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Featured Application: Aerospace Shell Product Digital Production.

Abstract: The production of aerospace shell products is directly related to the safety and reliability
of aerospace products. In this work, the aerospace shell product digital production line scheduling
problem (ASPDPLSP) was studied, and a solution was developed. In the production process, it is
necessary to decide the processing machine and time of each operation. In order to create a scientific
shell product production plan, we propose an operation scheduling algorithm (OSA). Based on
the constraints of the inspection process, the OSA has two heuristic task scheduling rules. Then,
in order to further optimize the product production plan, an improved genetic algorithm (IGA) is
proposed. Considering the repeatability caused by random search, a method for the initial population
generation with similar and diverse characteristics is proposed. Two of these generation rules
retain symmetry and randomness. IGA was used to optimize the order in which the products were
processed, resulting in lower costs. Simulation experiments showed that the proposed algorithm
solved ASPDPLSP well and provided suggestions to produce aerospace shell products.

Keywords: aerospace product; digital production line; evolutionary algorithm; genetic; scheduling

1. Introduction

With the increasing production pressure of aerospace products, the production line is also moving
in the direction of digitalization and intelligence. The aerospace shell section is the core component
of various types of spacecraft and is used to protect internal parts and reduce air resistance in
order to increase flight speed. As a typical aerospace product, similar to other aerospace products,
the aerospace shell also involves a manufacturing process of significant complexity and has high
reliability requirements. Every aerospace shell product needs to undergo repeated processing and
inspection before it can be used as a finished product on a spacecraft. The processing of the shell
products is completed on a digital production line. The production process of each shell product
involves several specialized production lines, and one shell production line is responsible for the
processing of various types of shell products. Arranging a reasonable production plan for the shell
products, and formulating the processing sequence and processing time for each product and process
is the key in the digital production of aerospace shell products and in providing safe and reliable
products for the spacecraft.

The aerospace shell product line scheduling problem is similar to the flexible job-shop scheduling
problem (FJSP). Each type of housing product has multiple operations that can be performed on
any of the available production lines. Each type of production line can only perform one type of
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operation to mass produce and process products. Because of the extremely high safety and reliability
requirements of aerospace products, professional staff are required to carry out various types of
specialized processing and inspection to ensure the product’s pass rate. Each type of staff does not
limit the type of product, and any product that requires inspection and manual processing can be
handled by the staff. ASPDPLSP involves selecting multiple products in the planning space to select the
appropriate processing time and striving to make the product processing plan as reasonable as possible.

Thus far, relatively few studies on aerospace product production lines at home and abroad
have been reported. Most of this research has focused on classic FJSP research, which has been very
helpful for the shell production line scheduling problem. In [1], researchers proposed a multi-stage
graph-based heuristic method to find the optimal solution by finding the shortest path. An improved
implementation of a multi-factory production process was presented using an improved differential
evolution simulated annealing algorithm (IDESAA) in [2]. In [3], researchers considered the effect of
energy consumption on FJSP and proposed a modified shuffled frog-leaping algorithm (SFLA) to solve
this problem. In [4], researchers used social spider optimization (SSO) to solve FJSP and focused on the
distinction between the two diverse search specialists (insects): males and females. In [5], researchers
analyzed the effect of the task processing time uncertainty on the problem. A problem-solving method
with a high efficiency and good robustness was designed. A linear job planning method and a genetic
algorithm were well combined to solve a flexible job-shop lot streaming problem in [6]. The FJSP of
the fuzzy processing time was taken as the research object, and an effective teaching–learning-based
optimization algorithm was designed in [7]. For the scheduling problem with the fuzzy processing
time, a bionic artificial bee colony algorithm was designed in [8]. It provided better optimization
results. In [9], researchers proposed a genetic algorithm in which an operation selection strategy is used
to balance the load between machines. In [10], researchers studied the problem of the fuzzy processing
time in the remanufacturing process and designed a discrete search method. In [11], researchers
analyzed an extended FJSP that allowed precedence between the operations to be given by an arbitrary
directed acyclic graph, proposed a list-based search algorithm, and extended this method to a beam
search method. In [12], researchers solved a dynamic FJSP by simulation.

In the existing FJSP study, the production process of the product can be basically completed using
the production line, and there are few processes in which people participate. The production process
of aerospace shell products is midway between being automatic and fully manual, with automated
production processes involving professional staff. Reasonable staffing of the processing and inspection
work will have a significant effect on the production plan. At the same time, there is a waiting time
for the product on the production line of the casing product; that is, the processing process needs to
wait for a certain period of time before it can be carried out. In the present research, we considered
the effect of the people involved in the automated production process and the waiting process in
the product processing process, developed efficient task planning algorithms and improved genetic
algorithms, obtained reasonable production plans, and optimized these production plans to reduce the
production costs.

The innovation of this study was to design a reasonable scheduling algorithm for the aerospace
shell production line and reduce the production cost while realizing a digital production. A method
that takes both symmetry and randomness into consideration is proposed for the initial population
generation. The influence of the machine setting and the professional staff on the optimization
target was also analyzed to find a reasonable number of machines and staff to achieve reasonable
management results.

The rest of this paper is organized as follows. In Section 2, we introduce the mathematical model
and constraints of the aerospace shell production line scheduling problem. In Section 3, we present the
proposed algorithm, including the overall flow of the algorithm and the specific implementation of the
problem in the algorithm. In Section 4, we verify the proposed algorithm through experiments and
provide reasonable suggestions to produce aerospace shell products. In Section 5, we summarize the
conclusions of this study and provide a future research direction.
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2. Digital Production Line Scheduling Problem

2.1. Problem Description

In the production workshop of aerospace shell products, there are several automated production
lines. Each of these lines can be processed for an operation of the products. Each shell product requires
multiple processes to become the final product from the raw material; that is, a product is obtained
after the raw and intermediate materials pass through multiple production lines from processing
to completion. During the processing, not all processes can be completed by the production line,
and professional staff are required to carry out a series of tasks such as painting and inspection. Thus,
ASPDPLSP can be described as follows:

In the aerospace shell product production lines, there are n independent jobs. These jobs constitute
a task set J = {J1, J2, . . . , Jn}. In each job Ji, represented by a sequence of operations Oi j , job i has a total
of ni procedures. Each job has a release time r j and due time d j. All the operations in Ji need to be
completed within the scope of the release time and the due time. The order of these operations is from
the first to the last. Before the current process is completed, the next process cannot be started. For
some of these processes, it is necessary to wait for a certain waiting time wi, j,k after the completion of
the previous process. Each process must be done on a specific type of machine. Professional staff are
also involved in the production and processing of the product, completing one or more processes of a
job. The goal of scheduling is to choose a satisfactory production plan for these jobs.

2.2. Mathematical Model

In this section, a mathematical model of ASPDPLSP will be presented. Before building the
scheduling model, we transformed a complex practical engineering problem into a scientific problem
by making several assumptions; these assumptions were as follows:

1. The entire process of each job is known and determined.
2. Different jobs are independent of one another.
3. After a process starts, it cannot be interrupted.
4. The situation of a machine failure is not considered.
5. There is no difference between machines that can perform the same process.
6. A machine can start the production of another process immediately after completing one process.
7. A professional staff member can be considered to be a machine that processes the

production process.

Therefore, all the variables involved in the scheduling model are given and can be expressed as
follows:

J = {J1, J2, . . . , Jn}: Set of jobs
Oi j : Operation j of job i

M = {M1, M2, . . . , Mm}: Set of machines
ri: Release time of job i
di: Due time of job i
wi, j,k: Waiting time on machine k for operation j of job i

pi, j,k: Processing time on machine k for operation j of job i

Decision variables:

xi, j,k: If machine k is selected to process job i of operation j, xi, j,k is 1; otherwise, it is 0.

si, j,k: Start time of job i operation j on machine k

ci, j,k: Completion time of job i operation j on machine k
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In ASPDPLSP, the goal of optimization is to minimize the makespan and the sum of the waiting
times between operations. The consideration of the waiting time in the objective function is to shorten
the wait of different operations and improve the productivity of the production lines.

Objective function:

min

max(ci) +

ni−1∑
j=1

m∑
k=1

n∑
i=1

[(
si, j+1,k − ci, j,k

)
·xi, j,k

] (1)

Constraints:

• Operation j must be executed and completed within the allowable time range of job i:

ri ≤ Oi j ≤ di (2)

• If machine k is unable to process operation j, the waiting time and the machining time will be
positive infinity:

wi, j,k = +∞, i f machine k cannot do operation j (3)

pi, j,k = +∞, i f machine k cannot do operation j (4)

• A process needs to be started only after the previous process is completed:

si, j + pi, j + wi, j ≤ si, j+1 (5)

ASPDPLSP is a complex scheduling problem. The main difficulty of the problem lies in the need to
simultaneously determine the processing time of the processing machines and processes in each process.
In addition, the existence of the waiting time increases the complexity of the problem. Professional
staff needs to participate in the production and the processing of most of the jobs, which implies that
the staff will limit the efficiency of the system, and the coordination of the task sequence of the staff

will considerably affect the final scheduling results.

3. Methods

As a complex scheduling problem, ASPDPLSP needs to determine the processing tasks on each
production line and the start time of these tasks. To achieve an optimal solution to this problem, we
need to design an efficient solution algorithm. Therefore, we propose a task planning algorithm and an
improved genetic algorithm. The mission planning algorithm is used to select the appropriate machine
and the appropriate production processing time for each of the individual tasks. The improved genetic
algorithm improves the evolution of the biological gene and the ASPDPLSP based on the simple
genetic algorithm, in order to improve the speed while ensuring the optimization effect. The task
planning algorithm is nested in the IGA and is used to calculate the fitness of the individuals in the
population. IGA performs population improvement through genetic manipulation according to the
fitness function to achieve optimal results.

3.1. Operation Scheduling Algorithm

In ASPDPLSP, it is necessary to select the appropriate machine and processing time for each
operation to reduce the value of the objective function proposed in the previous section. To this end, we
propose a task planning algorithm. The task planning algorithm uses a single operation arrangement;
that is, the next operation in the task sequence is arranged after the previous one is scheduled with an
appropriate execution time. In the process of arranging an operation, all the constraints need to be
checked. When the operation can satisfy the constraints in the previous part, the appropriate execution
time is determined for the operation.
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The pseudo code table of the task planning algorithm is shown in the Algorithm 1.

Algorithm 1: Operation Scheduling Algorithm (OSA)

Input: set of jobs J, set of machines M, release time of job i r j, due time of job j d j, wi, j,k waiting time on machine
k for operation j of job i, pi, j,k process time on machine k for operation j of job i
Output: product processing plan Plan

Get scheduling order from IGA
For each operation in each job by scheduling order

Check operation Oi, j in scheduling horizon (r j, d j)

If satisfied constraint check available machines
AM←available machines // AM is a set of available machines

Else
Turn to the next operation

End If
Machine No.←Select suitable machine use AssignmentRule1(Oi, j, AM)
Start time←Use AssignmentRule2(Oi, j, Machine No.)
Add to processing plan (Machine No., Start time)

End For
Return Plan

The operation scheduling algorithm first checks one by one according to the constraints involved
in the ASPDPLSP, and finds all the machines and times that can perform each of the jobs. Then, we
used the two heuristic rules that we proposed to determine the time of the machine and the production
process for the production task for each process.

The constraint judgment process of the task planning algorithm is as follows: First, it is judged
whether the process is within the planned space, and if it is within the planned space, the next constraint
judgment is performed. Thereafter, it is judged whether the available machine can complete the
process, as the task can be performed only on the machine that can complete the process. Finally,
the task is arranged in a suitable position after the completion of the previous process, that is, when
the scheduled task execution position has completed the previous product processing work.

• AssignmentRule1: The machine with the highest idle time is preferred.
• AssignmentRule2: The operation is scheduled to be executed at the previous time position.

In order to express AssignmentRule2 more intuitively, we will discuss the task scheduling of two
jobs on two machines as an example. Assume that each task has two operations, and the scheduling
process is as shown in Figure 1. After AssignmentRule1 sorted the machines, M1 and M2 were selected
as the two machines that completed J2. Figure 1a shows a position where the job can be executed
before J2 has not used the scheduling rule. Figure 1b shows the execution position of J2 after using
AssignmentRule2. After the assigning, the two jobs become compact in the task execution plan. Thus,
the completion time will be shortened.
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Figure 1. Scheduling result after using AssignmentRule2. (a) shows two jobs which were not assigned
by AssignmentRule2. (b) shows two jobs were assigned by AssignmentRule2.
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The two heuristic algorithms in the mission planning algorithm are very helpful in selecting the
appropriate production and processing machines and production processing time for the task. Rule 1
can take advantage of earlier idle machines. Rule 2 is a good way to make the task more compact and
effectively reduce the waiting time between two processes.

3.2. Improved Genetic Algorithm

The genetic algorithm is a meta-heuristic algorithm that mimics the evolution of biological genes.
In ASPDPLSP, because of the large number of jobs and the number of machines, it is difficult to obtain
good optimization results with simple genetic algorithms. To this end, we propose an improved genetic
algorithm. This improved algorithm is used to adjust the order of execution of the task sequences and
to find better solutions through population improvement. The pseudo code for improving the genetic
algorithm is shown in Algorithm 2 of the code. Next, we will introduce the termination conditions of
the representation in the genetic algorithm, initial population generation, fitness calculation, selection,
population elimination mechanism, generation of new generation population, and algorithm.

Algorithm 2: Improved Genetic Algorithm (IGA)

Input: set of jobs J, population size P, crossover probability pc, mutation probability pm, maximum
generation Gen.
Output: scheduling order Order

Start construct initial generation //use three rules for initial generation
Use GenerationRule1 (P, 80%)
Use GenerationRule2 (P, 10%)
Use GenerationRule3 (P, 10%)

Finish construct initial generation, get population p0
Initialize best solution best*
While generation gen< Gen do

Calculate fitness and assign jobs using OSA(p)
If minimize cost calculated by OSA(p)

Order*←Record task execution order based on minimum cost
End If
Update worst individual (p)
Roulette selection (p)
If random number less than or equal to crossover probability pc

Do partially mapped crossover operation
End If
If random number less than or equal to crossover probability pm

Do mutation operation
End If
Get new population p
gen = gen + 1

End While
Order←Select minimum cost in order*
Return Order

3.2.1. Representation

In order to use the genetic algorithm, we will represent the optimized task sequence in an encoded
way. Our improved genetic algorithm is represented by the processes in each job. The advantage
of this representation is that the genetic algorithm can be directly mapped to a specific ASPDPLSP
without the need to again generate a scheduling sequence on the basis of the results obtained by the
genetic algorithm. Each gene in an individual of a genetic algorithm represents a job. The total length
of the genes in an individual depends on the total number of processes.
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Chromosome [1 2 4 3 2 1 3 1 2 4]
Index 1 2 3 4 5 6 7 8 9 10
For example, suppose a chromosome is denoted as [1 2 4 3 2 1 3 1 2 4]. There are four jobs in this

chromosome. There are three processes in the first and second jobs, and two processes in the third and
fourth jobs. Among them, 1 means that the work belongs to the first job. Here, the first occurrence of 1
indicates the first operation of the first job, the second occurrence is the second operation of the first
job, and so on.

3.2.2. Initial Population

The generation of the initial population affects the evolution speed of the genetic algorithm. All
randomizations may result in re-searching, where it is difficult to improve the optimization. We use
three strategies to generate the initial population. These three strategies produce an initial population
at a rate of 80%, 10%, and 10%, respectively. The first strategy is called GenerationRule1, which is the
method in which the individual is randomly generated by the single genetic algorithm. The second
strategy is called GenerationRule2, and operations of all the tasks are sorted in a positive order. The first
process of all the tasks is ranked first, followed by the analogy. The top 25% of these individuals
are equal, and the remaining 75% of the chromosomal fragments are generated randomly. The third
strategy is called GenerationRule3, which is sorted in the reverse order according to the operation
of all the jobs. The last process of all the jobs is ranked last and then forwarded in turn. After
this sorting is obtained, the latter 25% adopt the same sorting sequence, and the remaining 75% are
generated randomly.

• GenerationRule1: Randomly generate individuals in the simplest way.
• GenerationRule2: The first 25% of the gene fragments in the chromosome are generated

according to the positive order of the process, and the remaining 75% of the gene fragments are
generated randomly.

• GenerationRule3: The last 25% of the gene fragments in the chromosome are generated in the
reverse order of the process, and the remaining 75% of the gene fragments are generated randomly.

Using these three initial population generation strategies can increase the diversity of individual
populations while satisfying the initial solution quality. Rules 2 and 3 generate segments of individuals
in a symmetrical manner. After obtaining the initial population, the fitness function is calculated and
the population improvement process of the genetic algorithm is started.

3.2.3. Fitness Calculation

The criterion for evaluating whether the population of the genetic algorithm is improved is
the determination of whether the fitness function is improved by calculating the fitness function.
The fitness function is obtained in ASPDPLSP by calculating the objective function given in Section 2.2.
Because individuals with a good performance in genetic algorithms correspond to a greater fitness, we
need to take the inverse function of the objective function as the individual’s fitness in the IGA.

3.2.4. Selection

The selection operation is the premise of selecting the genetic operation, and the crossover and
mutation operations are performed on the selected individuals. The IGA chooses to use roulette,
which is determined by the individual’s fitness. When the number of individuals in the population is
P, the gain of the k-th individual is f itt. As the optimization goal is to find the minimum value of the
objective function, in order to make the selection of the better individual easier, it is necessary to select
each individual by the inverse number. Therefore, the selection formula can be expressed as follows:

p(t) = f itt/
∑P

i=1
f iti (6)
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The advantage of using roulette to make a choice is that individuals who perform well in the
population have a greater probability of being selected, while individuals who do not perform well are
difficult to select and may even be removed from the population through the elimination mechanism
introduced in our next section. Figure 2 shows the roulette selection process for five individuals, with
the highest fitness individual (Individual 3) having the highest probability of being selected.

Symmetry 2019, 11, x FOR PEER REVIEW 8 of 14 

 

which is determined by the individual’s fitness. When the number of individuals in the population 

is P, the gain of the k-th individual is tfit . As the optimization goal is to find the minimum value of 

the objective function, in order to make the selection of the better individual easier, it is necessary to 

select each individual by the inverse number. Therefore, the selection formula can be expressed as 

follows: 

( )
1

/
P

t ii
p t fit fit

=
=   (6) 

The advantage of using roulette to make a choice is that individuals who perform well in the 

population have a greater probability of being selected, while individuals who do not perform well 

are difficult to select and may even be removed from the population through the elimination 

mechanism introduced in our next section. Figure 2 shows the roulette selection process for five 

individuals, with the highest fitness individual (Individual 3) having the highest probability of being 

selected. 

 

Figure 2. Roulette selection. 

3.2.5. Elimination Mechanism 

The elimination mechanism is designed to allow genetic algorithms to be optimized at a faster 

rate. In general, individuals with a poor performance are replaced. In the proposed IGA, the design 

of the elimination mechanism is based on the order of the individual returns in each generation of 

the populations, the selection of the worst performing individuals for replacement, and the 

replacement of randomly generating a chromosome to obtain new individuals. The phase-out 

mechanism is a promising method to quickly improve individual populations and takes up very little 

time. We only eliminate the worst performing individuals in each generation. This implies that IGA 

will accept many unsatisfactory solutions. This method of accepting inferior solutions is very 

beneficial for producing individuals with a particularly good performance. 

3.2.6. Offspring 

Genetic algorithms use genetic manipulation to obtain new structural chromosomes through the 

process of population multi-generation improvement. The genetic operations used are crossovers 

and mutations. These operations are the core part of the IGA. It is difficult to improve the population 

into a local search by using the process of mimicking chromosomal changes to change an individual’s 

performance and increase the diversity of the population. Crossover is a change to a gene fragment 

in a chromosome. The mutation operation changes individual alleles in the chromosome. The 

frequency of manipulation of the two genes is also different, which is similar to the genetic evolution 

of the organism. In the generation of new populations, the generation of new chromosome structures 

by crossover operations is frequent, and the probability of gene mutations is considerably lower than 

that of gene crossovers. 

Individual 1

16%

Individual 2

12%

Individual 3

31%

Individual 4

20%

Individual 5

21%
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3.2.5. Elimination Mechanism

The elimination mechanism is designed to allow genetic algorithms to be optimized at a faster
rate. In general, individuals with a poor performance are replaced. In the proposed IGA, the design of
the elimination mechanism is based on the order of the individual returns in each generation of the
populations, the selection of the worst performing individuals for replacement, and the replacement
of randomly generating a chromosome to obtain new individuals. The phase-out mechanism is a
promising method to quickly improve individual populations and takes up very little time. We only
eliminate the worst performing individuals in each generation. This implies that IGA will accept many
unsatisfactory solutions. This method of accepting inferior solutions is very beneficial for producing
individuals with a particularly good performance.

3.2.6. Offspring

Genetic algorithms use genetic manipulation to obtain new structural chromosomes through the
process of population multi-generation improvement. The genetic operations used are crossovers and
mutations. These operations are the core part of the IGA. It is difficult to improve the population into
a local search by using the process of mimicking chromosomal changes to change an individual’s
performance and increase the diversity of the population. Crossover is a change to a gene fragment in
a chromosome. The mutation operation changes individual alleles in the chromosome. The frequency
of manipulation of the two genes is also different, which is similar to the genetic evolution of the
organism. In the generation of new populations, the generation of new chromosome structures by
crossover operations is frequent, and the probability of gene mutations is considerably lower than that
of gene crossovers.

Crossover: Crossover selects a segment of a chromosome in a population to make changes.
The crossover used in this study is the partially mapped crossover (PMX). The PMX approach randomly
selects two segments in an individual for a positional exchange. The reason for using this crossover
operation is that after the crossover the new individual is still legal and can be directly used for
subsequent mission planning and population improvement processes. The PMX process is divided into
two steps: First, select an individual in the population. This process is a sequential selection of each
individual in the population. To control the intersection of the population, the crossover probability
is used to control the degree of change in the population. Then, a random number between 0 and 1
is generated and compared with the crossover probability. If it is less than or equal to the crossover
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probability, the PMX operation is performed, and if it is greater than the crossover probability, this
crossover operation is not performed.

Mutation: Mutation is a genetic operation in which a small probability occurs to alter the existing
chromosome structure in a population to achieve an optimized effect. Before performing the mutation
operation, we need to use a random number to determine whether to perform the mutation operation.
If the mutation is performed, the two gene positions are randomly selected, and the positions of the
two genes are exchanged to produce a completely new chromosome structure. Although the number
of mutations that occur is not large, it can play a good role in improving the overall performance of
the population.

3.2.7. Stop Criterion

The setting of the termination condition determines the overall running time of the algorithm.
The condition for the end of the proposed IGA algorithm is to end the operation of the algorithm after
reaching the pre-set genetic algorithm population improvement algebra. The termination condition
has a considerable influence on the final optimization effect. The small optimization algebra ensures
that the IGA does not fully exert the optimization effect, and the evolutionary algebra is too large to
be prone to a waste of computing resources. The optimization algebra of a specific IGA needs to be
determined according to the size of the search space. In ASPDPLSP, the total number of processes and
the number of machines in all the jobs are determined together.

4. Computational Result

The OSA and IGA proposed in Section 3 were implemented using Matlab2017a on a desktop with
Core I7-7700 3.6-GHz Central Processing Unit (CPU). We selected a large number of experimental
examples for the experimental validation. In order to test the effect of the more-convincing test
algorithm, we chose two heuristic algorithms and a meta-heuristic algorithm as the comparison
algorithms. The two heuristic algorithms were Heuristic1 and Heuristic2, respectively. These two
algorithms were adapted and matched according to this problem on the basis of the heuristic algorithm
of other scheduling problems. Heuristic1 was selected according to the length of all the operations
waiting in the process, and the task with a long waiting time was scheduled first, because the waiting
time could be the processing time of the other jobs. Heuristic2 sorted according to the processing
time of the operations, and first scheduled jobs with a long processing time, because these jobs had a
significant effect on the final task completion time. The meta-heuristic algorithm for the comparison
was the neighborhood local search (NLS).

We selected different numbers of jobs in the experimental part, and a number of different machines
was used as the experimental dataset. In terms of jobs, we designed a dataset containing 10 jobs and 35
operations, 13 jobs and 80 operations, 17 jobs and 120 operations, 20 jobs and 140 operations, and 25
jobs and 180 operations. In the manufacturing workshop, we converted the professional staff into a
type of machine, with six types (5, 10, 15, 20, 25, and 30) of production shop datasets. It is represented
in the form of MWX/Y in each table, where X represents the number of tasks and Y represents the
number of machines.

First, we analyzed the scheduling results of different jobs in 10 machines. MW1/1 means 10 tasks,
10 machines, MW2/1 means 20 tasks, 10 machines, and so on. Every scenario in this section runs
30 times. The results are shown in Table 1. In the production workshop of five machines, from 35
operations to 180 operations, neither the IGA algorithm nor the NLS algorithm could stably achieve
the optimal solution. This reflected the lack of capacity to complete these jobs with 10 machines. As
the size of the task increased, the degree of volatility of the algorithm also showed an increasing trend.
When the number of tasks was 25, the total cost increased rapidly as compared to when the number of
tasks was 20, indicating that the production process had exceeded the running capacity of the machine.
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Table 1. Scheduling metric of different jobs in 10 machines.

Name
IGA NLS

Heur.1 Heur.2
Min. Ave. SD. Min. Ave. SD.

MW1/1 1476 1507.6 24.53 1500 1587.0 67.20 1888 1944
MW2/1 6107 6424.7 147.89 6244 6972.9 428.96 7866 6591
MW3/1 15,647 16,322.1 318.33 15,824 16,966.6 623.03 16,142 17,799
MW4/1 20,972 21,493.6 297.91 22,119 22,796.3 571.71 20,863 24,810
MW5/1 37,511 38,131.2 315.84 39,124 40,657.9 1071.24 32,869 44,726

*IGA: Improved Genetic Algortim; NLS: Neighborhood Search.

Thereafter, we compared the results of different mission planning when the number of machines
was 20, as shown in Table 2. MW1/2 means 10 tasks, 20 machines, MW2/2 means 20 tasks, 20 machines,
and so on. This table shows that when the number of tasks was 10, the scheduling results of the IGA
and NLS algorithms reached an optimal solution in each search optimization process. In most cases,
the two-element heuristics performed better than the two heuristics, but Heuristic1 performed better
than the NLS algorithm when the number of tasks was 25. This implied that heuristic algorithms could
be used to solve production scheduling problems in certain specific scenarios.

Table 2. Scheduling metric of different jobs in 20 machines.

Name
IGA NLS

Heur.1 Heur.2
Min. Ave. SD. Min. Ave. SD.

MW1/2 1224 1224.0 0.00 1224 1224.0 0.00 1346 1230
MW2/2 4579 4602.0 21.42 4580 4676.7 46.35 5106 4617
MW3/2 10,015 10,192.3 96.47 10,097 10,463.7 170.69 10,834 11,456
MW4/2 12,306 12,481.6 92.67 12,426 12,810.9 207.54 12,796 13,661
MW5/2 19,318 20,723.2 146.74 21,147 21,502.0 322.58 19,463 22,432

Next, we also analyzed the task scheduling results when the number of machines was 30, as
shown in Table 3. MW1/3 means 10 tasks, 30 machines, MW2/2 means 20 tasks, 30 machines, and so
on. When the number of tasks was 10 or 13, 30 machines could achieve an optimal scheduling in
both cases. When the number of tasks was 10, the four algorithms obtained the optimal solution,
which reflected the existence of excess production resources, and there was no need for scheduling. It
was only possible to put each operation on the machine that could be executed.

Table 3. Scheduling metric of different jobs in 30 machines.

Name
IGA NLS

Heur.1 Heur.2
Min. Ave. SD. Min. Ave. SD.

MW1/3 1188 1188.0 0.00 1188 1188.0 0.00 1188 1188
MW2/3 4434 4434.0 0.00 4434 4434.0 0.00 4530 4434
MW3/3 9312 9338.7 13.18 9364 9394.4 25.71 9498 9514
MW4/3 10,681 10,751.2 35.26 10,783 10,871.2 66.29 11,040 10,966
MW5/3 16,260 16,446.6 118.37 16,428 16,792.5 258.69 16,864 16,738

After comparing the same number of machines for production scheduling for different numbers
of jobs, we analyzed the appropriate number of machines for each task number to advise on aerospace
shell production. We selected 10, 13, 17, and 20 tasks to comprise the experimental datasets. All of
the production machines were also included in the experimental datasets. The results are shown
in Figure 3.
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Figure 3. Scheduling results for different machines. There are 10 tasks in (a). The number of tasks in
(b) is 13. Experiment under 17 tasks is shown in (c). 20 tasks are tested in (d).

Figure 3 shows that when the number of operations was 10, the scheduling result of the IGA in
10 machines was very volatile, and the optimal scheduling result was achieved when the number of
machines was 15 and the NLS algorithm was used. In the scheduling results of 15 machines, it was not
possible to achieve an optimal production plan for each scheduling. In terms of the production cost,
the scheduling results of 20 machines were not significantly better than those of 15 machines. When
the cost of the machine was considered, 10 tasks could achieve the optimal production plan by using
15 machines. Figure 3b shows that the use of 30 machines allowed the production scheduling results of
13 tasks to be optimal each time. At the same time, when the number of machines was increased from
15 to 30, the value of the optimization function was reduced to a small extent. From the perspective of
rationality, the production process of 13 tasks could be completed well by using 10 machines. Next,
Figure 3c shows that when the number of machines was increased from 5 to 15, the target function
value was reduced by more than half. When the number of machines reached 15, the production
cost decreased with an increase in the number of machines. In Figure 3d, in the case of 20 machines,
the task execution plan was more suitable for production in terms of both the optimization effect and
the resulting volatility. The NLS algorithm was used in the case of 20 tasks. When the number of
machines was less than 30, the volatility of the results was large. The volatility of the proposed IGA
algorithm was less than that of the NLS algorithm.

In order to calculate the improvement of the IGA with respect to the optimization results, we used
the Dev. index to evaluate the optimization effect; the calculation formula can be expressed as follows:

Dev. = (averageIGA − averageNLS)/averageNLS (7)

In ASPDPLSP, the involvement of personnel is unique to the problem. In the case of 20 tasks and
20 machines, we first removed all the staff and added staff one by one. The results are shown in Table 4.
This table shows that when the number of workers increased from 1 to 3, the value of the optimization
function dropped rapidly, and when the staff increased further, the rate of the cost reduction slowed
down. This reflected that the number of staff members was not as good as possible. In the case of 20
jobs, it was reasonable to have three staff members involved in the production process. A comparison
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with the NLS algorithm revealed that the average of the IGA algorithm planning results was better
than that of the NLS algorithm (2.5% to 7.2%).

Table 4. Scheduling results under different staff.

Name
IGA NLS

Dev. (%)
Min. Ave. SD. Min. Ave. SD.

MW2/2-1 20,386 20,728.8 256.38 21,306 22,343.7 744.39 −7.23
MW2/2-2 13,357 13,540.1 135.03 13,737 14,076.7 246.41 −3.81
MW2/2-3 12,415 12,552.2 102.80 12,524 12,999.6 211.51 −3.44
MW2/2-4 12,306 12,481.6 92.67 12,426 12,810.9 207.54 −2.57
MW2/2-5 12,154 12,274.3 70.87 12,566 12,799.8 193.76 −4.11

In our OSA, the task scheduling rules were set to improve the task production plan. To verify
the validity of the heuristic rules, we compared the results of using AssignmentRule and not using
AssignmentRule, as shown in Table 5. This table shows that the use of scheduling rules was very
effective in achieving both optimal results and the average optimization effect of the algorithm.
The average of the scheduling results implied that the usage rules could reduce the cost by 1.7%–4.2%.
Therefore, the use of scheduling rules improved the optimization effect considerably, which was
meaningful for reducing the production costs.

Table 5. Comparison with AssignmentRule.

Name
IGA Unassign_IGA

Dev. (%)
Min. Ave. SD. Min. Ave. SD.

MW1/2 1224 1224.0 0.00 1224 1224.0 0.00 0.00
MW2/2 4579 4602.0 21.42 4598 4682.5 52.81 –1.72
MW3/2 10,015 10,192.3 96.47 10,207 10,495.3 193.95 –2.89
MW4/2 12,306 12,481.6 92.67 12,461 12,934.9 294.4303162 –3.50
MW5/2 19,318 20,723.2 146.74 20,985 21,785.1 537.03 –4.87

The above-mentioned experimental results demonstrated that the proposed OSA for planning the
task execution and the IGA for optimizing the task sequence were very effective in solving ASPDPLSP.
Furthermore, IGA was better than the three other comparison algorithms in terms of the optimization
effect, and the stability of the algorithm was better than that of another meta-heuristic algorithm.
We also carried out experiments on the selection of the number of machines under different scale tasks.
Through these experiments, we found a suitable number of production machines for each task size
and could thus determine the appropriate production environment. We also analyzed the effect of
personnel on the production process. The results showed that having a large staff number did not
lead to the best production plan. We also validated the effect of the assignment rule in OSA on the
optimization results, which was very effective in improving production planning and reducing costs.
In summary, the two proposed algorithms could solve the ASPDPLSP problem well.

5. Conclusions

In this study, we investigated the aerospace shell product digital production line scheduling
problem in an actual production process. This problem contains two new features. One is that some
tasks need to wait for a certain period of time before they can be started. Second, the production and
processing process requires the professional staff to cooperate. These two characteristics make the
problem more complicated than the original FJSP problem, and an effective solution algorithm needs
to be set. To this end, we have proposed two algorithms: one is the operation scheduling algorithm for
task planning, and the other is an improved genetic algorithm for optimizing task sequences. In order
to verify the effect of the algorithm, we conducted a number of experiments. The experimental results
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showed that the proposed OSA and IGA could solve ASPDPLSP and resulted in a good production
plan improvement. These two algorithms could support the actual production of the shell product
well, while reducing the production cost and ensuring the production efficiency.
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