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Abstract: The bearing system of an alternating current (AC) motor is a nonlinear dynamics system.
The working state of rolling bearings directly determines whether the machine is in reliable operation.
Therefore, it is very meaningful to study the fault diagnosis and prediction of rolling bearings. In this
paper, a new fault diagnosis method based on variational mode decomposition (VMD), Hilbert
transform (HT), and broad learning model (BLM), called VHBLFD is proposed for rolling bearings.
In the VHBLFD method, the VMD is used to decompose the vibration signals to obtain intrinsic
mode functions (IMFs). The HT is used to process the IMFs to obtain Hilbert envelope spectra,
which are transformed into the mapped features and the enhancement nodes of BLM according
to the complexity of the modeling tasks, and the nonlinear transformation mean according to the
characteristics of input data. The BLM is used to classify faults of the rolling bearings of the AC
motor. Next, the pseudo-inverse operation is used to obtain the fault diagnosis results. Finally,
the VHBLFD is validated by actual vibration data. The experiment results show that the BLM can
quickly and accurately be trained. The VHBLFD method can achieve higher identification accuracy
for multi-states of rolling bearings and takes on fast operation speed and strong generalization ability.

Keywords: rolling bearings; fault diagnosis; broad learning model; variational mode decomposition;
Hilbert transform

1. Introduction

The working state of rolling bearings directly determines the reliable operation of a machine [1,2].
However, the occurrence probability of fault is always higher due to the influences of the load of
rolling bearings of AC motor [3–6]. Thus, it is very important to improve the operation reliability and
accurately diagnose faults for rolling bearings in time [7–9].

Fault diagnosis methods of rolling bearings are used to essentially recognize the working states [10–13].
To effectively recognize the working state of rolling bearings, many signal processing methods have
been proposed in recent years, such as short time Fourier transform (STFT) [14,15], wavelet transform
(WT) [16], Hilbert–Huang transform (HHT) [17–19], empirical mode decomposition (EMD) [20–22],
entropy [23–25], support vector machine (SVM) [26], artificial intelligence methods [27–29], and other
processing methods [30,31]. In addition, some new methods have also been applied in the field of
signal analysis and fault diagnosis [32,33]. Gao et al. [34] proposed a fault identification method
based on time-frequency distribution (TFD) for rolling bearings. Zhang et al. [35] proposed a flexible
wavelet transform to obtain weak fault feature. Kabla et al. [36] applied HHT and marginal spectrum
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to analyze the signals of the stator current. Yuan et al. [37] proposed an ensemble noise-reconstructed
EMD method. The SVM is widely applied for fault diagnosis. Du et al. [38] proposed a stochastic fault
diagnosis method using EMD and principal component analysis (PCA). To solve the classification
ability of SVM, Fei et al. [39] proposed a power transformer fault diagnosis model using a rough set
and SVM. Gao et al. [40] proposed a matrix factorization method to represent and identify the bearing
faults. Cheng et al. [41] proposed a fault diagnosis model using a band decomposition method. Huang
et al. proposed a fault diagnosis method for rolling bearings [42,43].

Deep learning is a new area of machine learning research that uses multilayer artificial neural
networks to provide the most advanced accuracy in speech recognition, object detection, and so on.
It can automatically study representations from text, images, or video data. The flexible structure can
directly study from more raw data and improve forecasting accuracy. Due to these advantages of deep
learning, it has been applied in fault diagnosis. In recent years, a lot of fault diagnosis methods based
on deep learning have been proposed, and good diagnostic results have been obtained. Van Tung et
al. [44] proposed a deep belief networks (DBN)-fault diagnosis method in reciprocating compressors.
Guo et al. [45] proposed an adaptive deep convolutional neural networks (DCNN) to classify and
diagnose mechanical faults. Qi et al. [46] proposed a stacked sparse auto-encoder-fault diagnosis
method. Shao et al. [47] proposed an adaptive DBN to identify the faults. Li et al. [48] proposed a novel
new fault diagnosis model for rolling bearings. Shao et al. [49] proposed an improved convolutional
deep belief networks (CDBN) for rolling bearing fault diagnosis. Sun et al. [50] proposed a sparse deep
learning method. Zhang et al. [51] proposed a DCNN for bearing fault diagnosis under different loads
and noisy environments. Shao et al. [52] proposed a fault diagnosis model for electric locomotive
bearings. Wang et al. [53] proposed a fault diagnosis method for rolling bearings. Wang et al. [54]
proposed a DBN with RBM based on a data indicator for multiple faults. Liu et al. [55] proposed a deep
neural networks(DNN)-unsupervised fault diagnosis model. Zhao and Jia [56] proposed a deep fuzzy
clustering neural network to realize the fault recognition of rotating machinery. Hu and Jiang [57]
proposed a new fault diagnosis model using modified DNN with incremental imbalance.

However, the structure of a deep learning network is complex and has many parameters, which
results in an extremely time consuming training process. In order to obtain higher diagnosis accuracy,
the deep learning network has to continuously increase the number of network layers or adjust the
parameters using optimization algorithms. The fault diagnosis requires the rapidity and high accuracy
to ensure safe and smooth operation. Therefore, it is necessary to use a new deep network model and
further study a corresponding combination with other methods. The broad learning model (BLM) is an
effective incremental learning system model. It could realize competitive results in various applications.
At the same time, if the network needs to be extended, the model can be efficiently reconstructed
through incremental learning. Therefore, it is significant to deeply research the new fault diagnosis
model for rolling bearings.

The key of fault diagnosis is to choose proper methods to diagnose the fault type, the position and
the severity. It is easier to diagnose the fault type, but the fault development is a gradual process. When
the fault degree is different, the vibration signal also shows different features. To effectively diagnose
the fault and reveal the development and evolution of faults, VMD, HT and BLM are introduced into
the fault diagnosis to deeply study new fault diagnosis model for AC motor rolling bearings.

2. Basic Method

2.1. VMD

The VMD is a completely non-recursive signal decomposition method. Its essence is multiple
Wiener filter banks. The VMD can decompose a signal into a number of discrete sparse sub-signals.
Therefore, the VMD is applied in fault diagnosis. Li et al. [58] proposed an independence-oriented
VMD via correlation analysis to adaptively obtain weak fault features. Jiang et al. [59] proposed
an initial center frequency-guided VMD to accurately extract weak damage features. Li et al. [60]
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proposed an adaptive VMD for extracting periodic impulses. Wang et al. [61] proposed an adaptive
parameter optimized VMD. The other signal decomposition methods have also been proposed in
recent years [62–76].

Assuming that each mode uk has a center frequency ω(k) and a limited bandwidth, the constraint
condition is that the sum of each mode is equal to the input signal, and the sum of the estimated mode
bandwidth is the minimum. The ω(k) and the bandwidth of each mode are updated continuously
during the iterative process of solving the variational model. Finally, the adaptive decomposition for
signal is realized.

The signal is decomposed at scale K and the variational problem is constructed with the minimum
of the sum of the estimated bandwidths of the IMF components.

min
{uk},{ωk}

∑
k

‖∂t

[(
δ(t) +

j
πt

)
∗ uk(t)

]
e− jωkt

‖
2
2

. (1)

where {uk} = {u1, u2, . . . , uK} represents each modal function and {ωk} = {ω1,ω2, . . . ,ωK} represents
the central frequencies of each modal function. δ(t) is the Dirichlet distribution function; * is the
convolution.

The quadratic penalty factor is used to guarantee the fidelity of the reconstructed signal, and
the Lagrange multiplier is used to guarantee the strictness of the constraint. The extended Lagrange
expression is as follows:

L({uk}, {ωk},λ) = α
∑
k
‖∂t

[(
δ(t) + j

πt

)
∗ uk(t)

]
e− jωkt

‖
2
2

+ ‖ f (t) −
∑
k

uk(t)‖
2
2

+ < λ(t), f (t) −
∑
k

uk(t) > .
(2)

where, α represents a penalty factor; λ represents a Lagrangian multiplier.
In the VMD, the multiplicative operator alternating direction method is used to solve thee

variational problems. By alternately updating un+1
k , ωn+1

k and λ, we seek the “saddle point” of the
extended Lagrangian expression. The component uk and the center frequency ωk are described
as follows.

ûn+1
k (ω) =

 f̂ (ω) −
∑
i,k

ûi(ω) +
λ̂(ω)

2

 1

1 + 2α(ω−ωk)
2 (3)

ωn+1
k =

∫
∞

0 ω
∣∣∣ûk(ω)

∣∣∣2dω∫
∞

0

∣∣∣ûk(ω)
∣∣∣2dω

(4)

where ûn+1
k (ω) is equivalent to the Wiener filtering of the current residual f̂ (ω) −

∑
i,k

ûi(ω) and the real

part of ûk(ω) after inverse Fourier transform is uk(t).

2.2. Deep Belief Network

Deep learning can learn the discriminative features from data [77]. The basic models of deep
learning can be divided into a multi-layer model, a deep neural network model and a recursive
neural network model. The Deep belief network (DBN) is a generating graphical model, composed of
multilayer hidden units. The DBN can generate training data according to the maximum probability in
the whole neural network by training the weights of its neurons. The Deep Boltzmann machine (DBM)
can learn input data probability distributions by latent or hidden variables. The RBM is an undirected
graphical model v = {0, 1}F and hidden units h = {0, 1}D. The structure of RBM is shown in Figure 1.
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Figure 1. Structure of RBM.

For a given set (v, h), it can be defined as follows:

E(v, h) = −
∑

i∈visible

aivi −
∑

j∈hidden

b jh j −
∑
i, j

vih jwi j (5)

The joint distribution over v and h is defined as follows:

P(v, h) =
1
Z

exp(−E(v, h)) (6)

The unbiased sample can be obtained:

p(vi = 1|h) = σ(ai +
∑

j

h jwi j) (7)

p(h j = 1|v) = σ(b j +
∑

i

viwi j) (8)

where wi j is the connection weight, ai and b j are bias coefficients of the ith neuron and the jth neuron, v
is the input vector and the h is output vector.

2.3. Broad Learning Model

The Broad learning model (BLM) is an effective incremental learning system [78]. It is essentially
designed for various applications. The mapping feature nodes can efficiently extract features. At the
same time, the random connection from mapping features to enhancing nodes can compensate for the
non-linearity of mapping feature nodes and improve the speed of the model. The BLM can achieve
competitive results with state-of-art methods on various applications. The BLM is represented in
Figure 2.
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Assume that input data X and project data are presented using ϕi(XWei + βei) in order to obtain
the ith mapping features Zi. Zi = [Z1, . . . , Zi] is the concatenation of all mapping features of the first i
groups. Likely, the enhancement nodes of the jth group is ξ j(ZiWhj + βhj), which can be regarded as
H j. H j = [H1, . . . , H j] is concatenation of all enhancement node of the first j groups. In addition, ϕi and
ϕk are different functions when there is i , k. Likely, ξ j and ξr are also different functions when there is
j , r.

In the BLM, the linear inverse problem is used, and the initial Wei is fine tuned in order to obtain
better features. Next, the BLM is described in detail. Assume the input data set X with N samples,
each sample is M dimensions. The output matrix is Y.

Zi = ϕ(XWei + βei), i = 1, . . . , n (9)

where Wei and βei are generated randomly, and Zn = [Z1, . . . , Zn]. The enhancement nodes of mth
group are described.

Hm = ξ(ZnWhm + βhm) (10)

Hence, the BLM can be represented.

Y = [Z1, . . . , Zn
∣∣∣ξ(ZnWh1 + βh1), . . . , ξ(ZnWhm + βhm)]Wm

= [Z1, . . . , Zn
∣∣∣H1, . . . , Hm]Wm

= [Zn
∣∣∣Hm]Wm

(11)

where the Wm = [Zn
∣∣∣Hm]

+
Y.

Wm are the connecting weights of BLM.

argmin
∧

W

: ||Z
∧

W −X||22 + λ||
∧

W||1 (12)

3. A New Fault Diagnosis Method Based on VMD, HT and BLM

3.1. The Idea of the VHBLFD Method

Many researchers have deeply researched fault bearing diagnosis; some results have been
achieved, and some signal analysis methods have been proposed successively in recent years. The
time domain features are easy to be calculated, but the anti-jamming ability for fault vibration data is
poor. The frequency domain features are based on the global transformation of signals, which cannot
effectively analyze non-stationary signals. The VMD has the advantages of effectively reducing pseudo
components and modal aliasing. Hilbert transform (HT) is applied to obtain accurate time-frequency
distributions of signal energy and further construct the corresponding marginal spectrum. The Hilbert
marginal spectrum can accurately reflect the change rule of signal amplitude with frequency. Compared
with the existing signal feature extraction methods, HT has better noise robustness. The deep learning
can better solve the problems of feature learning, feature extraction, and deep network training, but
there exists many parameters to be optimized, which usually requires a great deal of time and machine
resources. The BLM provides an alternative method. It wadesigned by expanding the broad features
nd enhancement nodes. Therefore, the BLM with fast calculation speed and strong generalization
ability could be used to a new fault diagnosis (VHBLFD) method. The VHBLFD determines the
numbers of enhancement nodes and mapped features and according to the complexity of the modeling
tasks, as well as the nonlinear transformation mean according to the features of input data. Then, the
vibration signals are decomposed using the VMD, and the HT is used to process the IMFs to obtain
Hilbert envelope spectra, which are transformed into the mapped features and enhancement nodes.
The BLM is used to realize the fault diagnosis, and the pseudo-inverse operation is used to obtain the
fault diagnosis results.
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3.2. The Fault Diagnosis Model and Steps

The model of the proposed the VHBLFD method using the VMD, HT and BLM is shown in
Figure 3.
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3.3. The Steps of the Fault Diagnosis Method

The steps of the proposed VHBLFD method for rolling bearings of the AC motor are described
in detail.

Step 1: The acceleration sensors are used to collect vibration acceleration signals of rolling bearings
of the AC motor.

Step 2: Initialize these parameters of the proposed VHBLFD method using VMD, HT and BLM.
These parameters mainly include the number of decompositions of VMD, the number of feature nodes
per window, the windows and the enhancement nodes of BLM, and so on.

Step 3: The VMD is used to decompose the vibration acceleration signals into a series of IMFs.
Step 4: According to the number of decompositions of the VMD method, four IMF components

are determined.
Step 5: The HT is used to process the four IMF components to obtain the Hilbert envelope

spectrum for obtaining fault features.
Step 6: The Hilbert envelope spectrums of four IMF components are connected by the beginning

and the end to construct the feature matrix.
Step 7: The fault features are proportionally divided into the training feature samples and the test

feature samples.
Step 8: Calculate the feature nodes of the BLM according to Formula (8) and the enhancement

nodes of the BLM according to Formula (9).
Step 9: Calculate the output of the BLM based on the feature nodes and the enhancement nodes

using the pseudo inverse operation.
Step 10: Input the training feature samples to train BLM in order to obtain the trained BLM for

realizing the fault diagnosis.
Step 11: Test feature samples are used to validate the effectiveness of the proposed VHBLFD to

obtain diagnosis results. Analyze and verify the effectiveness and the rapidity of the VHBLFD method.
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4. Validation and Analysis of the VHBLFD Method

4.1. Experiment Data and Environment

The vibration data are selected to validate the VHBLFD method here in [79]. The platform is
shown in Figure 4. The vibration data are obtained under 0 HP at 1730 r/min. The different faults of
outer race, inner race and rolling element are given. These fault diameters are 0.1778 mm, 0.3556 mm,
and 0.5334 mm. There are 10 kinds of vibration data. The vibration data is sampled at 12,000 Hz
frequency. Each sample consists of 2048 data points in Table 1.
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Table 1. The sample data.

No. Inner Race Outer Race Rolling Element

1 −0.0830 0.0085 −0.0028
2 −0.1957 0.4235 −0.0963
3 0.2334 0.0130 0.1137
4 0.1040 −0.2652 0.2573
5 −0.1811 0.2372 −0.0583
6 0.0556 0.5909 −0.1260
7 0.1738 −0.0930 0.2074
8 −0.0469 −0.4069 0.1727
9 −0.1119 0.2794 −0.2199

10 0.0596 0.4370 −0.1561
11 0 −0.3529 0.2240
. . . . . . . . . . . .

2041 0.2305 0.0309 0.2375
2042 0.0461 0.1186 −0.0271
2043 −0.5122 −0.0061 −0.1327
2044 0.1481 −0.0979 0.0929
2045 0.6280 0.0914 0.1106
2046 −0.2043 0.1494 −0.1499
2047 −0.2640 −0.2355 −0.1108
2048 0.4662 −0.3224 0.1467

The experiment scheme is divided into two schemes. The first experiment scheme is to determine
the fault types. The second experiment scheme not only determines the fault types, but also determines
the severity of the fault. Each experiment scheme contains four data sets under four different working
loads; 2072 data under no-load (0HP) are taken as training sets and 540 data sets under other working
loads are taken as test sets.
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4.2. Feature Extraction

The mode number of VMD decomposition is selected as four according to the empirical value.
The VMD is applied to decompose the inner race vibration signal into four IMF components (fault
diameter is 0.3556 mm) in Figure 5.
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connected from the head to the end in order to arrange a row. The length of the connected data is
4096, that is, the input dimensions are 4096. The VMD-Hilbert envelope spectra of normal data, inner
race fault data (the fault diameters are 0.1778 mm, 0.3556 mm, and 0.5334 mm), outer race fault data
(the fault diameters are 0.1778 mm, 0.3556 mm, and 0.5334 mm) and rolling element fault data (the fault
diameters are 0.1778 mm, 0.3556 mm, and 0.5334 mm) are shown in Figure 6.

4.3. Fault Diagnosis Results

The VHBLFD method is used to recognize the fault of rolling bearings. The parameters of the BLM
mainly include the number of feature nodes, the window number of the feature nodes, the number of
enhancement nodes, the regularization parameter C, and the reduction rate s of the enhancement node.
Because the parameters of the VHBLFD method are critical to classify, it is very important to select
reasonable values of parameters. The size and the characteristics of experiment data are analyzed, and
the selecting methods of parameters of BLS in the original paper are studied herein. The values of the
parameters are determined. The training times are 80. The learning rate is 0.01. The weight penalty
coefficient is 0.0002. The initial momentums are 0.5 and 0.9. For the VHBLFD1 method, the feature
nodes are 100, the window number is five, and the enhanced nodes are 1000. For the VHBLFD2
method, the feature nodes are 100, the window number is 15, and the enhanced nodes are 17,000.

The 4096-dimension Hilbert envelope spectra of 10 kinds of state data are applied to construct
the feature matrix for an input of the BLM. The 5300 data sets are regarded as training sets, and 1300
data sets are regarded as test sets in the experiment. The diagnosis results and the test times of the
proposed VHBLFD method are shown in Table 2.
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Table 2. The diagnosis results and test times of the proposed VHBLFD method.

Fault Diagnosis Method Diagnostic Accuracy (%) Test Time (s)

VHBLFD1 (100,5,1000) 95.99 6.45
VHBLFD2 (100,15,17000) 97.74 22.29
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As can be seen from Table 2, the diagnosis accuracy and the test time of the VHBLFD1 (100,5,1000)
are 95.99% and 6.45 s. The diagnostic accuracy and test time of the VHBLFD2 (100,15,17000) are 97.74%
and 22.29 s. The experimental results show that the BLM can construct a fault diagnosis model with
better diagnosis efficiency and faster diagnosis speed. The proposed VHBLFD method can obtain
higher diagnostic accuracy and takes less test time.

4.4. Comparision and Analysis for Diagnosis Results

In order to test and verify the effectiveness of the proposed VHSMFD method for rolling bearings
of the AC motor, the VHSMFD method based on VMD, HT, and SVM, the EHDNFD method based on
EMD, HT, and DBN, the EEHDNFD based on EEMD, HT and DBN, the VHDNFD method based on
VMD, HT and DBN are compared with the proposed VHSMFD method. The four limited Boltzmann
machines are used in this paper according to many experiments, that is, the five layer DBN, which
allows for the shorter training time and obtain good diagnosis results. The number of nodes of the DBN
(50-50-200) and the BLM (100-15-17,000) are set in this experiment. The initial values of parameters for
SVM are described as c = 380, g = 0.4710, and p = 0.010375. The values of other parameters are the
same as those in Section 4.3. The diagnosis results and the test times of different methods are shown in
Table 3, Figure 7, and Figure 8.

Table 3. Comparison of diagnosis results and test time.

Diagnosis Methods Diagnostic Accuracy (%) Test Time (s)

VHSMFD 40.46 274.71
EHDNFD 95.02 664.57

EEHDNFD 96.55 630.37
VHDNFD 97.68 459.21
VHBLFD 97.74 22.29
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Figure 7. The comparison results of diagnostic accuracy.

From Table 3, Figure 7, and Figure 8, the diagnosis accuracies of VHSMFD, EHDNFD, EEHDNFD,
VHDNFD, and VHBLFD are 40.46%, 95.02%, 96.55%, 97.68%, and 97.74%, respectively. For the
VHSMFD method based on VMD, HT and SVM, the fault diagnosis accuracy is only 40.46%, and the
diagnosis effect is the worst of the five diagnosis methods. The results show that the SVM cannot
construct a fault diagnosis model with strong generalization ability for difference data. For the VHBLFD
method, the diagnosis accuracy is 97.74%, and the diagnosis effect is better than that of the VHSMFD,
EHDNFD, EEHDNFD and VHDNFD methods. The results show that the BLM can construct a fault
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diagnosis model with strong generalization ability and the higher accuracy for difference data. The
test time of the VHSMFD, EHDNFD, EEHDNFD, VHDNFD and VHBLFD are 274.71 s, 664.57 s, 630.37,
459.21 s, and 22.29 s, respectively. The test times of EEHDNFD method is 664.57 s, and he fault
diagnosis efficiency is the lowest of these diagnosis methods. The test time of the VHBLFD is 22.29 s,
and the fault diagnosis efficiency is the highest of these fault diagnosis methods. The results show that
the BLM can construct a fault diagnosis model with better diagnosis efficiency and faster diagnosis
speed. Therefore, the VHBLFD takes on the higher diagnosis accuracy and better diagnosis efficiency.
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4.5. The Influences of Parameters in BLM for Diagnosis Accuracy

4.5.1. The Influences of the Number of Feature Nodes for Diagnosis Accuracy

In this section, when the number of feature node windows and the number of enhancement nodes
are unchanged, the number of feature nodes is changed, and ten different states of the rolling bearings
are identified. The experiment under each parameter is carried out ten times, and the test results and
the running times are averaged for 10 times. The test results and running time are shown in Table 4,
Figure 9, and Figure 10. The regularization parameter C is 2 × 10−30, and the enhance node reduction
ratio s is 0.8 in Table 1. N11 is the number of feature nodes. N2 is the number of feature node windows.
N33 is the number of enhancement nodes.

Table 4. Test results for different feature nodes. (N11 is the number of feature nodes, N2 is the number
of feature node windows, and N33 is the number of enhancement nodes).

(N11, N2, N33) Test Accuracy (%) Total Average Time (s)

40, 15, 3000 96.9902 4.8618
50, 15, 3000 96.9601 5.2248
60, 15, 3000 96.3506 5.6163
70, 15, 3000 96.2904 6.0630
80, 15, 3000 96.2302 6.5115
90, 15, 3000 95.8239 7.0634

100, 15, 3000 95.5982 7.5683
200, 15, 3000 92.0692 15.0772
300, 15, 3000 89.7968 21.7082
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Figure 9. The test accuracy of different numbers of nodes (N11).
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Figure 10. The total average times of different numbers of nodes (N11).

From Table 4, Figures 9 and 10, the total test time increases from 4.8618 s to 21.7082 s in the
process of increasing feature nodes from 40 to 300, but the test accuracy takes on a decreasing trend
from 96.9902% to 89.7968%. The experiment results show that the number of feature nodes can be
reasonably selected according to the size of the input data in order to obtain the best diagnosis result in
practical applications.

4.5.2. The Influences of the Number of Feature Node Windows for Diagnosis Accuracy

In this section, when the number of enhancement nodes and feature nodes is unchanged, the
number of feature node windows is changed, and ten different states of the rolling bearings are
identified. The experiment under each parameter is carried out ten times, and the test results and
are running times are averaged for 10 times. The results and the running times are shown in Table 4,
Figure 11, and Figure 12. The regularization parameter C is 2 × 10−30, and the enhance node reduction
ratio s is 0.8 in Table 5.
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Table 5. Test results for different feature node windows.

Number of Nodes (N11, N2, N33) Test Accuracy (%) Total Average Time (s)

100, 5, 1000 95.8239 3.4090
100, 10, 1000 95.7787 4.9404
100, 15, 1000 95.9443 6.4226
100, 20, 1000 95.9819 7.9057
100, 25, 1000 95.9142 9.4303
100, 30, 1000 96.0797 10.9200
100, 35, 1000 95.6734 12.4819
100, 40, 1000 95.7035 14.1060
100, 45, 1000 95.7863 15.8277
100, 50, 1000 95.7562 17.6226
100, 55, 1000 95.4778 19.6315
100, 60, 1000 95.7411 20.9249
100, 65, 1000 95.6358 22.5161
100, 70, 1000 95.7712 24.0979
100, 75, 1000 95.6659 35.2004
100, 80, 1000 95.4778 26.8084
100, 85, 1000 95.5304 28.5762
100, 90, 1000 95.6358 30.5728
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As can be seen from Table 5, Figure 11, and Figure 12, in the case of only changing the number of
feature node windows, the total test time increases from 3.4090 s to 35.2004 s in the process of increasing
feature windows from 5 to 90, and the test accuracy almost remains unchanged. The experimental
results show that the training time of BLM is affected, and the test accuracy is less affected by the
number of feature node windows. Therefore, the number of feature node windows only affects the
training time of BLM.

4.5.3. The Influences of the Number of Enhancement Nodes for Diagnosis Accuracy

In this section, when the number of feature nodes and feature node windows is unchanged, the
number of enhancement nodes is changed, and ten different states of the bearing are identified. The
experiment under each parameter is carried out ten times, and the test results and the running times
are averaged for 10 times. The results and running time are shown in Table 6, Figure 13, and Figure 14.
The regularization parameter C is 2 × 10−30, and the enhance node reduction ratio s is 0.8 in Table 6.

Table 6. Test results for different enhancement nodes.

Number of Nodes (N11, N2, N33) Test Accuracy (%) Total Average Time (s)

100, 15, 1000 95.9970 6.4500
100, 15, 2000 96.5613 7.1869
100, 15, 3000 95.5982 7.5683
100, 15, 4000 90.0000 8.0937
100, 15, 5000 80.7374 8.9812
100, 15, 6000 93.4989 9.2012
100, 15, 7000 95.6810 9.9691
100, 15, 8000 96.5162 10.7368
100, 15, 9000 97.0880 11.6575
100, 15, 10000 97.1257 12.7143
100, 15, 11000 97.2611 13.6536
100, 15, 12000 97.3589 14.8280
100, 15, 13000 97.4643 16.0800
100, 15, 14000 97.6072 17.3710
100, 15, 15000 97.5320 18.6380
100, 15, 16000 97.7200 20.8649
100, 15, 17000 97.7351 22.2932
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As can be seen from Table 6, Figure 13, and Figure 14, in the case of changing only the number of
the enhancement nodes, the training time of the BLM increases with the increase enhancement nodes.
Under the influence of eliminating some special nodes, the test accuracy will also increase with the
increasing of the enhancement nodes. The experiment results show that the number of enhancement
nodes can be flexibly selected according to the different requirements of the BLM for training time and
test accuracy. Therefore, the number of enhancement nodes not only affects the training time but also
affects the test accuracy.

To sum up, the feature nodes and enhancement nodes can influence the accuracy of fault diagnosis,
and the number of feature node windows cannot influence the accuracy using the BLM for fault
diagnosis. Using the BLM for classifying the fault provide better diagnosis efficiency and faster
diagnosis speed.

5. Conclusions

To effectively diagnose the faults of rolling bearings of the AC motor, a new fault diagnosis
(VHBLFD) method based on VMD, HT, and BLM is proposed. VMD and HT are used to obtain Hilbert
envelope spectra. The BLM is an effective incremental learning model to achieve competitive results
of the state-of-art method. The BLM with fast calculation speed and strong generalization ability is
used to realize the fault classification. The actual vibration data are used to validate the effectiveness
of the VHBLFD. The fault diagnosis accuracy of the VHBLFD is 97.74%, and the test time of the
VHBLFD is 22.29s. The results show that the BLM can construct the VHBLFD model with a higher
diagnosis accuracy and a better diagnosis efficiency. Compared with the DBN and the SVM, the BLM
is more sensitive for fault features and has faster diagnosis speed and better robustness. Therefore, the
VHBLFD method provides higher diagnosis accuracy and better diagnosis efficiency.

In order to solve the practical engineering problem, we plan to design a new experiment platform
to obtain a new dataset containing much more data. We will use the new dataset to study the fault
diagnosis method in future work.
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