
symmetryS S

Article

An Optimization Framework for Codes Classification
and Performance Evaluation of RISC Microprocessors

Syed Rameez Naqvi 1,*, Ali Roman 1, Tallha Akram 1 , Majed M. Alhaisoni 2,
Muhammad Naeem 1, Sajjad Ali Haider 1, Omer Chughtai 1 and Muhammad Awais 1

1 Department of Electrical and Computer Engineering, COMSATS University Islamabad,
Wah Cantonment 47040, Pakistan

2 College of Computer Science and Engineering, University of Ha′il, Ha′il 81451, Saudi Arabia
* Correspondence: rameeznaqvi@ciitwah.edu.pk; Tel.: +92-51-9314-382 (ext. 259)

Received: 24 June 2019; Accepted: 06 July 2019; Published: 19 July 2019
����������
�������

Abstract: Pipelines, in Reduced Instruction Set Computer (RISC) microprocessors, are expected to
provide increased throughputs in most cases. However, there are a few instructions, and therefore
entire assembly language codes, that execute faster and hazard-free without pipelines. It is usual
for the compilers to generate codes from high level description that are more suitable for the
underlying hardware to maintain symmetry with respect to performance; this, however, is not
always guaranteed. Therefore, instead of trying to optimize the description to suit the processor
design, we try to determine the more suitable processor variant for the given code during compile
time, and dynamically reconfigure the system accordingly. In doing so, however, we first need to
classify each code according to its suitability to a different processor variant. The latter, in turn,
gives us confidence in performance symmetry against various types of codes—this is the primary
contribution of the proposed work. We first develop mathematical performance models of three
conventional microprocessor designs, and propose a symmetry-improving nonlinear optimization
method to achieve code-to-design mapping. Our analysis is based on four different architectures and
324,000 different assembly language codes, each with between 10 and 1000 instructions with different
percentages of commonly seen instruction types. Our results suggest that in the sub-micron era,
where execution time of each instruction is merely in a few nanoseconds, codes accumulating as low
as 5% (or above) hazard causing instructions execute more swiftly on processors without pipelines.

Keywords: computer organization; mathematical programming; optimization; modeling;
performance evaluation; dynamic partial reconfiguration

MSC: 46N10; 65D17; 65K10; 68M20; 90C25-26

1. Introduction

Reduced Instruction Set Computer [1], or RISC for short, has seen tremendous advancement over
the last four decades. Starting from a simple MIPS [2], RISC processors dominated in smartphones and
tablet computers [3], and have recently been used in a supercomputer named Sunway TaihuLight [4],
comprising ten million cores—making it the fastest supercomputer in the world (https://www.top500.
org/lists/2017/11/). It has also been reported (https://www.theverge.com/2017/3/9/14867310/
arm-servers-microsoft-intel-compute-conference) that Microsoft (R) has recently unveiled its new
Advanced RISC Machines (ARM) server designs, thereby beginning to challenge Intel’s dominance of
the industry.

Earlier versions of the RISC processor did not have pipeline stages; instead each instruction was
executed exactly in a clock cycle in a mutually exclusive manner—therefore, the name Single Cycle

Symmetry 2019, 11, 938; doi:10.3390/sym11070938 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0003-4578-3849
https://orcid.org/0000-0002-5701-7394
https://orcid.org/0000-0003-3791-4140
http://www.mdpi.com/2073-8994/11/7/938?type=check_update&version=1
https://www.top500.org/lists/2017/11/
https://www.top500.org/lists/2017/11/
https://www.theverge.com/2017/3/9/14867310/arm-servers-microsoft-intel-compute-conference
https://www.theverge.com/2017/3/9/14867310/arm-servers-microsoft-intel-compute-conference
http://dx.doi.org/10.3390/sym11070938
http://www.mdpi.com/journal/symmetry

Symmetry 2019, 11, 938 2 of 20

Processor (SCP) [5]. The performance limitations of the SCP were addressed in the advanced versions,
which were based on multicycle execution of each instruction, and later followed by incorporation
of pipelining, in which multiple instructions could be executed in parallel [6]. Since pipelining
was supposed to guarantee massive throughputs, it became the de facto architecture for most
modern processors [7,8], video coders/decoders [9,10], and crypto systems [11,12], to name a few.
Unfortunately, it was completely overlooked that there might be situations in which the older variants,
SCP and Multicycle Processors (MCP), could outperform the Pipelined Processors (PiP). One such
situation could be the way an assembly language program was written. It is often the case that
a particular instruction causes hazards that are not suitable for the PiP, and rather executes more
swiftly on an SCP. The greater the hazardous instructions in the assembly language code, the more
suitable the simpler variant shall be. Therefore, in this work we try to analyze the given assembly
language code first, before making choice of the processing architecture.

While proceeding miniaturization has allowed integration of billions of transistors on a chip [13],
and resources are readily available in abundance, excessive power consumption, rather than size,
in digital circuits, such as microprocessors, is becoming a much graver concern. In our context,
fabricating the three variants of RISC processors on a single chip, and then making a choice between
them according to the assembly language code should resolve the problem, however, only at the
expense of increased dynamic power consumption. Luckily, there exists a technique called Dynamic
Partial Reconfiguration (DPR) [14,15], which allows real-time reconfiguration of a part of the circuit,
while another part is still in execution. Therefore, it is possible to generate partial bit files for each
variant, keep them in the reconfigurable memory of the chip, and download one of them at a time
on to the system according to the code being executed without having to stop or restart the whole
system. Importantly, this will constrain the power consumption only to the active processor type.
This, however, was only possible if we were first able to classify the assembly language codes according
to their suitable processor variant, using some classification method [16].

In this work, we first develop a mathematical performance model for each of the three design
paradigms (SCP, MCP, and PiP) using a set of commonly seen instructions. By subjecting these models
to a symmetry-targeted monotone optimization technique, we determine which class of variants
does a given assembly language code, with a certain percentage of each instruction, suit the best.
We carry out our analysis on 8-bit, 16-bit, 32-bit and 64-bit MIPS processors, where the number of
instructions in each code varies between 10 and 1000. Our confidence stems from 324,000 assembly
language codes, each comprising different percentage of each instruction, per processor architecture.
Please note that it is beyond the scope of this work to present design and operation of the dynamically
reconfigurable (DR) processor; instead, we try the use of each design paradigm according to the given
assembly language program by comparing their execution times with each other, and advocating
the DR processor that promises performance symmetry in every circumstance for the given code in
run time. The major contributions of this work, therefore, are as follows:

1. Performance modeling of three conventional processor types for commonly seen instructions
2. Classification of assembly language codes for code-to-processor mapping using an optimization

technique based on symmetry-improving nonlinear transformation

We conclude that in the sub-micron era, where execution time of each instruction is merely in
a few nanoseconds, codes accumulating as low as 5% hazard causing instructions execute more
swiftly on processors without pipelines. Our results shall be vital in the context of multi-processor
systems-on-chip and chip multi-processors, where one more efficient function unit is replaced by
multiple simpler variants in order to attain increased throughputs by exploiting parallelism, yet,
keeping the complexity of the system unaffected or marginally increased [17]. To the best of our
knowledge, there is no framework available in the literature that could be considered equivalent to the
proposed one.

The rest of the paper is organized as follows: In Section 2, we review some of the recent
applications of DPR, and introduce our basic processors and the instructions that they support.

Symmetry 2019, 11, 938 3 of 20

A mathematical performance model for each processor is presented in Section 3, which is subsequently
used to define three optimization problems and their solutions in Section 4—this is the main
contribution, which also comprises our proposed research methodology. Section 5 presents results and
evaluation, and a few sample assembly language codes that suit SCP more than the PiP according to
the proposed formulation. We conclude the paper in Section 6.

2. Background and Related Work

2.1. Dynamic Partial Reconfiguration

Dynamic Partial Reconfiguration (DPR) is a technique used to update the logic blocks dynamically
while a part of the system is still in execution. The DPR allows the designers to generate partial bit files,
which can be implemented and downloaded into the system without the need for system shutdown or
restart. As a result, the system functionality is upgraded in runtime without any interruption.

The digital systems using the concept of DPR can be categorized into two: a static non
reconfigurable part of the design, and runtime reconfigurable part. The former uses the generated full
bit stream of the design downloaded into the system at boot time, whereas, the runtime reconfigurable
part of the design may comprise several independent reconfiguration regions. These regions have a
flexibility to be reconfigured in runtime by downloading the generated partial bit streams without
affecting the functionality of the static non reconfigurable part [18].

The system reconfiguration time for a specific reconfigurable region using the DPR concept is
proportional to the partial bit stream size. This timing constraint is a key factor in determining the
worst case execution time of the design, and is considered as a time overhead each time the system
is reconfigured [19].

The major advantage of DPR is that it enhances design flexibility and minimizes the design
area. This promising feature can be used to implement numerous system applications used in diverse
engineering fields, such as signal, image and video processing [20]. The concept of DPR is also used
for database management. An energy aware SQL query acceleration method using DPR concept on
XILINX ZYNQ platform has been presented [21], and a significant improvement in energy consumption
as compared to X86 based system is shown. Another diverse field recently using the DPR concept is
the evolution of artificial neural networks on FPGA. A very unique method to address fault problems
in synapses of spiking neural networks using astrocyte regulation, inspired by brain recovery process
is demonstrated [22].

The DPR concept may also be used in applications and systems where latency is considered as
one of the prime factors to determine the system’s performance. Various processor design styles [23,24]
may be implemented in runtime that will have a significant impact in terms of execution time—thereby
on performance of a specific program, as discussed in this work.

2.2. Processor Design Styles

RISC architectures, especially when used in industrial embedded systems applications, generally
follow one of the three design paradigms. These include single cycle, multi cycle, and pipelined
architectures. MIPS [2] is still considered as the benchmark architecture lying in core of most of the
modern RISC processors. This is why, in this work we restrict our analysis to MIPS, but we try to keep
our assumptions and methodology as general as possible. In what follows, we briefly present the
design and operation of each of the three design paradigms in turn.

2.2.1. SCP

As the name suggests, an SCP is guaranteed to execute each instruction in the instruction set
architecture (ISA) exactly in one clock cycle, where each instruction is supposed to access various
function units constituting the processor. These units typically include instruction/program memory,
register file, arithmetic and logic unit (ALU), data memory, and control unit (CU), each with a different

Symmetry 2019, 11, 938 4 of 20

latency. Since each instruction may access a different set of units in a unique sequence, the execution
time for each instruction will be different, and naturally, the clock cycle time should be long enough to
accommodate the slowest instruction (with the largest execution time).

2.2.2. MCP

An MCP executes each instruction in more than one clock cycles, depending upon the number
of function units it accesses. Therefore, a longer instruction will consume several clock cycles while
executing, whereas the shorter instructions will consume less. The clock cycle is just long enough to
accommodate only one function unit—naturally it must be the slowest function unit to dictate the
clock cycle time.

Since only one function unit is supposed to work in each clock cycle, it has become a convention
to name each clock cycle after the function unit in charge of that clock cycle: Instruction Fetch (read
the program memory), Decode (read the operands in the register file, and CU decodes OP-Code),
Execute (ALU either performs the desired operation or computes physical address to read/write the
data memory), Memory Access (read/write the data memory or register write for some instructions),
and Write-back (data read from memory is written on to a register).

2.2.3. PiP

The pipelining technique divides the datapath into n pipeline stages, named exactly like clock
cycles on the MCP, where each stage consists of exactly one function unit. These types of processors
are supposed to achieve higher throughput than the previous ones, by ensuring that no pipeline stage
remains idle at any point in time. Instead, n instructions can form a queue in the datapath, while each
occupies a pipeline stage simultaneously, thereby exploiting parallelism. Each stage, m, needs to be
synchronized with m− 1 and m + 1 neighboring stages, otherwise data from one stage may interfere
the operation of the next. Understandably, the clock cycle time is determined according to the slowest
pipeline stage, which ensures proper synchronization between the pipeline stages. Figure 1 presents
timing diagram for the three variants on random instructions.

Figure 1. Timing in each processor variant.

Symmetry 2019, 11, 938 5 of 20

A drawback associated with PiP is the existence of structural, data, and control hazards [25].
Without going into details of each of those, it is essential mentioning that a few of data and control
hazards require stalling the pipeline, inserting a bubble, or flushing a pipeline register for correct
operation. In either case, each of such hazards will incur delay of a time slot on top of the normal
execution time of the instruction causing hazard. In case the code to be executed comprises several
instructions causing hazards, the execution time may exceed that of the SCP or MCP, making latter an
appropriate choice specifically for this code. However, in integrated circuits that are not dynamically
reconfigurable, one has to bear this undesired overhead.

2.2.4. Instruction Types

As there can be infinitely many types of instructions, each accessing the function units infinitely
many times, it is usually reasonable to restrict the analysis to a specific instruction types. There are five
basic types of instructions supported by, more or less, every microprocessor. These include:

1. Register (R)—Format, in which the source as well as the destination operands belong to the
register file.

2. Load Word (LW), in which a data item is fetched from data memory and loaded in a register.
The physical address is formed by adding a base address, which comes from a register, to an offset
encoded in the instruction.

3. Store Word (SW), in which the data item is read from a register and moved into a location on data
memory, where physical address is computed in the same manner as for LW.

4. Branch, in which flow of the program changes based on a condition: instead of fetching the next
sequential instruction, instruction present at the target address is fetched on to the processor.
The condition is usually checked by the ALU or a comparator on operands from register file.
Please note that until the condition is checked (say found true), at least one instruction, usually the
one next in line sequentially, may have already been fetched into the pipeline—leading to a control
hazard in case of PiP. It is called a hazard since the incorrectly fetched instruction needs to be
flushed out of the pipeline before it carries out an erroneous activity, e.g., a memory read/write
or a register write.

5. Jump, in which flow of the program changes unconditionally. Likewise for the branch instruction
in a PiP, Jump will require flushing the pipeline at least once, before the correct instruction
is fetched.

Although there are several variants of these instructions, we will do the formulation only for the
basic instructions enumerated above in the following section. Our objective is to estimate the execution
times for different instruction mix, i.e., for assembly language codes comprising varying percentages of
the selected instructions on each processor. The execution time of a program comprising I instructions,
in general, is given as Equation (1).

E = I × CPI × CLK (1)

where CPI refers to number of clock cycles per instruction, and CLK is clock cycle time. The formulation
in the next section will enable us to classify codes according to their appropriateness for each type
of processor. This classification requires optimization of the performance models, which can be
achieved by various methods—generally categorized into deterministic and stochastic optimization
methods—discussed next.

2.3. Optimization Methods

The stochastic optimization methods are used in situations where data, for some reason, are not
known in advance, or at least not known with certainty [26]. Bio-inspired techniques, over the years,
have gained attention in solving such optimization problems, which incorporate the uncertainty into
the model; a few recent examples include [27–30]. Advantages of these techniques are best leveraged

Symmetry 2019, 11, 938 6 of 20

if the solution search space is not well-structured and understood. Naturally, their latency, in terms
of convergence rate, will be substantial, yet they are known to be best-effort techniques, since their
objective is to obtain a near-optimal solution [31,32].

As shall be seen in Sections 3 and 4, the mathematical models that we have developed, and the
optimization problem at hand, hardly have an uncertainty involved, due to which the solution
search space is nicely structured as well. This relieves us from employing much more complex
stochastic optimization, and turn to much simpler solutions for deterministic optimization problems.
The mathematical model has yielded a nonlinear optimization problem, for which we have made
use of symmetry-targeted nonlinear transformation [33] (discussed later in Section 4), followed by
a widely adopted method of linear programming. An optimization problem is said to be linear
programming problem if its objective function, decision variables and constraints are all linear
functions. Such problems are typically handled using the simplex method, in which the decision
variables are iteratively updated to yield the most feasible solution (optimal objective function) [34].

While, the details on the proposed optimization method will be presented in Section 4, in what
follows, we present modeling of the three processor types first.

3. Mathematical Modeling

3.1. Preliminary Assumptions

Let L = {αi, αi+1, . . . , αi+4} be the set of latencies for the major function sequences involved in
execution of a typical instruction on a processor implementing Harvard architecture. Here αi, ∀i ∈ N
and i < 6, represents IM access, RF access, ALU operation, DM access, and CU operation respectively.
For simplicity, we are assuming that αRFread = αRFwrite and similarly αDMread = αDMwrite. Also, it is
realistic to assume that αCU < αRFread. Without the loss of generality, let us assume the instruction
mix is as follows: Branch = x1%, Jump = x2%, R− Format = x3%, Load = x4%, and Store = x5%.
Considering the fact that each variant of the processor will suffer the same penalty, we also assume the
probability of read/write miss to be zero.

3.2. Formulation for SCP

The execution time for each type of instruction is formulated as follows in Table 1:

Table 1. Execution times (Ei) for each type of instruction on Single Cycle Processor.

Instruction Expression

Branch E1 = ∑3
i=1 αi

Jump E2 = α1 + α5

R− Format E3 = E1 + α2

Load E4 = E1 + α2 + α4

Store E5 = E4 − α2

The clock cycle time for this type of processor (CLKS) is given by Equation (2).

CLKS = max5
i=1Ei (2)

The execution time (ES) of the given code, also termed as User CPU Time is given by Equation (3):

ES = I × CLKS (3)

where I refers to the number of instructions in the given code; note that the CPI for SCP is 1. It is widely
understood that by employing pausible clocks [25], each instruction may be executed by a different
clock cycle, and therefore the performance of such processors may be significantly improved. In that

Symmetry 2019, 11, 938 7 of 20

case, Equation (2) will not hold; we will have to compute the average clock cycle time, considering
different Ei—let us denote it with CLKSV , given by Equation (4).

CLKSV =
1

100
(x1E1 + x2E2 + x3E3 + x4E4 + x5E5) (4)

Similarly, Equation (3) for the execution time for this variant will now have to be modified
accordingly, given by Equation (5).

ESV = I × CLKSV (5)

3.3. Formulation for MCP

In multicycle processors, the clock cycle time, CLKM is determined by the slowest function unit,
and each instruction may consume multiple clock cycles to execute, as shown in Table 2. Its execution
time, EM, is given by Equation (6).

EM = I × CPIM × CLKM (6)

where CPIav and CLKM are given by Equations (7) and (8) respectively.

CPIM =
1

100
(3x1 + 3x2 + 4x3 + 5x4 + 4x5) (7)

CLKM = max5
i=1αi (8)

Table 2. Clock Cycles (Ci) to execute each type of instruction on Multicycle Processor.

Instruction Number of Clock Cycles

Branch C1 = 3

Jump C2 = 3

R− Format C3 = 4

Load C4 = 5

Store C5 = 4

Once again, pausible clocking may be employed to reduce CLKM, but this time the improvement
will not be notable. While clock cycles 1 and 4, requiring memory accesses, should be according to
Equation (8), clock cycles 3 and 5 should be dictated by α3 and α2 respectively, and clock cycle 2 should
depend upon the condition max(α2, α3) due to the overlap of register file access and ALU operation.
The average CLKMV in this case will be computed as Equation (9).

CLKMV =
1
5
(α2 + α3 + max(α2, α3) + 2α4) (9)

3.4. Formulation for PiP

Unfortunately, formulation for the PiP is not that simple. The data hazards that require stalling
the pipeline tend to add an extra time slot; so the more the hazards, the more the cycles will be
wasted. Similarly, the control hazards also increase the latency by one time slot, for example, the Jump
instruction will unconditionally cost an extra time slot, and Branch instructions, if true, will do the
same. All this needs to be accounted for while computing the exact CPU time for the given code.

Equation (8) holds true for this processor too; so CLKP = CLKM. Other than the time slots wasted
due to conditions discussed above, the execution time is computed as follows: the first instruction

Symmetry 2019, 11, 938 8 of 20

consumes n time slots for n-stage deep pipeline, while each of the following instructions is executed in
one time slot. This is given by Equation (10).

EP_base = n× CLKP + (I − 1)× CLKP (10)

As far as additional time slots due to hazards are concerned, each case needs to be addressed
independently. We have mentioned already that each Jump instruction will unconditionally cost
an extra time slot. Therefore, x2% Jump instructions will add an overhead of 0.01× x2 × I clock cycles
in the overall execution time. Likewise, for Branch instructions that turn out to be true, 0.01× x1 × I
clock cycles will be added. However, in this case, the probability of Branch being true must be
considered as well. Since this is nondeterministic, we assume a fair decision, i.e., 50% branches will
be true.

The last case that remains is of a data hazard that forces a stall in the pipeline, i.e., a Load instruction
followed by a dependent instruction. Recall that any instruction, other than Jump, may cause a data
hazard with the preceding Load instruction with some probability deduced from the total number of
registers in the register file. Furthermore, the dependency may exist between the target register ($Rd) of
the Load and any of the two source operands ($Rs) or ($Rt) of the following instruction. The probability
of a hazard due to matching of ($Rd) with any one of ($Rs) and ($Rt) is given by Equation (11)

Prob_hazard =
2Rmax − 1

R2
max

(11)

where Rmax is the total number of registers in the register file. Since a hazard cannot be caused by
a Jump instruction, the probability for being a hazardous instruction is important, and is given by
Equation (12).

Prob_hazardous_inst =
x4

100
(1− x2

100
)× I (12)

Taking into account the cases for control and data hazards discussed above, the modified execution
time for the PiP is given by Equation (13).

EP = EP_base + I × CLKP[
1
2

x1

100
+

x2

100
+

x4

100
(1− x2

100
)(

2Rmax − 1
R2

max
)] (13)

Substituting Equation (10) into Equation (13) and performing simplification for n = 5, simplified
EP is given by Equation (14)

EP_simp = 4CLKP + ICLKP[1 +
1
2

x1

100
+

x2

100
+

x4

100
(1− x2

100
)(

2Rmax − 1
R2

max
)] (14)

3.5. Estimating Worst and Best Case Performance

Our objective is to maximize and minimize Eε for estimating worst and best case performance of
each processor type, where ε ∈ {S, SV, M, P_simp} corresponding to Equations (3), (5), (6), and (14)
respectively. For a given I, ES, Equation (3), is a constant value; therefore, ESmax = ESmin − making
this type of processor suitable only for codes comprising very few instructions.

For the variant of SCP given by Equation (5), ESVmax =⇒ CLKSVmax, and ESVmin =⇒ CLKSVmin
where CLKSV is given in Equation (4). Since E4 > Ei ∀i ∈ {1 . . . 5} : i 6= 4, and E2 <

Ei ∀i ∈ {1 . . . 5} : i 6= 2, from Figure 4, and ∑5
i=1 xi = 100, CLKSVmax and CLKSVmin are given

by Equations (15) and (16) respectively.

CLKSVmax = E4 //x4 = 100, x1 = x2 = x3 = x5 = 0 (15)

CLKSVmin = E2 //x2 = 100, x1 = x3 = x4 = x5 = 0 (16)

Symmetry 2019, 11, 938 9 of 20

For the case of MCP, given by Equation (6), the worst case performance corresponds to
EMmax =⇒ CPIMmax, Equation (7). Similarly, the best case performance requires minimizing
Equation (7). It is understandable that CPIMmax = 5 for x4 = 100 and x1 = x2 = x3 = x5 = 0,
and CLKMmax = α4, since we usually assume data memory access to be the slowest function step.
Similarly, CPIMmin = 3 for x1 = 100 or x2 = 100.

For the case of PiP, the instruction mix dictates the best and worst case performance.
EP_simp, Equation (14), is modified as following, Equations (17) and (18) to obtain EP_simp_min and
EP_simp_max accordingly.

EP_simp_min = 4CLKP + ICLKP // f or x1 = x2 = x4 = 0 (17)

EP_simp_max = 4CLKP + 2ICLKP // f or x2 = 100, x1 = x4 = 0 (18)

3.6. Discussion

Based on the formulation presented above, a few observations may be conveniently made:

1. The second variant of SCP performs much better for shorter instructions, such as Jump and Branch.
So, the more the shorter instructions in the code, the more suitable the SCP should be.

2. The performance of the PiP entirely depends upon instruction mix: if there is no hazardous
instruction, this type will stand out as the best. However, the more the control hazards in the
code, the larger the execution time will be. Furthermore, CLKP is dictated by the slowest function
step, which means the larger the difference between the latencies of function units, the larger the
CLKP will be in comparison to CLKSV .

3. In terms of performance, it is difficult for the MCP to beat the other two. The reason for this
observation is its CPIM of 3 for shorter instructions, which suit the SCP more. On the other hand,
the PiP will outclass it for longer instructions.

So, we have to optimize instruction mix, and latencies of the function units to determine regions where
the SCP will outperform the PiP. Based on our results, the compilers will be able to determine the
better processing platform for the given application in run-time.

4. Problem Statement and Proposed Optimization

4.1. Problem Statement & System Model

The first objective, optimization problem (OP1), of the proposed work is given by Equation (19)

OP1 : min
x

EP_simp − ESV (19)

subject to:
C11 : EP_simp − ESV > 0
C21 : ∑5

i=1 xi = 100
C31 : 0 ≤ x ≤ 100

where EP_simp and ESV are given by Equations (5) and (14) respectively in terms of decision variables:
x = {xi} ∀i ∈ {1 . . . 5}, and C11 to C31 are the constraints that the optimized solution must satisfy.
The inputs to our system include two types of microprocessors that have five types of instructions in
their ISA, and we assume 8, 16, 32, and 64 bit architectures, which usually support eight, sixteen, thirty
two, and sixty four general purpose registers respectively. Another input is latency of the function
units, αi ∀i ∈ {1 . . . 5}. Please note that αi ≈ α4 are technology dependent—for DDR(2−4) SDRAM.
The number of instructions in the given code I is the final input.

Symmetry 2019, 11, 938 10 of 20

Using Equations (14) and (5), and following some trivial simplification and rearrangement,
EP_simp − ESV may be written as Equation (20), which may further be simplified to Equation (21).

EP_simp − ESV = CLKP(I + 4) +
5

∑
i=1

($i I)xi + ($6 I)x2x4 (20)

where
$1 = 0.5CLKP − E1

$2 = CLKP − E2

$3 = −E3

$4 = CLKP(
2Rmax−1

R2
max

)− E4

$5 = −E5

$6 = CLKP(
1−2Rmax

R2
max

)

EP_simp − ESV = ($6 I)x2x4 + U(x) (21)

Clearly, the product x2x4 makes our objective function a nonlinear programming
(NLP) problem [35]. Solving NLP problems requires nonconvex to convex relaxation [36],
i.e., symmetry-improving nonlinear transformation by relaxing the bounds, in order to eradicate
possibility of getting multiple local minima. Shachar et al. [37] demonstrated that variable
transformation with symmetric distribution (close to Gausian) helps in achieving linearity in the
inter-variable relationship. Although it is often not expedient to achieve symmetry due to irregular
structure of the variable, yet, it proves advantageous. We, therefore, introduce a variable, Z, as a first
step to linearize Equation (21), leading to OP2, given by Equation (22).

OP2 : min
x,Z

Z (22)

subject to:
C12 : Z ≥ 0
C22 : ($6 I)x2x4 + U(x) = Z
C32 : ∑5

i=1 xi = 100
C42 : 0 ≤ x ≤ 100

4.2. Convex Relaxation using McCormick’s Envelopes

Although nonlinear to linear transformation reduces computational complexity, the obtained
solution will only be optimal to the relaxed objective function, rather than to the original. Therefore,
relaxation only provides a lower bound closer to the actual optimal solution, while the upper bound
may then be obtained by solving the original nonconvex problem using solutions acquired from the
relaxed optimization [38]. Please note that tighter relaxation on bounds will yield solutions closer to
the optimal solution. McCormick’s Envelopes provides such relaxation, i.e., it retains convexity by
keeping tight bounds [39]. Figure 2 presents under and over estimators in McCormick’s envelopes for
a nonlinear function w = xy, where U and L stand for upper and lower bounds respectively.

Symmetry 2019, 11, 938 11 of 20

Figure 2. McCormick Envelopes: under and over estimators (reprinted).

For solving OP2 using McCormick’s envelopes, recall that x2x4 = Z−U(x)
$6 I from C22. Then,

the under and over estimators are given by

Z−U(x)
$6 I ≥ xL

2 x4 + x2xL
4 − xL

2 xL
4

Z−U(x)
$6 I ≥ xU

2 x4 + x2xU
4 − xU

2 xU
4

Z−U(x)
$6 I ≤ xL

2 x4 + x2xU
4 − xL

2 xU
4

Z−U(x)
$6 I ≤ xU

2 x4 + x2xL
4 − xU

2 xL
4

where xL
2 ≤ x2 ≤ xU

2 , xL
4 ≤ x4 ≤ xU

4 and lower and upper bounds are given above by C31 and C42.
With these new linear constraints, we are able to transform a nonlinear problem, Equation (22),
into a linear optimization problem, OP3, as follows:

OP3 : min
x,Z

Z (23)

subject to:
C13 : Z ≥ 0
C23 : ∑5

i=1 xi = 100
C33 : 0 ≤ x ≤ 100
C43 : Z−U(x)

$6 I ≥ 0

C53 : Z−U(x)
$6 I ≥ 100(x2 + x4)− 10000

C63 : Z−U(x)
$6 I ≤ 100x2

C73 : Z−U(x)
$6 I ≤ 100x4

which may be solved using conventionally used interior point [40] or simplex method of linear
programming [34].

4.3. Proposed Methodology and Algorithm

Figure 3 summarizes our research methodology. We initialize the system by randomly choosing
various architectures (Arch., Γ), various codes of different lengths (C), and a large set of αi arranged in
pages (F) as shown. Each round of execution makes a selection from each of these inputs, and constructs
a vector of lower bound (lb) on each type of instruction, except for Jump. To determine confidence
intervals for feasible solutions, at each iteration we increment lb on each type of instruction by a certain
number − details will be given in the evaluation section. By doing so, the optimizer (LP) is forced

Symmetry 2019, 11, 938 12 of 20

to find a solution in higher percentages of Jump instructions − providing a wide coverage of feasible
solutions. The proposed Algorithm 1 continues to run until the number of pages (Pmax), codes (Cmax),
and architectures (Rmax) have expired. During each round of execution, a page of feasible solutions,
comprising percentage of each instruction, is recorded. Upon termination, average percentage of each
instruction (A), across the pages, is computed via 3D to 2D transformation (Tmat), following which
in depth analysis of the results is carried out. This analysis mainly involve observing ratios of Jump
and Branch to rest of the instructions in feasible solutions (BR

2 , JR
2). The objective of this analysis is to

determine contribution of the former two instructions in a code that should satisfy OP3, i.e., the cases
where SCP performs better than the PiP.

�
�
�
�
�
�
�� �

�
�
�
�
�
��

Q
Q
Q
QQ
�

�
�

��Q
Q

Q
QQ
�
�
�
��

Q
Q
Q
QQ
�

�
�

��Q
Q

Q
QQ
�
�
�
��

Q
Q
Q
QQ
�
�

�
��Q

Q
Q

QQ
�
�
�
��

�
�
�
�
�
�
�� �

�
�
�
�
�
��

����
���� ���� s s sssss

ss s ss s s s

s s
s
s s
s

s s sssss
ss s ss s s s

s s
s
s s
s

/�
�
�
�
�
�
�
�7

?

�

	
�

�

	
�

�

	
�

?

?

?

?

?

? ? ? ?

?

-
6

-

?

?

?

/�
�
�
�
�
�
��7

-

-

-

6

6

6

6

Pa
ge
s

α1 α2 α3 α4 α5

α1 α2 α3 α4 α5

Initialization

Arch. Codes α1...5

Selection

Selection

Selection

Start

Construction of

LP (Linprog Approximation)

Pa
ge
s

lb Vectors

x1 x2 x3 x4 x5

x1 x2 x3 x4 x5

3D to 2D
Transformation

Average Matrix

Analysis
&

Computation

Exit

Expired?
Pages NoYes

Expired?
CodesNo Yes

Expired?
Arch.No

Yes

Datasets initialization
and selection

Analysis

Iteration check

1

Figure 3. Proposed Methodology.

Symmetry 2019, 11, 938 13 of 20

Algorithm 1: Proposed Algorithm.
Input:
Γ← set of architectures, C← set of codes, α← latency of functional units, F← 3D matrix of α,
LP← linz-approximation, A← average vector, BR

2 ← branch to rest ratio, JR
2 ← jump to rest

ratio, Pmax ←maximum number of pages, k← number of rows, l ← number of columns,
Rmax ←maximum number of architectures, Cmax ←maximum number of codes, B←
Branch, J ← Jump, RF ← R-format, LW ← Load Word, SW ← Store Word, LB ∈ R(CV×V) ←
vector of lower bounds, Tmat ← transformed 2D matrix, , V ←maximum variables of search
space, C ← possible combinations in search space.

Initialization:
p← Pmax

F← rand(α(k, l, p))
A← zeros(k× l)
Tmat ← zeros(p, k× l)
LB← [B J RF LW SW]

Main:
for i = 1 to Rmax do

for j = 1 to Cmax do
for k = 1 to Pmax do

for l = 1 to CV do
(Γi,Cj,Pk)← LP(δ(Γi,Cj,Pk,LB(l,:)))

end l
end
end k

end
end j

end
end i

end
Tmat ← Transform 3D F into 2D matrix
A← Compute average of (Tmat)
Compute BR

2 & JR
2 .

5. Evaluation and Sample Codes

To verify the proposed approach, we have modeled the linear optimization problem, given by
Equation (23), using the methodology described in Section 4.3 in MATLAB. The linear programming
solver that we have used is linprog, which uses dual-simplex method to generate an optimal solution.
Our samples and datasets are initialized as discussed in the following subsection.

5.1. Data Initialization

For evaluating and comparing performances of SCP and PiP with each other, we have chosen the
following vectors:

• Rmax = {8, 16, 32, 64}—representing four different architectures
• α1 = α4 = {1, 2, 3, 4, 5, 6, 7, 8}—representing propagation delays of function modules. The vector

is chosen, as such, for simplicity, since αi, ∀i ∈ {1, 4}, is technology dependent, and may lie in
the range {1− 8}ns for recent technology nodes. Here, α2 and α3 will always be smaller than the
other two, and are randomly selected.

• I = {10, 100, 500, 1000}—representing four different assembly language code lengths.
These values will give us a confidence interval for performance of each processor’s variant.

Symmetry 2019, 11, 938 14 of 20

• lb = {x1_min, x2_min, x3_min, x4_min, x5_min}— representing lb on each type of instructions, xi,
in percentage. Since we already know that jump is the shortest instruction, and will matter
the most in yielding feasible solutions to the optimization problems, we do not constrain its lb,
and rather treat it as an output. Therefore, x2_min = 0. Whereas, we iteratively vary the rest
between {0, 10, 20}, resulting in 34(= 81) assembly language codes with different instruction mix.

To have acceptable confidence in our results, we had to exploit a larger sample space; we, therefore,
randomly generated 1000 values for each αi, resulting in a total of (1000 × codes) = (1000 × 81)
permutations per assembly language code length per architecture. The results given and discussed
below are average values of these total 81, 000× 4 = 324, 000 iterations for each architecture.

5.2. Simulation Results

Some simulation results for an 8-bit architecture with hundred instructions in the assembly
language code, and varying lb are summarized in Figure 4. Each figure in the table plots instruction
mix against execution time for a different lb. Please note that advancement in technology will lead
to smaller execution times, therefore, x-axis on each plot may represent newer to older processors
(from left to right). Before commenting on each result, recall that the optimizer is supposed to find the
number of shorter (jump, branch) instructions in a given code such that SCP performs better than the PiP.

In the case of unconstrained lb, i.e., when lb = [0 0 0 0 0], observe how conveniently the optimizer
is able to find the feasible solutions. Especially at smaller execution times, possible solutions exist
without any significant contribution by the shorter instructions. At greater execution times (>20 ns),
however, much accumulated contribution (>50%) is needed by the shorter instructions for possible
feasible solutions. With increasing lb on x3, x4, and x5, observe how the number of feasible solutions
continues to decrease. For example, consider the case when lb = [0 0 20 20 10], i.e., when x3, x4, and x5

together constitute more than half instructions in the given code, the optimizer fails to find feasible
solutions beyond execution time 16 ns. Furthermore, the obtained feasible solutions comprise larger
percentage of jump instructions. By continuously increasing lb, one may easily observe that the number
of feasible solutions continue to drop down. For example, when lb = [20 0 20 20 20], there exists no
feasible solution beyond execution time 5 ns. These results are interpreted as follows: for ∑ αi > 20 ns,
i.e., relatively older processors, an assembly language code, in which jump and branch accumulate for
fewer than 50% instructions, suits the PiP more than the SCP. On the other hand, in the case of recent
technology nodes with ∑ αi ≤ 5 ns, the codes with merely 20% contribution by the shorter instructions
will suit the SCP more than the PiP.

Execution Time (',
i
) in ns

0 5 10 15 20 25

In
st

ru
ct

io
n

M
ix

 (
%

)

0

5

10

15

20

25

30

35

40

45

50
Feasible for I =100, R =8, lb = [0 0 0 0 0]

Branch
Jump
R-Format
Load
Store

Execution Time (',
i
) in ns

0 5 10 15 20 25

In
st

ru
ct

io
n

M
ix

 (
%

)

0

10

20

30

40

50

60

70
Feasible for I =100, R =8, lb = [0 0 0 10 20]

Branch
Jump
R-Format
Load
Store

Figure 4. Cont.

Symmetry 2019, 11, 938 15 of 20

Execution Time (',
i
) in ns

0 5 10 15 20 25

In
st

ru
ct

io
n

M
ix

 (
%

)

0

5

10

15

20

25

30

35

40

45

50
Feasible for I =100, R =8, lb = [0 0 10 10 0]

Branch
Jump
R-Format
Load
Store

Execution Time (',
i
) in ns

0 2 4 6 8 10 12 14 16

In
st

ru
ct

io
n

M
ix

 (
%

)

0

5

10

15

20

25

30

35

40

45

50
Feasible for I =100, R =8, lb = [0 0 20 20 10]

Branch
Jump
R-Format
Load
Store

Execution Time (',
i
) in ns

0 5 10 15 20 25

In
st

ru
ct

io
n

M
ix

 (
%

)

0

10

20

30

40

50

60
Feasible for I =100, R =8, lb = [10 0 10 10 10]

Branch
Jump
R-Format
Load
Store

Execution Time (',
i
) in ns

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

In
st

ru
ct

io
n

M
ix

 (
%

)

0

5

10

15

20

25

30

35

40
Feasible for I =100, R =8, lb = [20 0 20 20 20]

Branch
Jump
R-Format
Load
Store

Figure 4. Instruction mix for feasible solutions with varying lower bounds (lb).

To observe how should the number of branch instructions in a code vary to yield feasible results
against increasing execution times, we have plotted the ratio between branch (x1) and rest of the
instructions (x3, x4, and x5), as shown in Figure 5. These results were also generated for the same
number of iterations as before, and then their average was computed. For ease of understanding,
we have just plotted them for a few specific cases. The trend, however, remains the same for all
iterations, as depicted. While the vertical axis, here, corresponds to the obtained ratio between branch
and other instructions, the horizontal axis shows the size of each page (we randomly selected 20
samples of αi per page, and the number of pages was 1000). The α samples were initially sorted
is ascending order, i.e., the last sample leads to highest execution time (oldest processor in other
words). It may be conveniently observed that with increasing execution times, the number of Branch
instructions must continue to increase with respect to rest of the instructions, except Jump.

Similarly, Figure 6 presents the case of ratio of Jump to rest of the instructions. Being the shortest
instruction in the ISA, the Jump requires its contribution in the given code to be significantly higher
than the rest. Once again the trend suggests that for larger execution times, contribution of the shorter
instruction, Jump in this case, should be enormous −mostly ≥ 50%.

It is important to note in these results that reduction in feature sizes and voltage swings—leading
to faster circuits, and therefore, processors—is giving SCP an opportunity to outperform the more
modern PiP in average assembly language programs. Therefore, the modern processing platforms are
recommended to offer more flexibility, to be able to switch between multiple architectures and design
styles, say by means of dynamic partial reconfiguration.

Symmetry 2019, 11, 938 16 of 20

20 samples of , per page
0 2 4 6 8 10 12 14 16 18 20

M
ea

n
br

an
ch

 to
 r

es
t r

at
io

 a
cr

os
s

10
 p

ag
es

0

5

10

15

20

25

30

35
I = 10, R = 8, Pages = 10, lb = [0 0 0 0 0]

20 samples of , per page
0 2 4 6 8 10 12 14 16 18 20

M
ea

n
br

an
ch

 to
 r

es
t r

at
io

 a
cr

os
s

10
 p

ag
es

0

5

10

15

20

25

30

35

40

45

50
I = 10, R = 8, Pages = 10, lb = [20 0 10 20 0]

20 samples of , per page
0 2 4 6 8 10 12 14 16 18 20

M
ea

n
br

an
ch

 to
 r

es
t r

at
io

 a
cr

os
s

10
0

pa
ge

s

0

5

10

15

20

25

30

35
I = 10, R = 16, Pages = 100, lb = [0 0 0 0 0]

20 samples of , per page
0 2 4 6 8 10 12 14 16 18 20

M
ea

n
br

an
ch

 to
 r

es
t r

at
io

 a
cr

os
s

10
 p

ag
es

0

5

10

15

20

25

30

35

40

45

50
I = 10, R = 16, Pages = 10, lb = [20 0 10 20 0]

Figure 5. Ratio of branch instruction to rest for feasible solutions.

20 samples of , per page
0 2 4 6 8 10 12 14 16 18 20

M
ea

n
Ju

m
p

to
 r

es
t r

at
io

 a
cr

os
s

10
 p

ag
es

0

5

10

15

20

25

30

35

40

45

50
I = 10, R = 8, Pages = 10, lb = [0 0 0 0 0]

20 samples of , per page
0 2 4 6 8 10 12 14 16 18 20

M
ea

n
Ju

m
p

to
 r

es
t r

at
io

 a
cr

os
s

10
 p

ag
es

0

5

10

15

20

25

30

35

40

45
I = 10, R = 8, Pages = 10, lb = [20 0 10 20 0]

20 samples of , per page
0 2 4 6 8 10 12 14 16 18 20

M
ea

n
Ju

m
p

to
 r

es
t r

at
io

 a
cr

os
s

10
0

pa
ge

s

0

10

20

30

40

50

60
I = 10, R = 16, Pages = 100, lb = [0 0 0 0 0]

20 samples of , per page
0 2 4 6 8 10 12 14 16 18 20

M
ea

n
Ju

m
p

to
 r

es
t r

at
io

 a
cr

os
s

10
 p

ag
es

0

5

10

15

20

25

30

35

40

45
I = 10, R = 16, Pages = 10, lb = [20 0 10 20 0]

Figure 6. Ratio of jump instruction to rest for feasible solutions.

5.3. Sample Codes and Mapping

The following three assembly language codes have been adopted (as they were) from two
textbooks: one on MIPS32 and the other on 8051 microprocessors. The purpose of presenting them

Symmetry 2019, 11, 938 17 of 20

here is to map each of them to one of the two design paradigms we have discussed, SCP and PiP,
with respect to technology, i.e., execution times. Please note that the first two are high-level descriptions,
whose assembly codes may be found in the reference book, or with the Supplementary Material.

Code 1: Factorial [2]
int f act (int n) {

i f (n < 1) return (1);
else return (n× f act (n− 1)); }

Code 2: Swap & sort [2]
void sort (int v[], int n) {
int i, j;
f or (i = 0; i < n; i + = 1) {

f or (j = i− 1; j ≥ 0 && v[j] > v[j + 1]; j + = 1) {
swap(v, j); } } }

void swap (int v[], int k) {
int temp;
temp = v[k];
v[k] = v[k + 1];
v[k + 1] = temp; }

Code 3: A 10 kHz square wave using 8051 timers [41]

ORG 8100H
MOV TMOD, #02H ;8-bit auto-reload mode
MOV TH0, #-50 ;-50 reload value in TH0
SETB TR0 ;start timer
LOOP: JNB TF0 LOOP ;wait for overflow
CLR TF0 ;clear timer overflow flag
CPL P1.0 ;toggle port bit
SJMP LOOP ;repeat
END

It may be seen in the above codes that use of jumps and branches is increased in scenarios where
some operations are to be performed repeatedly, i.e., in loops. In Code 2, the total number of iterations
is determined based on n, and the complexity is determined as n(n−1)

2 in an average case. In Code 3,
the delays are implemented to generate a square wave with 50 percent duty cycle and a period of
100 microseconds. More than 90 percent of the time, processor will be busy in processing jumps
and branches. Based on this knowledge, the following code-to-processor mapping, i.e., suitability,
may be concluded.

The approximate contribution by Jump and Branch instructions in each of the three codes is 30%,
20%, and 90% respectively. For these statistics, the proposed framework suggests that Code 1 will map
much better on the SCP than the PiP only if execution time, i.e., ∑ αi < 5 ns. This may be observed
in the top four plots in Figure 4. Similarly, if ∑ αi < 3.5 ns, SCP will execute Code 2 better than the
PiP. This may be observed in the plot corresponding to lb = [0 0 20 20 10]. Finally, for Code 3, SCP
will conveniently outperform the PiP for ∑ αi ≤ 45 ns. Please note that these sample codes were
chosen because of the fact that they provide a diverse contribution by the instructions favoring the
SCP. This has given us significant confidence in the obtained results.

6. Conclusions

The mathematical models that we have developed have suggested that there may be situations,
specifically assembly language codes, in which simpler processors may perform better than the more

Symmetry 2019, 11, 938 18 of 20

advanced pipelined processors. For a system to yield optimal performance in every situation—post
fabrication—it should be possible to switch between the simpler and advanced variants, whichever
more suitable, during compile time. To do so, however, one should be able to analyze the given code,
and determine which variant it suits more. For this purpose, (1) we have presented performance
models for three types of processors, (2) proposed a framework based on a symmetry-targeted
non-linear optimization method for code classification, and (3) advocated on using dynamic partial
reconfiguration to keep the area and power overhead of the system to minimum, besides making it
flexible for swift switching. Our analysis is thorough, and it leads to the conclusion that for recent
technology nodes, in the submicron era, it is even more convenient for simpler processors to outperform
the pipelined processors. Therefore, the modern systems should flexibly adapt to the given situation
by means of dynamic partial reconfiguration.

As a prospective step, following this theoretical framework, we aim to (1) design the three types of
processors on an FPGA, supporting dynamic partial reconfiguration, (2) execute multiple benchmark
codes available in the literature, (3) estimate the performance of each type, and (4) carrying out a
detailed quantitative comparison between them. This will help us practically validate our mathematical
models, and will give us confidence in our claim.

Supplementary Materials: The datasets and MATLAB codes are available online at https://github.com/ADD-
ECE-CUI-Wah/RISC-Performance-Optimization-MATLAB-Codes.

Author Contributions: conceptualization, S.R.N. and S.A.H.; methodology, S.R.N., A.R. and M.N.; formal analysis,
O.C.; software, S.R.N.; validation, T.A. and M.A.; investigation, S.R.N. and O.C.; resources, A.R. and M.A.;
writing—original draft preparation, S.R.N., A.R. and T.A.; writing—review and editing, M.N.; supervision, S.A.H.
and S.R.N.; project administration, M.M.A.; funding acquisition, M.M.A.

Funding: This research work is partially sponsored by Deanship of Scientific Research at University of Ha’il,
Kingdom of Saudi Arabia.

Acknowledgments: The authors are grateful to Pakistan Science Foundation for supporting this work under
Project No. PSF/Res/P-CIIT/Engg(159).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Patterson, D.A.; Sequin, C.H. RISC I: A Reduced Instruction Set VLSI Computer. In Proceedings of the
8th Annual Symposium on Computer Architecture ISCA ’81, Minneapolis, MN, USA, 12–14 May 1981;
IEEE Computer Society Press: Los Alamitos, CA, USA, 1981; pp. 443–457.

2. Patterson, D.A.; Hennessy, J.L. Computer Organization and Design MIPS Edition: The Hardware/Software Interface;
Newnes: Bathurst, Australia, 2013.

3. Kumar, R.; Pawar, L.; Aggarwal, A. Smartphones hardware Architectures and Their Issues. Int. J. Eng.
Res. Appl. 2014, 4, 81–83.

4. Fu, H.; Liao, J.; Yang, J.; Wang, L.; Song, Z.; Huang, X.; Yang, C.; Xue, W.; Liu, F.; Qiao, F.; et al. The Sunway
TaihuLight supercomputer: system and applications. Sci. China Inf. Sci. 2016, 59, 072001. [CrossRef]

5. David, A.P.; John, L.H. Computer Organization and Design: The Hardware/Software Interface; Morgan Kaufmann
Publishers: San mateo, CA, USA, 2005; Volume 1, p. 998.

6. Obaidat, M.; Abu-Saymeh, D.S. Performance of RISC-based multiprocessors. Comput. Electr. Eng.
1993, 19, 185–192. [CrossRef]

7. Shen, J.P.; Lipasti, M.H. Modern Processor Design: Fundamentals of Superscalar Processors; Waveland Press:
Long Grove, IL, USA, 2013.

8. Vargas, V.; Ramos, P.; Méhaut, J.F.; Velazco, R. NMR-MPar: A fault-tolerance approach for multi-core and
many-core processors. Appl. Sci. 2018, 8, 465. [CrossRef]

9. Wang, S.H.; Peng, W.H.; He, Y.; Lin, G.Y.; Lin, C.Y.; Chang, S.C.; Wang, C.N.; Chiang, T. A software-hardware
co-implementation of MPEG-4 advanced video coding (AVC) decoder with block level pipelining. J. VLSI
Signal Process. Syst. Signal Image Video Technol. 2005, 41, 93–110. [CrossRef]

10. Khan, S.; Rashid, M.; Javaid, F. A high performance processor architecture for multimedia applications.
Comput. Electr. Eng. 2018, 66, 14–29. [CrossRef]

https://github.com/ADD-ECE-CUI-Wah/RISC-Performance-Optimization-MATLAB-Codes
https://github.com/ADD-ECE-CUI-Wah/RISC-Performance-Optimization-MATLAB-Codes
http://dx.doi.org/10.1007/s11432-016-5588-7
http://dx.doi.org/10.1016/0045-7906(93)90001-8
http://dx.doi.org/10.3390/app8030465
http://dx.doi.org/10.1007/s11265-005-6253-3
http://dx.doi.org/10.1016/j.compeleceng.2017.09.027

Symmetry 2019, 11, 938 19 of 20

11. Liu, Q.; Xu, Z.; Yuan, Y. High throughput and secure advanced encryption standard on field programmable
gate array with fine pipelining and enhanced key expansion. IET Comput. Digit. Tech. 2015, 9, 175–184.
[CrossRef]

12. Mukhtar, N.; Mehrabi, M.; Kong, Y.; Anjum, A. Machine-Learning-Based Side-Channel Evaluation of
Elliptic-Curve Cryptographic FPGA Processor. Appl. Sci. 2019, 9, 64. [CrossRef]

13. Tummala, R.; Nedumthakady, N.; Ravichandran, S.; DeProspo, B.; Sundaram, V. Heterogeneous and
homogeneous package integration technologies at device and system levels. In Proceedings of the Pan
Pacific Microelectronics Symposium (Pan Pacific), Waimea, HI, USA, 5–8 February 2018; pp. 1–5.

14. Hussein, F.; Daoud, L.; Rafla, N. HexCell: a Hexagonal Cell for Evolvable Systolic Arrays on FPGAs.
In Proceedings of the 2018 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,
Monterey, CA, USA, 25–27 February 2018; p. 293.

15. Skvortsov, V.V.; Zvyagina, M.I.; Skitev, A.A. Sharing resources in heterogeneous multitasking computer
systems based on FPGA with the use of partial reconfiguration. In Proceedings of the 2018 IEEE Conference
of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), Moscow, Russia, 29
January–1 February 2018; pp. 370–373.

16. Alfian, G.; Syafrudin, M.; Yoon, B.; Rhee, J. False Positive RFID Detection Using Classification Models.
Appl. Sci. 2019, 9, 1154. [CrossRef]

17. Gu, X.; Fang, L.; Liu, P.; Hu, Q. Multiple Chip Multiprocessor Cache Coherence Operation Method and
Multiple Chip Multiprocessor. U.S. Patent 16/138,824, 24 January 2019.

18. Pezzarossa, L.; Kristensen, A.T.; Schoeberl, M.; Sparsø, J. Can Real-Time Systems Benefit from Dynamic
Partial Reconfiguration? In Proceedings of the Nordic Circuits and Systems Conference (NORCAS):
NORCHIP and International Symposium of System-on-Chip (SoC), Linköping, Sweden, 23–25 October 2017.

19. Pezzarossa, L.; Schoeberl, M.; Sparsø, J. Reconfiguration in FPGA-based multi-core platforms for
hard real-time applications. In Proceedings of the 11th International Symposium on Reconfigurable
Communication-centric Systems-on-Chip (ReCoSoC), Tallinn, Estonia, 27–29 June 2016; pp. 1–8.

20. Hassan, A.; Mostafa, H.; Fahmy, H.A.; Ismail, Y. Exploiting the Dynamic Partial Reconfiguration
on NoC-Based FPGA. In Proceedings of the 2017 New Generation of Exploiting the Dynamic Partial
Reconfiguration on NoC-Based FPGA, Genoa, Italy, 6–9 September 2017; pp. 277–280.

21. Becher, A.; Bauer, F.; Ziener, D.; Teich, J. Energy-aware SQL query acceleration through FPGA-based dynamic
partial reconfiguration. In Proceedings of the 24th International Conference on IEEE Field Programmable
Logic and Applications (FPL), Munich, Germany, 2–4 September 2014; pp. 1–8.

22. Johnson, A.P.; Liu, J.; Millard, A.G.; Karim, S.; Tyrrell, A.M.; Harkin, J.; Timmis, J.; McDaid, L.J.; Halliday, D.M.
Homeostatic Fault Tolerance in Spiking Neural Networks: A Dynamic Hardware Perspective. IEEE Trans.
Circuits Syst. I Regul. Pap. 2018, 65, 687–699. [CrossRef]

23. Birk, Y.; Fiksman, E. Dynamic reconfiguration architectures for multi-context FPGAs. Comput. Electr. Eng.
2009, 35, 878–903. [CrossRef]

24. Emami, S.; Sedighi, M. An optimized reconfigurable architecture for hardware implementation of decimal
arithmetic. Comput. Electr. Eng. 2017, 63, 18–29. [CrossRef]

25. Aagaard, M.; Leeser, M. Reasoning about pipelines with structural hazards. In Theorem Provers in Circuit
Design; Springer: Berlin, Germany, 1995; pp. 13–32.

26. Alghunaim, S.A.; Sayed, A.H. Distributed coupled multi-agent stochastic optimization. IEEE Trans. Autom.
Control 2019. [CrossRef]

27. Abed-alguni, B.H. Island-based Cuckoo Search with Highly Disruptive Polynomial Mutation. Int. J. Artif.
Intell. 2019, 17, 57–82.

28. Shams, M.; Rashedi, E.; Dashti, S.M.; Hakimi, A. Ideal gas optimization algorithm. Int. J. Artif. Intell.
2017, 15, 116–130.

29. Soares, A.; Râbelo, R.; Delbem, A. Optimization based on phylogram analysis. Expert Syst. Appl.
2017, 78, 32–50. [CrossRef]

30. Precup, R.E.; David, R.C. Nature-Inspired Optimization Algorithms for Fuzzy Controlled Servo Systems;
Butterworth-Heinemann: Oxford, UK, 2019.

31. Esbensen, H. Computing near-optimal solutions to the Steiner problem in a graph using a genetic algorithm.
Networks 1995, 26, 173–185. [CrossRef]

http://dx.doi.org/10.1049/iet-cdt.2014.0101
http://dx.doi.org/10.3390/app9010064
http://dx.doi.org/10.3390/app9061154
http://dx.doi.org/10.1109/TCSI.2017.2726763
http://dx.doi.org/10.1016/j.compeleceng.2008.11.024
http://dx.doi.org/10.1016/j.compeleceng.2017.08.018
http://dx.doi.org/10.1109/TAC.2019.2906495
http://dx.doi.org/10.1016/j.eswa.2017.02.012
http://dx.doi.org/10.1002/net.3230260403

Symmetry 2019, 11, 938 20 of 20

32. Oulghelou, M.; Allery, C. Hyper bi-calibrated interpolation on the Grassmann manifold for near real time
flow control using genetic algorithm. arXiv 2019, arXiv:1903.03611.

33. Fushchich, W.I.; Shtelen, W.; Serov, N. Symmetry Analysis and Exact Solutions of Equations of Nonlinear
Mathematical Physics; Springer: Berlin, Germany, 1997.

34. Zoutendijk, G. Methods of Feasible Directions: A Study in Linear and Non-Linear Programming; Elsevier:
Amsterdam, The Netherlands, 1960.

35. Bazaraa, M.S.; Sherali, H.D.; Shetty, C.M. Nonlinear Programming: Theory andAlgorithms; John Wiley & Sons:
Hoboken, NJ, USA, 2013.

36. Zhang, S.; Huang, J.; Yang, J. Raising Power Loss Equalizing Degree of Coil Array by Convex Quadratic
Optimization Commutation for Magnetic Levitation Planar Motors. Appl. Sci. 2019, 9, 79. [CrossRef]

37. Shachar, N.; Mitelpunkt, A.; Kozlovski, T.; Galili, T.; Frostig, T.; Brill, B.; Marcus-Kalish, M.; Benjamini, Y.
The importance of nonlinear transformations use in medical data analysis. JMIR Med. Inform. 2018, 6, e27.
[CrossRef]

38. Westerlund, T.; Lundell, A.; Westerlund, J. On convex relaxations in nonconvex optimization.
Chem. Eng. Trans. 2011, 24, 331–336.

39. Castro, P.M. Tightening piecewise McCormick relaxations for bilinear problems. Comput. Chem. Eng.
2015, 72, 300–311. [CrossRef]

40. Hinder, O.; Ye, Y. A one-phase interior point method for nonconvex optimization. arXiv 2018,
arXiv:1801.03072.

41. MacKenzie, I.S.; Phan, R.C.W. The 8051 Microcontroller; Prentice Hall: Upper Saddle River, NJ, USA,
1999; Volume 3.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/app9010079
http://dx.doi.org/10.2196/medinform.7992
http://dx.doi.org/10.1016/j.compchemeng.2014.03.025
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background and Related Work
	Dynamic Partial Reconfiguration
	Processor Design Styles
	SCP
	MCP
	PiP
	Instruction Types

	Optimization Methods

	Mathematical Modeling
	Preliminary Assumptions
	Formulation for SCP
	Formulation for MCP
	Formulation for PiP
	Estimating Worst and Best Case Performance
	Discussion

	Problem Statement and Proposed Optimization
	Problem Statement & System Model
	Convex Relaxation using McCormick's Envelopes
	Proposed Methodology and Algorithm

	Evaluation and Sample Codes
	Data Initialization
	Simulation Results
	Sample Codes and Mapping

	Conclusions
	References

