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Abstract: This paper studies the recognition criterion of the bifurcation problem with trivial solution.
The t-equivalence is different from the strong equivalence studied by Golubitsky et al. The difference
is that the second component of the differential homeomorphism is not identical. Consider the
normal subgroup of t-equivalence group, we obtain the characterization of higher order terms P(h).
In addition, we also explore the properties of intrinsic submodules and the finite determinacy of the
bifurcation problem.
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1. Introduction

Singularity theory offers an extremely useful approach to bifurcation problems. Many authors
have studied the classifications of bifurcation problems up to some codimension in a given context by
singularity theory. These classifications include the following three components:

(i) A list of normal forms, with some properties that all bifurcation problems up to the given
codimension are equivalent to one of them.

(ii) Constructing and analyzing the universal unfolding of the normal forms.
(iii) The solutions to the recognition problem for the normal forms.

The recognition problem belongs to the third component and it is the one of the least explored
aspects of bifurcation theory. We are interested in knowing precisely when a bifurcation problem
is equivalent to a given normal form. This problem can often be reduced to the finite dimensions
problem by the idea from singularity theory that is finite determinacy. Many smooth function germs
are determined up to equivalence by finite coefficients in their Taylor expansion. The solutions to the
recognition problem can be characterised as comprising those germs whose Taylor coefficients satisfy
a finite number of polynomial constraints in the form of equalities and inequalities.

In recent years, bifurcation theory has been applied to many models of mathematical biology.
In evolutionary theory, the environment changes are often reflected by the changing of the residents’
ability to reproduce. In Reference [1], Smith and Price first studied the phenotypic traits in evolutionary
game. Subsequently, the authors in References [2–5] explored the adaptive dynamics approach for
studying evolution of phenotypic traits. In Reference [6], Vutha and Golubitsky applied singularity
theory and adaptive dynamics theory to study evolutionarily stable strategies and convergence stable
strategy of strategy functions, they gave the classification with a codimension up to 3 under the
action of strategy equivalent group and the solutions to the recognition problems of these normal
forms. Wang and Golubitsky studied the fitness functions in adaptive dynamics with dimorphism
equivalence, they classified singularities up to topological codimension 2 and gave the solutions for
recognition problems in Reference [7]. In addition, there are many applications such as [8–10]. These
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works imply the studying vitality by making connections with applications. From these results, the
recognition problem about normal form is a very important facet.

The key step in recognition problems is to find precisely the higher order terms. Bruce, Du Plessis
and Wall in Reference [11] studied the determination of map germs by means of unipotent equivalence
and linear equivalence. In Reference [12], Gaffney applied the methods of Reference [11] to study
the bifurcation problem with multiparameters. Melbourne in Reference [13] studied an equivariant
bifurcation problem with one bifurcation parameter, and he proved that the equivalence group can be
decomposed into a unipotent equivalence group and a linear equivalence group. Under the action of
these two groups in turn, the recognition problem can be decomposed similarly.

Inspired by References [12,13], we study the recognition solutions to the bifurcation problem that
have trivial solutions. The authors in Reference [14] have given the classification of the bifurcation
problem with a trivial solution up to codimension 3. This type of bifurcation problem here is different
from that which has been studied in detail in Reference [15]; since it has a trivial solution, the
equivalence group should preserve the trivial solution. The equivalence is also different from
it in Reference [15] because the second component of diffeomorphism is not identical any more.
This difference makes it troubling to get the higher order terms of the bifurcation problem. Considering
the normal subgroup of the equivalence group, we obtain the formula of the high order terms. The
study of the bifurcation problem with trivial solutions has many applications. In fact, there are many
models that have the bifurcation problem with trivial solutions—for instance, the nonlinear oscillations
Model 2 in Reference [16] and the Model 7 in Reference [17], and so on.

The organisation of this paper is as follows. Section 2 gives the necessary preparations. Section 3
explores the invariable submodule and their properties under the action of equivalence group.
In Section 4, we define the lower order terms and higher order terms, and study the properties
of them. Considering the normal subgroup of equivalence group, we obtain the solutions to the
recognition problem. Two examples are given to apply the methods above in the last section. For all
undefined terms and symbols, the reader is referred to References [14,15]. Assume that the function
germs in this paper are smooth.

2. Basic Concepts and Preliminaries

Let h be a smooth function germ defined near the origin that is h : (R2, 0)→ (R, 0). The set of all
h is denoted as εx,λ and we can verify that εx,λ is a ring. In this ring, there are some germs that have
trivial solutions. The bifurcation problem with trivial solutions has been defined in Reference [14].
Denote the set of all bifurcation problems that have trivial solutions as follows:

εx,λ{x} = {h ∈ εx,λ | h(x, λ) = x f (x, λ), f ∈ εx,λ}.

Then, εx,λ{x} is a module over the ring εx,λ.
Let h ∈ εx,λ{x}; then, there exists f ∈ εx,λ such that h(x, λ) = f (x, λ)x. Note that hx(0, 0) = 0, so

f (0, 0) = 0. Thus, the bifurcation problem with trivial solutions can also be represented as

Mx,λ{x} = {h ∈ εx,λ{x} | h(x, λ) = x f (x, λ), f ∈ Mx,λ},

whereMx,λ is the maximal ideal in the ring εx,λ and briefly denoted asM. Obviously,M{x} is a
submodule of εx,λ{x}.

Lemma 1. Let J ⊂ εx,λ{x} is a submodule. Then, there exists an ideal I ⊂ εx,λ such that J = I{x}.
Conversely, this equality defines a submodule for every ideal I ∈ εx,λ.

Proof. It can be easily proved by the definitions of ideal and submodule.
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If there is a k-dimensional subspace V ⊂ εx,λ{x} such that εx,λ{x} = J ⊕ V, we say that J has
codimension k in εx,λ{x}. In Lemma 1, codim J = codim I, codim I is computed in εx,λ.

Theorem 1. A submodule J ⊂ εx,λ{x} has a finite codimension if and only ifMk{x} ⊂ J for some positive
integer k, whereM is the maximal ideal in εx,λ.

Proof. We can use Nakayama Lemma (see Reference [15], p. 71) to prove this theorem.

Denote G as the set of all t-equivalences in Reference [14], that is,

G = {(S, X, Λ) ∈ εx,λ × εx,λ{x} ×Mλ | S(0, 0) > 0, Xx(0, 0) > 0, Λλ(0) > 0},

where X(0, λ) ≡ 0, Λ(0) = 0 andMλ is the maximal ideal in ελ. Here, Λ = Λ(λ) is no longer the λ

in Reference [15]. We can verify that G is a group. In addition, the action of G onM{x} induces the
equivalence relation that is

G · h = {g ∈ M{x} | g ∼ h},

where the symbol ∼ is a t-equivalence.
Considering an arbitrary curve δt(h)(δ0 = 1) in G · h, let

p =
d
dt

δt(h)|t=0.

Then, the set of p is the orbit tangent space T(h) of h that has been defined in Reference [14]:

T(h) =< h, xhx >εx,λ +ελ{λhλ}.

The orbit tangent space T(h) is not a submodule of εx,λ{x}, so it brings difficulty in judging
whether T(h) has a finite codimension in the vector space εx,λ{x}. The codimension in this paper
refers to the codimension as a vector subspace. In Reference [14], we have defined the codimension
of a bifurcation problem h as the codimension of T(h) in εx,λ{x}. The following theorem gives the
judgement method of the finite codimension of a bifurcation problem.

Theorem 2. Let h ∈ M{x}. The submodule < h, xhx > has a finite codimension in εx,λ{x} if and only if
T(h) has a finite codimension in εx,λ{x}.

Proof. Since < h, xhx >⊂ T(h), one direction of the implication is clear. The reverse implication will
be proved by contradiction as follows.

Let T(h) have a finite codimension. The first step proof in Reference [15] is to reduce h as a
polynomial. Consider the equations

h = hx = 0 (1)

over the complex numbers.
Supposing < h, xhx > has infinite codimensions, then the solution set of Equation (1) contains a

nonconstant smooth curve (X(t), Λ(t)) such that X(0) = Λ(0) = 0, where t is a real parameter. Thus,

h(X(t), Λ(t)) ≡ 0, (2a)

hx(X(t), Λ(t)) ≡ 0. (2b)

Differentiating Equation (2a) with respect to t and apply Equation (2b), we have

hλ(X(t), Λ(t)) ·Λ′(t) ≡ 0.
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Therefore, either hλ(X(t), Λ(t)) ≡ 0 or Λ′(t) ≡ 0. If hλ(X(t), Λ(t)) ≡ 0, combined with
Equations (2a) and (2b), the submodule < h, hx, hλ > has infinite codimensions. Since this submodule
contains T(h), there is a contradiction. Thus, Λ′(t) ≡ 0. In addition, because Λ(0) = 0, then
Λ(t) ≡ 0, thus

h(X(t), 0) ≡ 0, hx(X(t), 0) ≡ 0. (3)

Note that
J =< h(x, 0), hx(x, 0), λ > . (4)

T(h) ⊂ J, then J is the finite codimension. From Equation (4), J has a finite codimensions
only when < h(x, 0), hx(x, 0) > has a finite codimension in εx. Thus, the only common zero of
h(x, 0) = hx(x, 0) = 0 is x = 0. It means that X(t) ≡ 0 in Equation (3), which contradicts the choice of
(X(t), Λ(t)). Therefore, the submodule < h, xhx > must have finite codimensions.

Let T(h) have finite codimensions in εx,λ{x}; by Theorem 2, there exists a positive integer k such
thatMk{x} ⊂ T(h). The finite codimension of T(h) means h is finite determined.

Theorem 3. Let h ∈ M{x} and h = f x such thatMk{x} ⊂ T(h); then, h is t-equivalent to (jk f )x, where
f ∈ M and jk f is the k-jet of its Taylor expansion.

Proof. Rewrite h = (jk f )x− r, where r ∈ Mk+1{x}. According to Theorem 3.3 in Reference [14], in
order to prove h is t-equivalent to (jk f )x, it suffices to show that T(h) = T(h + tr), 0 ≤ t ≤ 1. For any
f ∈ T(h + tr), there exist a, b ∈ εx,λ, c ∈ ελ such that

f = a(h + tr) + b(xhx + txrx) + c(λhλ + tλrλ)

= ah + bxhx + cλhλ + tar + tbxrx + tcλrλ.

Since the last three terms on the right-hand side of the above equation, tar, tbxrx, and tcλrλ all
belong toMk+1 · {x} ⊂ T(h), then f ∈ T(h). Thus, T(h + tr) ⊂ T(h).

Conversely, the generators of T(h) can be written as

h = h + tr− tr ∈ T(h + tr) +Mk+1{x} ⊂ T(h + tr) +MT(h),

xhx = xhx + txrx − txrx ∈ T(h + tr) +Mk+1{x} ⊂ T(h + tr) +MT(h),

λhλ = λhλ + tλrλ − tλrλ ∈ T(h + tr) +Mk+1{x} ⊂ T(h + tr) +MT(h).

Then, T(h) ⊂ T(h + tr) +MT(h). Thus, there exist gi ∈ T(h + tr), α
j
i ∈ M, where i,

j = 1, 2, 3 such that 
h = g1 + α1

1h + α2
1xhx + α3

1λhλ,

xhx = g2 + α1
2h + α2

2xhx + α3
2λhλ,

λhλ = g3 + α1
3h + α2

3xhx + α3
3λhλ.

(5)

Rearranging the terms in the system Equation (5) to obtain the following matrix equation: 1− α1
1 −α2

1 −α3
1

−α1
2 1− α2

2 −α3
2

−α1
3 −α2

3 1− α3
3


 h

xhx

λhλ

 =

 g1

g2

g3

 . (6)

Denote the matrix in Equation (6) by

A =

 1− α1
1 −α2

1 −α3
1

−α1
2 1− α2

2 −α3
2

−α1
3 −α2

3 1− α3
3

 .
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Since detA = 1 + α, α ∈ M, then detA(0, 0) = 1, A is invertible in εx,λ. Thus, h
xhx

λhλ

 = A−1

 g1

g2

g3

 . (7)

By Equation (7), T(h) ⊂ T(h + tr). From analysis of the above, the theorem is proved.

3. Intrinsic Submodule

In this section, we define an intrinsic submodule and introduce some properties of it.

Definition 1. Let J ⊂ εx,λ{x} be a submodule. If h ∈ J and g ∼ h, then g ∈ J, J is called an
intrinsic submodule.

From Definition 1, we can see that intrinsic submodule is invariant under the action of group G.
It can be easily verified that the sum of two intrinsic submodule is also intrinsic submodule, and so is
the product.

Proposition 1. Let J ⊂ εx,λ{x} be an intrinsic submodule with a finite codimension and

q(x, λ) = ∑
α

aαxα1 λα2 .

Then, q(x, λ)x ∈ J if and only if the monomial xα1 λα2 x ∈ J for every aα 6= 0.

Proof. If xα1 λα2 x ∈ J for all aα 6= 0, then q(x, λ)x ∈ J naturally. The other implication is proved as
follows. Letting J = I{x}, I ∈ εx,λ is an ideal. We will show xlλm ∈ I for an arbitrary multi-index α =

(l, m) satisfying aα 6= 0. Since J has a finite codimension, there exists k ∈ Z+ such thatMk+1{x} ⊂ J.
If l + m > k, then the desired conclusion holds trivially. Thus, we assume l + m ≤ k; then, q can be
reduced to a polynomial of degree k or less. Arranging the terms in q according to degree of x

q(x, λ) = q0(λ) + q1(λ)x + · · ·+ qk(λ)xk. (8)

We show that qj(λ)xj ∈ I for 0 ≤ j ≤ k. It is clear that

q(tx, λ) = q0(λ) + tq1(λ)x + · · ·+ tkqk(λ)xk

is in I for every t > 0. Differentiating k-times with respect to t, then qk(λ)xk is in I. The claim is true
by induction argument proceeding from the last term to the first.

Now consider ql(λ) the coefficient of xl in Equation (8). Let

ql(λ) = c0 + c1λ + · · ·+ ck−lλ
k−l . (9)

Since cm = alm 6= 0, the polynomial can not vanish identically. Let cu be the first nonzero
coefficient in Equation (9), then u ≤ m. Hence,

ql(λ) = λu p(λ), (10)

where p(0) 6= 0, which means that 1
p(λ) ∈ εx,λ, so that Equation (10) may be inverted. Thus,

xlλm = λm−u(λuxl) = λm−u 1
p(λ)

ql(λ)xl .

Since ql(λ)xl ∈ I and I is an ideal, therefore xlλm ∈ I and xlλmx ∈ J.
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Lemma 2. Let J ⊂ εx,λ{x} be an intrinsic submodule of finite codimension. If a germ h ∈ J, then xhx ∈ J,
and λhλ ∈ J.

Proof. Let h(x, λ) = x f (x, λ). Since J has a finite codimension, there exists k ∈ Z+ such that
Mk+1{x} ⊂ J—by Taylor Theorem

h(x, λ) = xjk f (x, λ) + r(x, λ),

where r ∈ Mk+1{x}. Obviously, xrx and λrλ belong to Mk+1{x} ⊂ J, and we reduce h to the
polynomial (jk f )x. Thus, it is sufficient to prove the result for h ∈ (Mk+1)⊥{x} ∩ J.

Since J is intrinsic, then h(tx, λ) ∈ (Mk+1)⊥{x} ∩ J for all t > 0. We obtain that

ρ(t) =
h(tx, λ)− h(x, λ)

t− 1

is in (Mk+1)⊥{x}∩ J for each t. However, (Mk+1)⊥{x}∩ J is a closed subspace of space (Mk+1)⊥{x}.
Thus, lim

t→1
ρ(t) is in (Mk+1)⊥{x} ∩ J; this limit is precisely xhx(x, λ).

Similarly, h(x, tλ) ∈ J for all t > 0. Differentiating with respect to t and evaluating at t = 1
produces the germ λhλ(x, λ), and λhλ(x, λ) is in J.

Proposition 2. Let J be a submodule of εx,λ{x} of finite codimension. Then, J is intrinsic if and only if it can
be written as the form

J =< xk1 λl1 , xk2 λl2 , . . . , xks λls > {x}. (11)

Proof. Let h(x, λ) = f (x, λ)x be in εx,λ{x}. Apply t-equivalence (S, X, Λ) to h.
Let S(x, λ) = a(x, λ), X(x, λ) = b(x, λ)x, and Λ(λ) = c(λ)λ, where

a(0, 0) > 0, b(0, 0) > 0, c(0) > 0.

Thus,

S(x, λ)h(X(x, λ), Λ(λ)) = S(x, λ) f (X(x, λ), Λ(λ))X(x, λ)

= a(x, λ) f (b(x, λ)x, c(λ)λ)b(x, λ)x.

In particular, under equivalence, xkλl x is mapped into a(x, λ)bk+1(x, λ)cl(λ)xkλl x, thus the
submodule < xkλl > {x} is intrinsic. Since sums of intrinsic submodule are intrinsic, then Equation (11)
defines an intrinsic submodule.

Conversely, since J has a finite codimension, there exists a positive integer k such thatMk+1{x} ⊂
J. Substituting h by a polynomial, by Proposition 1, the result is obtained.

Remark 1. In Equation (11), we usually require that

(a) k1 > k2 > · · · > ks = 0,

(b) 0 = l1 < l2 < · · · < ls.
(12)

Definition 2. If Equation (12) holds, monomials in Equation (11) are called the intrinsic generators of J.

4. Statement of the Main Result

Letting h ∈ M{x}, we define S(h) to be the smallest intrinsic submodule containing h.
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Proposition 3. Let h ∈ M{x} and h(x, λ) = x f (x, λ) such that T(h) has a finite codimension. Then,
(a) S(g) = S(h), if g is t-equivalent to h.
(b) S(h) is an intrinsic submodule of finite codimension.

(c) S(h) = ∑
α=(α1,α2)

{< xα1 λα2 > {x}|Dα f (0, 0) 6= 0}. (13)

Proof. (a) By the definition of the smallest intrinsic submodule, we can get it.
(b) We need to show that S(h) has a finite codimension. Observing that T(h) has a finite

codimension, there exists some positive integer k such thatMk{x} ⊂ T(h). By the Theorem 3, h is
t-equivalent to (jk f )x. By (a), S(h) = S((jk f )x). Generally, we replace h by (jk f )x.

To show that S(h) has a finite codimension, we will prove that T(h) ⊂ S(h). It is sufficient to
prove xhx, λhλ ∈ ((Mk+1)⊥{x})⋂ S(h). By Lemma 2, this is true.

(c) h can be reduced to a polynomial as in (b). By Proposition 1 and h ∈ S(h), S(h)
contains the monomial xα1 λα2 x. Therefore, the right-hand side of Equation (13) is contained in
S(h). Conversely, assume that h belongs to the right-hand side of Equation (13), which is an intrinsic
submodule. Since S(h) is the smallest intrinsic submodule containing h, then S(h) is contained on the
right-hand side of Equation (13).

Theorem 4. Let g(x, λ) = f (x, λ)x be equivalent to h, then
(a) Dα f (0, 0) = 0 for every monomial xα1 λα2 x ∈ S(h)⊥.
(b) Dα f (0, 0) 6= 0 for each intrinsic generator xα1 λα2 x of S(h).

Proof. (a) It is proved immediately by contradiction.
(b) By Proposition 3(c), the result is clear.

Definition 3. Let h be a finite codimension germ. Define the high order terms of h as follows:

P(h) = {p ∈ M{x} | g + p ∈ G · h, ∀ g ∈ G · h}.

Lemma 3. P(h) is a submodule in εx,λ{x}.

This lemma can be proved easily by the Definition of submodule.

Lemma 4. The submodule P(h) is intrinsic.

Proof. Let p ∈ P(h) and γ be a t-equivalence. We will show that γ(p) ∈ P(h). Suppose g is
t-equivalent to h. By Lemma 12.2 (see Reference [15], p. 104), we have

T(g + tγ(p)) = T(γ(γ−1(g) + tp)

= γT(γ−1(g) + tp).

Since γ−1(g) is t-equivalent to g, then γ−1(g) is t-equivalent to h. In view of p ∈ P(h),

T(γ−1(g) + tp) = T(γ−1(g)).

Then, T(g + tγ(p)) = γT(γ−1(g)) = T(g) and γ(p) ∈ P(h).

Lemma 5. Let J be an intrinsic submodule, then J ⊂ P(h) if T(h + p) = T(h) for p ∈ J.

Proof. By Lemma 4, it can be easily proved.

Lemma 6. Itr{MT(h)} ⊂ P(h) if codimT(h) < ∞.
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Proof. Let I = Itr{MT(h)}. By Lemma 5, in order to prove I ⊂ P(h), it is sufficient to prove

T(h + p) = T(h), ∀ p ∈ I.

Let p ∈ I. Since T(h) has a finite codimension, by Theorem 2, < h, xhx > has a finite codimension,
then there exists k ∈ Z+ such thatMk{x} ⊂< h, xhx >⊂ T(h). Thus,

Mk+1{x} ⊂ Itr{MT(h)}.

Hence, I has a finite codimension. Since MT(h) = M < h, xhx, λhλ >, then MT(h) is a
submodule. By Lemma 2, xpx, λpλ ∈ I. Then, p, xpx, and λpλ ∈ MT(h) =M < h, xhx, λhλ >. By
Nakayama’s Lemma, we have

< h + p, x(h + p)x, λ(h + p)λ >εx,λ=< h, xhx, λhλ >εx,λ .

The following proof of T(h + p) = T(h) for ∀ p ∈ I is similar to Lemma 3, so it is omitted.

Proposition 4. (a) If p ∈ P(h) and g is equivalent to h, then g + p is equivalent to g.
(b) If T(h) has a finite codimension, then P(h) is an intrinsic submodule of εx,λ{x} with a finite codimension.

Proof. By Definition 3, (a) is obtained immediately.
(b) T(h) has a finite codimension, thenMk{x} ⊂ T(h) for some k ∈ Z+. By Lemma 6,

Mk+1{x} ⊂ Itr{MT(h)} ⊂ P(h),

then P(h) has a finite codimension. Combining with Lemmas 3 and 4, P(h) is an intrinsic submodule
with a finite codimension.

Let

G̃ = {(S, X, Λ) ∈ εx,λ × εx,λ{x} ×Mλ | S(0, 0) = 1, Xx(0, 0) = 1, Λλ(0) = 1}.

Then, G̃ is a normal subgroup of G. Define the orbit tangent space T(h, G̃) with the action of G̃:

T(h, G̃) = {d(δth)/dt|t=0 | δt ∈ G̃, δ0 = 1}
=< xh, λh, x2hx, xλhx > +ελ{λ2hλ},

then T(h, G̃) ⊂MT(h).

Definition 4. For h ∈ M{x}, denote sets as

N (h, G̃) ={p ∈ M{x} | h + p ∈ G̃ · h}

and
P(h, G̃) = {p ∈ M{x} | g + p ∈ G̃ · h | ∀ g ∈ G̃ · h}.

Proposition 5. P(h, G̃) = ItrN (h, G̃) if h has a finite codimension.

Proof. It is sufficient to show that P(h, G̃) is the unique maximal G̃-intrinsic subspace contained in
N (h, G̃). Closure under addition and scalar multiplication are similar to the proof of Proposition 3.8 in
Reference [13].
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Letting p ∈ P(h, G̃), γ ∈ G̃, then

g + γp = γ(γ−1g + p) ∈ G̃ · h,

so γp ∈ P(h, G̃). Therefore, P(h, G̃) is a G̃-intrinsic subspace. Clearly, P(h, G̃) ⊂ N (h, G̃). Suppose
Q ⊂ N (h, G̃), where Q is G̃-intrinsic. Let p ∈ Q and g = γh, γ ∈ G̃, then

g + p = γh + p = γ(h + γ−1 p) ∈ G̃ · h.

Thus, Q ⊂ P(h, G̃), and P(h, G̃) is uniquely maximal in N (h, G̃).

Corollary 1. P(h, G̃) = Itr(T(h, G̃)) if h has a finite codimension.

Proof. By Corollary 3.6(b) in Reference [13] and Proposition 5, we have

M ⊂ P(h, G̃) i f and only i f M ⊂ Itr(T(h, G̃))

for any G̃-intrinsic subspace M. Setting M = P(h, G̃) and M = Itr(T(h, G̃)) in turn gives the result.

We can also prove that the moduleP(h) is contained in the moduleP(h, G̃) that isP(h) ⊂ P(h, G̃).
By Corollary 1, P(h) ⊂ ItrT(h, G̃). Note that Itr(T(h, G̃)) ⊂ Itr(MT(h)), thus P(h) ⊂ Itr(MT(h)).
Combining with Lemma 6, we have proved the following theorem.

Theorem 5. Let h ∈ M{x} be a germ such that T(h) has a finite codimension, then P(h) = Itr{MT(h)}.

5. Examples

In this section, we apply the above results to solve the recognition problem for two classes of
normal forms.

Example 1. Let g(x, λ) = f (x, λ)x be inM{x}. Then, g is t-equivalent to h(x, λ) = (εxk + δλ)x if and
only if at x = λ = 0

f =
∂ f
∂x

= · · · =
(

∂

∂x

)k−1
f = 0,

and

ε = sgn
(

∂

∂x

)k
f , δ = sgn

∂ f
∂λ

.

Proof. Firstly, by Proposition 3(c), S(h) =< xk, λ > {x}. By Theorem 4, if a germ g is t-equivalent to
h, then

g(x, λ) = (axk + bλ)x + p(x, λ), (14)

where a 6= 0, b 6= 0, and p ∈< xk+1, xλ, λ2 > {x}.
Secondly, we have T(h) =< xk, λ > {x}. By Theorem 5,

P(h) = Itr{MT(h)} =< xk+1, xλ, λ2 > {x}.

Therefore, the term p(x, λ) in Equation (14) has no influence on whether or not g is t-equivalent
to h.

Then, g is t-equivalent to h if and only if g̃(x, λ) = (axk + bλ)x is t-equivalent to h. Setting

S(x, λ) = k
√
|a| , X(x, λ) =

1
k
√
|a|

x , Λ(λ) =
1
|b|λ ,
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where a 6= 0, b 6= 0. Then,

S(x, λ)g̃(X(x, λ), Λ(λ)) =

(
a
|a| x

k +
b
|b|λ

)
x = (εxk + δλ)x,

where ε = sgn
(

∂
∂x

)k
f , δ = sgn ∂ f

∂λ .

Example 2. Let g(x, λ) = f (x, λ)x be inM{x}. Then, g is t-equivalent to h(x, λ) = (εx + δλk)x if and
only if at x = λ = 0

f =
∂ f
∂λ

= · · · =
(

∂

∂λ

)k−1
f = 0

and

ε = sgn
∂ f
∂x

, δ = sgn
(

∂

∂λ

)k
f .

Proof. Firstly, S(h) =< x, λk > {x}. Then,

g(x, λ) = (ax + bλk)x + p(x, λ),

where a 6= 0, b 6= 0, and p ∈< x2, xλ, λk+1 > {x}.
Since T(h) =< x, λk > {x}, then P(h) = Itr{MT(h)} =< x2, xλ, λk+1 > {x}. Finally, setting

S(x, λ) = |a| , X(x, λ) =
1
|a| x , Λ(λ) =

1
k
√
|b|

λ ,

where a 6= 0, b 6= 0. Then,

S(x, λ)g̃(X(x, λ), Λ(λ)) =

(
a
|a| x +

b
|b|λ

k
)

x = (εx + δλk)x,

where ε = sgn ∂ f
∂x , δ = sgn

(
∂

∂λ

)k
f .

Subsequently, we will study the perturbations of the bifurcation problem under the action of the
t-equivalence group and hope to find some models to apply the results.
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