as shown in Figure 4. The final path generated after the pruning process comprises fewer waypoints
than A*, see Figure 5a,b. Therefore, MEA* selects only pruned points as waypoints of the final path.
This phenomenon makes the final path more efficient with respect to memory requirements and
execution. Moreover, during the pruning process, a safe boundary distance is maintained according to
the size of robot. The steps of MEA* are shown in Algorithm 1. The pruning algorithm is shown in
Algorithm 2.
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Figure 4. Global path pruning [20].

Algorithm 1: path← MEA ∗ (start, goal) [20].

1 closeList← φ

2 openList← φ

3 parentList← φ

4 openList← start // initiate open list with the start
5 goalCost← ∞ // initialize with infinity as default value
6 goalCost[start]← 0
7 f inalCost← ∞ //initialize with default value of infinity
8 f inalCost[start]← gCost[start] + heuristicCost(start, goal)
9 while openList 6= φ do

10 currentNode← node in the openList with the minimum f inalCost
11 if currentNode == goal then
12 pathFound← backtrack grid cells from goal to source
13 exit // exit while loop to return pathFound

14 openList.remove(currentNode)
15 closeList.add(currentNode)
16 foreach neighbor of currentNode do
17 calculate f cost for each neighbor
18 minimumNeighbor ←the node with the minimum fcost among all neighbors
19 openList.add(minimumNeighbor)
20 closeList.add( all neighbors except minimumNeighbor)
21 parentList.add(currentNode) // for constructing path when goal reached

22 path← postSmoothPath(pathFound) // prune path found to get final path
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Figure 5. Fewer waypoints in MEA* generated path than A* generated path [20].

Algorithm 2: path← postSmoothPath(pathFound) [20].

1 [s0, ...., sn]← pathFound
2 j← 0
3 t[j]← s[0]
4 for i← 1 to (n− 1) do
5 if NOTLineO fSight(t[j], s[i + 1]) then
6 j← j + 1
7 t[j]← s[i]
8 j← j + 1
9 t[j]← s[n]

10 return path

3.2. RRT*-AB Algorithm

This section describes algorithm of RRT*-AB [12]. RRT*-AB builds a tree in obstacle-free
environment space, Z f ree. The tree originates from an initial state, zinit and grows towards goal state,
zgoal to find a path. It explores the environment using intelligent bounded sampling which randomly
selects location points in limited region named as CRegion. CRegion maintains a search space between
zinit and zgoal using

Dscale = S/ f , (2)

where Dscale is expansion distance scale, S is the size of environment map and f is the expansion factor,
see Figure 6c,d. Intelligent bounded sampling selects random nodes using a goal biased heuristic
within the boundaries of CRegion. The tree progressively grows by adding new nodes from free space
in successive iterations. During every iteration, a random node zrand in the free space of CRegion [12]
is selected. Then, a nearest node in the tree is searched, which has the smallest distance to this new
random node. This search operation is performed within a circle of the area defined by

k = γ (log(n)/n)(1/d), (3)

where γ represents the environment-based planning constant, n shows the number of nodes in the
tree, and d represents the dimension of search space, [3,13]. If zrand is connectable to the nearest node
znearest, then it is inserted in the tree as new node znew with nearest node as its parent in the tree.
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Otherwise, the planner uses a steering function to get the new node znew with nearest node as parent.
A cost function in the planner assigns a cost value to every new node in the tree. The Rewire operation
rearranges nodes to minimize the overall cost of tree. Once a goal is found, the path is formed between
zinit and zgoal within CRegion. A path cost function generates the path cost based on Euclidean distance
defined by

4 d =
√
((x2 − x1)2 + (y2 − y1)2. (4)

If the path is not discovered during the first scan of CRegion then Dscale is increased gradually to
enhance CRegion until a path is found, as shown in Figure 6c,d. In the case of an extremely complex
scenario such as a maze environment, Dscale can be increased to grow CRegion up to the full environment
map. Use of the narrow CRegion makes sampling and exploration biased towards the goal as shown
in Figure 6c. The final path is optimized using three more techniques called concentrated sampling,
node rejection, and path pruning. A relatively narrow CRegion is acquired in the close neighborhood
of the initial path for concentrated sampling. Frequent rewiring operations gradually improve the
path during this process. At the same time, node rejection technique improves the path by rejecting
high-cost nodes. Finally, global pruning technique [12] further optimizes the path. Steps of RRT*-AB
are shown in Algorithm 3.

Figure 6. Process of RRT*-Adjustable Bounds [12].
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Algorithm 3: T ← RRT∗AB(zinit, zgoal) [12].

1 T ← InitializeTree();
2 T ← InsertNode(φ, zinit, T);
3 CRegion ← ConnectivityRegion(zinit, zgoal , T);
4 for i← 0 to N do
5 zrand ← BoundedSample(i, CRegion);
6 znearest ← Nearest(T, zrand);
7 (znew, Unew)← Steer(znearest, zrand);
8 if CollisionCheck(znew) then
9 znear ← Near(T, znew, |V|);

10 zmin ← ChooseParent(znear, znearest, znew);
11 T ← InsertNode(zmin, znew, T);
12 T ← Rewire(T, znear, zmin, znew);
13 if PathFound(T) then
14 CRegion ← ConnectivityRegion(zinit, zgoal , T);

15 else if CompleteScan(CRegion) then
16 CRegion ← ConnectivityRegion(zinit, zgoal , T);

17 T ← PrunePath(T);

18 return T

3.3. Complexity Analysis

This section describes the complexity of aforementioned approaches. Complexity of A* is highly
dependent upon its heuristic function [17]. MEA* is a variation of classic A* algorithm. Complexity for
the optimized path search is O(V) + O(E), where V is the total number of vertices and E is the total
edges present. In our case, both vertices and edges are dependent on the size of the environment map M.
Therefore, time and memory complexity for this task is O(|M|) + O(|M|). Overall, the memory and
time complexity can be written as O(2|M|).

The space complexity of RRT*, RRT*-Smart, and RRT*-AB is O(n) as demonstrated in [12,16,31].
Time complexity of an algorithm is a measure of the amount of time required by the algorithm to execute
a problem of size n. Time complexity of RRT*, RRT*-Smart, and RRT*-AB is O(nlogn) as demonstrated
in [12,16,31].

3.4. Data Set

We have used five different cases of the environment map represented by M1 to M5 as shown in
Figures 7 and 8. Environment maps M1 to M4 are adopted from [20,24], whereas map M5 is adopted
from Intel lab data sets [32]. A description of these environments is cluttered with obstacles is as follows:

• Simple Structured Environment: M1 is the case of a structured environment map such as
a turning passage.

• Concave Structured Environment: M2 represents an environment with concave shape obstacle.
• Narrow Structured Environment: M3 is the case of a narrow structured environment.
• Dense Structured Environment: M4 signifies a highly dense environment.
• Complex Unstructured Environment: M5 is an example of a complex indoor and unstructured scenario.
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3.5. Performance Metrics

To evaluate the performance of the planners for known environments with varying obstacle
density, the following metrics are used.

• Total Path Length: The total coverage length determines the total operational time required to
perform the coverage task and the total energy consumption of the mobile robot. The path-
planning algorithm is considered optimal if it generates the shortest path, thus leading to energy
efficiency. Therefore, it is an important parameter for real-world solutions.

• Computational Time: The time required to compute the solution is preeminent for real-world
applications. Hence, is a prominent efficiency indicator of the proposed approach.

• Memory Requirements: Memory requirements indicate the total number of vertices visited while
performing the coverage task. This directly influences the total computational time required by
the algorithm to find a solution.

4. Results

This section presents discussion of results and comparison of MEA* with other approaches.
Results of all approaches are shown for maps M1 to M2 in Figure 7 and for maps M3 to M5 in Figure 8.
Path length, execution time, total number of turns, and total number of cells processed in the grid are
also shown along with visual comparison. The results show that MEA* [20] performs better than A* and
HPA* based on the following parameters: number of turns, execution time, and memory requirements.

Figure 7. Simulation comparison of planned paths for environment maps M1 and M2.
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Figure 8. Simulation comparison of planned paths for environment maps M3 to M5.

MEA* finds a collision-free path in reduced computational time as compared to previous
approaches [17,24]. In addition, MEA* also eliminates any chance of multiple paths, see Figure 3.
During each iteration, MEA* selects a neighboring grid cell for expansion which has minimum
Euclidean distance. The expansion of cost matrix is performed using a heuristic function h(n), which is
based on selective Euclidean cost. The final path is further pruned using the line-of-sight principle.

The main factor of improved performance is that MEA* inserts only a single neighbor, which is
selected based on minimum Euclidean cost in openList, whereas A* and HPA* insert all neighbors
in openList. This makes openList short and comprising useful nodes only, thus the total number of
processed grid cells and execution time both are reduced. Furthermore, MEA* traverses fewer grid
cells to backtrack the path as explained in Section 1. Moreover, path length is also reduced because
pruning rejects extra waypoints. Moreover, it is also obvious from results that MEA* may generate
the paths of the same length or a little longer than HPA* for a densely cluttered environment M4
due to the precedence of local optimal while selecting the neighbor to insert in the list. However,
in such a scenario, MEA* still gives results with minimal computational time and much fewer memory
requirements. It shows a good trade-off between runtime and path length such as HPA* but with more
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efficient run time. MEA* is designed to improve memory and speed at the expense of path length.
Therefore, it is suitable for small-scale robot applications where they have very limited memory and
computational capability on board. Such applications prefer fewer memory requirements and efficient
response time of the planner as optimality criteria instead of the path length. Plots of the total number
of turns in the final path and processed cells in the grid are shown in Figure 9a,b for all grid-based
approaches. It is obvious from plots in Figure 9 that MEA* requires minimum memory to process
fewer grid cells than other grid-based approaches, i.e., A* and HPA*.

Figure 9. Comparison of MEA * with grid-based approaches for processed grid cells and turns in the
final path.

4.1. Comparison with Sampling-BASED Algorithms

In this section, simulation results of sampling-based approaches RRT [30], RRT* [16], and RRT*-
AB [12] using maps M1 to M5 are presented. Simulation results of these comparisons are shown
in Figure 10. Plots of path length and execution time for all planners and environment maps are
shown in Figure 11. All simulations of sampling-based approaches are carried out 20 times using
3000 iterations. MEA* has generated paths of equal length or shorter length than sampling-based
approaches. Keeping in view randomness of sampling-based approaches, if they are executed for
more than 3000 iterations or given more time, then they may generate better path than A*. However,
it is evident from plots in Figure 11 that there is a huge difference in execution time of MEA* with
other planners. MEA* has generated a path in much less time compared to all approaches; also see
Table 1. The path length of RRT*-AB is more comparable to the path length of MEA* than to other
sampling-based approaches. If RRT*-AB is provided with enough planning iterations then it can
provide a better path than MEA*. The MEA* can outperform RRT and RRT*-based state-of-the-art
approaches only in low dimensions. As discussed in Section 2, RRT-based approaches are suitable for
high-dimensional problems. Therefore, if complexity of the problem increases, RRT-based approaches
will perform much better than grid-based approaches such as MEA*.



Symmetry 2019, 11, 945 12 of 16

Figure 10. Cont.
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Figure 10. Simulation results of environment maps M1 to M5 using RRT, RRT*, RRT*-AB .

Figure 11. Plot of path lengths and computational time of all planners for all environment maps M1 to M5.

Table 1. Statistical results of all approaches for execution time (unit Sec).

Map A* HPA* RRT RRT* RRT*-AB MEA*

M1 (Simple Case) 12.54 12.453 69 164 26 0.0129
M2 (Concave Case) 7.8821 7.9059 66 161 29.35 0.0205
M3 (Narrow Case) 3.5571 3.5475 65 148 27 0.0094
M4 (Dense Case) 4.42 5.235 72 166 25.5 0.0494

M5 (Complex Unstructured Case) 3.0618 2.9953 66 157 25 0.0207

Total 31.461 32.1367 338 796 132.85 0.1129

Mean 6.2922 6.42734 67.6 159.2 26.57 0.02258

Std Dev 3.9681 3.8726 2.8809 7.1203 1.7210 0.0157

Std Dev Err 1.7746 1.7318 1.2884 3.1843 0.7696 0.0071
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4.2. Statistical Analysis

This section presents statistical analysis of results. Execution time and path length for all planners
in all environment maps is listed in Tables 1 and 2 respectively. Average and standard deviation values
for all cases are computed to show the differences in results. Table 1 shows that on average MEA*
requires minimum computational time to find the path. However, in sampling-based approaches,
RRT*-AB requires minimum time. Table 2 shows that on average MEA* generated the shortest path
length. However, paths generated by RRT*-AB and HPA* are comparable to it. RRT* and RRT*-AB are
sampling-based randomized approaches and they gradually improve the path towards optimality if
sufficient time is provided (or number of iterations are increased) [33]. They will generate a better path
than MEA* if they are executed for more time. Similarly, in high-dimensional scenarios, grid-based
approaches such as HPA* and MEA* will not perform well due to the exponential growth of their
search space.

Table 2. Statistical results of all approaches for path length (unit meter).

Map A* HPA* RRT RRT* RRT*-AB MEA*

M1 (Simple Case) 153.23 109.97 199 137 107 107.70
M2 (Concave Case) 110.97 93.09 117 128 95 91.67
M3 (Narrow Case) 141.31 139.25 164 177 138 136.67
M4 (Dense Case) 154.50 152.06 172 169 156 149.05

M5 (Complex Un-structure Case) 99.71 97.20 129 130 96.34 96.91

Total 659.7147 591.5614 781 741 592.34 582.007

Mean 131.94294 118.31228 156.2 148.2 118.468 116.4014

Std Dev 25.1410 26.1193 33.2370 23.0586 27.2124 25.2182

Std Dev Err 11.2434 11.6809 14.8640 10.3121 12.1697 11.2779

5. Conclusions

This paper presents a performance comparison of MEA* with prominent sampling-based and
grid-based algorithms according to the metrics of path length and execution time. Simulation results
show that the MEA* approach generates a shorter path with improved execution time and memory
requirements. Though sampling-based algorithm RRT*-AB generates a better path for complex
unstructured environment, MEA* still requires far less computational time. Increased computational
efficiency of MEA* makes it useful for off-line application scenarios with constrained memory
and computational resources in 2D. As MEA* is a grid-based approach, its search space expands
exponentially when used in high-dimensional problems. However, RRT*-AB will outperform MEA*
in high-dimensional problems because of its inherited suitability for complex problems. The desired
future directions are motion planning using RRT*-AB in 3D-space for 6 DOF manipulator robotic arm ,
and use of fuzzy logic-based navigation for cooperative mobile robots in 3D-space.
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Abbreviations

The following abbreviations are used in this manuscript:

MEA* Memory-Efficient A*
RRT Rapidly Exploring Random Tree
RRT* Rapidly Exploring Random Tree Star
RRT*-AB RRT*-Adjustable Bounds
UAV Unmanned Aerial Vehicle
GA Genetic Algorithm
PSO Particle Swarm Optimization
ACO Ant Colony Optimization
SBP Sampling-Based Planning
IDA* Iterative Deepening A*
FD* Field D*
HPA* Hierarchical A*
A*PS A* Post Smoothing
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