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Abstract: The relatively high abundance of fractal properties of complex systems on Earth and in
space is considered an argument in support of the general relativity of the geometric theory of gravity.
The fractality may be called the fractal symmetry of physical interactions providing self-similarities of
complex systems. Fractal symmetry is discrete. A class of geometric solutions of the general relativity
equations for a complex scalar field is offered. This class allows analogy to spatial fractals in large-scale
structures of the universe due to its invariance with respect to the discrete scale transformation of the
interval ds↔ qd̃s . The method of constructing such solutions is described. As an application, the
treatment of spatial variations of the Hubble constant HHST

0 (Riess et al., 2016) is considered. It is
noted that the values HHST

0 form an almost fractal set. It has been shown that: a) the variation HHST
0

may be connected with the local gravitational perturbations of the space-time metrics in the vicinity
of the galaxies containing Cepheids and supernovae selected for measurements; b) the value of the
variation HHST

0 can be a consequence of variations in the space-time metric on the outskirts of the
local supercluster, and their self-similarity indicates the fractal distribution of matter in this region.

Keywords: fractals; self-similarity; fractal symmetry; general relativity; geometric solutions; Hubble
constant; gravitational perturbations

1. Introduction

For more than a hundred years, on 29 May 1919, the Eddington expedition made observations of a
solar eclipse. The purpose of the observation was to test one of the three effects proposed by Einstein to
confirm his general relativity (GR)—the curvature of light lines from a distant star in the gravitational
field of the Sun. The results of Eddington’s observations confirmed the predictions of GR [1]. It was
the first experiment to test the main postulate of this theory as a geometrical model of gravitational
interaction. Over the past century, many direct experiments have been made. The absolute majority of
these experiments confirmed Einstein’s theory [2].

However, at present, criticism of GR has renewed, in particular, because of the appearance of, the
so-called “dark sector” in cosmology. Astrophysicists and cosmologists introduced the dark matter,
and then the dark energy, to explain the characteristics of the rotation curves of galaxies, the stability
of galactic disks, the growth of large-scale structures in the early universe, the Hubble parameter
(accelerated expansion of space), and the anisotropy of the CMB radiation. Here these problems will
not be discussed; but some relevant publications are given in [3]. So far, the “dark sector” methodology
could not provide a satisfactory explanation of these problems because of the large variety of dark
energy and dark matter models.

Modifications of the GR appeared in response to the “paradoxes of the dark sector”. The
main disadvantage of these modifications is that they introduce additional fundamental constants
of gravitational interaction, which do not allow the use of the effects of the “dark sector”. However,
these parameters are defined from the same astrophysical observations of galaxies which need to be
explained. It does not cause satisfaction. In GR, the fundamental constants measured in terrestrial
experiments are used.
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Modern information technologies allow the numerical solution of the non-linear equations of
GR or its modifications. They are also used in observations, in processing observational data, and in
the analysis of these data within a chosen cosmological model. The authors of various cosmological
simulations fit their results to observations with good accuracy, which becomes better with an increase
in the number of free parameters for baryonic matter (for example, different types of viscosity), for
dark matter (from cold to hot), and for dark energy (different variants of scalar field potentials).

In work [3], facts indicating that the dark matter hypothesis is groundless from the point of view of
the interpretation of the observations are given. Galaxies and clusters of galaxies are located inside the
cosmic web. They are open systems that interact with the circumgalactic medium and the intergalactic
medium. The description of the dynamics of such open systems within the framework of GR has not
yet been done. Therefore, there is no indisputable evidence that would justify the rejection of GR.

In this article, the relatively high abundance of fractal properties of complex systems on Earth and in
space is considered as an argument in support of the GR as a geometric theory of gravity. Geometrically,
fractals are self-similar structures. Not always this self-similarity can be observed directly, especially
in astrophysical objects and cosmological structures. Meanwhile, a sign of self-similar discrete sets
is power dependencies between the physical characteristics of complex systems. For example, let us
consider the Tully-Fisher relation L ∼ v3 in spirals for the luminosity L and the rotation rate of spiral
galaxies v. Suppose that the values of the luminosities of galaxies and the rotation rates form geometric
progressions (the most obvious example of self-similarity in the state space of the system): Li+1 = aLi,

vi+1 = bvi, where a and b are constant parameters, i = 1, 2, . . .. Number i can be written as i =
ln

vi
v1

ln b .

Then for luminosity values we find Li = (vi)
ln a
ln b

(
L1

(v1)
ln a
ln b

)
∼ (vi)

ln a
ln b . The Tully-Fisher relation follows

from this formula if we assume ln a
ln b = 3. Spiral galaxies are similar physical objects. The power of the

Tully-Fisher relation indicates that these objects form a fractal discrete set in the state space of these
objects; we observe the projection of this set onto the L− v plane as the Tully-Fisher relation.

The power of the relationship is often met in very different astrophysics objects. Let’s give
several examples:

• Main sequence stars obey a mass-luminosity relation, L ∼ mα, α ≈ 3.52;
• Period-luminosity relation for pulsating variable stars, L ∼ Pα, for classical Cepheids α ≈ 1.15;
• Luminosity functions for stars, galaxies, and quasars, Φ ∼ Lα, −2.6 < α < −0.6;
• Faber-Jackson relation for luminosity and their central stellar velocity dispersion of stars of

elliptical galaxies, L ∼ σ4;
• Tully-Fisher relation for the luminosity and rotation rate of spiral galaxies, L ∼ v3;

• Brightness distribution in the images of bright elliptical galaxies, I ∼ r−α
(
1 +

(
r
r0

)β)γ
, −1.37 < α <

0.85, 0.28 < β < 1, −7.57 < γ < −0.18;
• Power-law spectra of the radio emission of the jets from active galactic nuclei, F ∼ ν−α, 0.6 < α < 0.7

(jets are composed of plasma clouds with a magnetic field);
• Baldwin’s ratio in the active galactic nucleus for the equivalent width of the emission lines and

the luminosity of its galaxy, EW(CaII) ∼ L−α, α > 1;
• Red shift distribution of absorption lines in quasar spectra, dN

dz ∼ (1 + z)α, 1.67 < α < 2.09;
• Spatial correlation function of galaxies in the clusters of galaxies and clusters in superclusters,

ξ(r) ∼ r−α, 1.6 < α < 2.2.

The given power relationships are of course correlations. However, new observations only
specify them.

The relative high abundance of fractals indicates that perhaps fractality is a fundamental property
of physical interactions. The fractality may be called the fractal symmetry of physical interactions
providing self-similarity of complex structures. Fractal symmetry is discrete, since a complex system
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with fractal symmetry consists of self-similar subsystems and the physical parameters of these
subsystems form geometric progressions. Fractality can be compared with quantization (discreteness)
of the states of the systems in the microcosm.

Can fractal symmetry be a consequence of the geometric model of gravity in GR? This question is
logical if we take into account the geometric properties of the phase spaces of the systems, which we
call fractals. It is also logical from a historical point of view in the development of science. For example,
in the classical work of Minkowski (1909, [4]) it was proposed to back out of the hypothesis of ether,
but to combine space and time into a four-dimensional homogeneous and isotropic set of points
(the Minkowski world). Minkowski proved his offer relying on postulates of the special theory
of relativity and the Lorentz invariance of the Maxwell’s equations. According to Minkowski, we
discover a homogeneous and isotropic space-time through the invariance of Maxwell’s equations with
respect to the Lorentz transformations. From the modern point of view, Minkowski considered the
Lorentz’s symmetry for an electromagnetic field as a consequence of the properties of four-dimensional
space-time: the vector potential of the electromagnetic field is also transformed like any vector in
four-dimensional space-time. Theoretical cosmology as a science about the structure and evolution
of space-time of the universe began with this research by Minkowski. It should be noted that the
fundamental hypothesis by Weyl, where he proposed (1918, 1929 [5,6]) to use a scalar field Φ(xk)

(now it is called dilation) with transformation Φ↔ σ1/2Φ̃ and the continuous conformal symmetry of
space-time ds2

↔ σ
(
xk

)
d̃s2 for the electron model. This field should change the Newtonian gravitational

interaction of all systems and its consequences would be self-similar properties of these systems.
However, the existence of the dilaton field is not detected.

Now symmetries play an important role in the development of our ideas about space-time and the
physics of matter. The description of the observed properties of matter by means of dynamic equations
and symmetries of the interaction fields allows us to understand the nature of the universe at the micro
and macro levels. This paradigm inspires cosmologists.

In this paper, a class of geometric solutions of GR is proposed for a complex scalar field. The
solutions admit the possibility of spatial fractals in the large-scale structure of the universe [7–9].
Quasar groups are an example of such fractals. It was found in [8], that the number of groups Ni with
size ϑi depends on the size Ni ∼ (ϑi)

−2.02.Let’s consider the quasar group with number i as the so-called
“island system”, that has a space-time with an interval dsi. If the intervals of different island systems
form a geometric progression dsi+1 = qdsi (q is a number, discrete scale transformation), then a distant
observer using the metric of the Minkowski’s space will observe the geometric progression ϑi+1 = qϑi
for the angular sizes of the quasar groups. The introduction of a geometric progression for interval
means, that we consider the space-time, consists of an ensemble of geometrically self-similar regions.

Below we consider an example of the solution of the GR equations, which allows for the discrete
scale transformation of the space-time interval. The complex scalar field is used as a source in the
GR equations. It is assumed that the field has a unitary symmetry U (1), which is given in the
algebraic form:

(ψ1)
2 + (ψ2)

2 = Ψ2 = const. (1)

The complex field is used in the scalar electrodynamics to introduce charges, that are conserved
due to symmetry (1). In the Standard Model of the physics of elementary particles SU(n) symmetries
are introduced as a generalization of the circle (1) for multidimensional fields.

In the problem considered here, the discrete transform of the field phase ϕ↔ ϕ̃+ α (α is a
constant) without changing its amplitude Ψ (unitary symmetry) corresponds to a field transform

ψ̃↔ e−iαψ and a discrete transform of metric tensor gmn(ϕ)↔
Ũ0
U0

g̃mn(ϕ̃) , where U0 and Ũ0 are the

parameters of the field potentials U = U0ψψ∗, Ũ = Ũ0ψ̃ψ̃∗, an asterisk means complex conjugation.
In this case, the two regions of space-time are geometrically similar, their intervals are connected
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by a scale transformation ds2
↔

Ũ0
U0

d̃s2 (an analogue of the conformal discrete transformation). An

ensemble of such regions can be called a fractal, if
(
ds2

)
i+1

=
(

Ũ0
U0

)(
d̃s2

)
i
, i = 1, 2, . . ..

Let’s define a fractal cosmological model as a model in which fractal properties are characteristic of
the spatial distribution of matter. The space-time of this model consists of a set of regions in space-time,
the metric tensors of which are connected by discrete scale transformations.

Note, that in the fractal cosmological model, the simulation of the large-scale structure of the
galaxy distribution should require less computational time, because our need is to model the self-similar
parts of this structure and not their ensembles as a whole.

The rest of the article is organized as follows. Section 2 presents the method of constructing a
geometrical solution of the Lagrange and Einstein equations for a complex scalar field. Section 3
discusses the contradiction in the measurements of the Hubble constant and its interpretation within
the framework of the fractal cosmological model.

2. Exact Geometrical Solution of the Lagrange and Einstein Equations for a Complex Scalar Field
with Symmetry U (1)

In the preprint [10], a method is presented for constructing the class of exact solutions discussed
here for the GR equations of a complex scalar field. The following describes the revised and expanded
version of this method. Let’s consider a system with the Hilbert—Einstein’s action

S = −
c3

16πG

∫ (
R−

8πG
c4

L
)
√
−gd4x, (2)

where the curvature scalar is R, g < 0 is the determinant of the metric tensor gmn, the space-time interval
is ds2 = gmndxmdxn, the indices run through the values 0, 1, 2, 3, the metric signature is (+ − − −). Here,
the physical system of units is maintained to simplify the comparison with the observations.

The Lagrangian of a complex scalar field has the form:

L =
1
hc

(
gmn ∂ψ

∂xm
∂ψ∗

∂xn −U(ψψ∗)

)
, (3)

where h is the Planck constant, U(ψψ∗) is the field potential, which we choose in a simple form
U(ψψ∗) = U0ψψ∗ = U0Ψ2 for a field ψ = Ψeiϕ with symmetry (1).

From the Lagrange equation (
∂2ψ

∂xm∂xn − Γl
mn
∂ψ

∂xl

)
gmn = −

∂U
∂ψ∗

, (4)

we derive an equation for the field phase ϕ(xm):(
−ψ

∂ϕ

∂xm
∂ϕ

∂xn + iψ
∂2ϕ

∂xm∂xn − iψΓl
mn
∂ϕ

∂xl

)
gmn = −U0ψ. (5)

The goal is to choose the dependence of the Christoffel’s symbols Γl
mn and the metric tensor gmn

on the derivatives ∂ϕ
∂xm in such away so that Equation (5) for the phase ϕ(xm) is identically satisfied,

and the Einstein equation for the metric tensor gmn can be reduced to an algebraic form for the vector
en =

∂ϕ
∂xn . In this case, the Einstein’s equation is invariant relative to the discrete phase transformation

ϕ↔ ϕ̃+ α . Achieving this goal is carried out in two stages.
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2.1. Selection of the Christoffel’s Symbols and Metric Tensor

By direct substitution, we can see that Equation (5) becomes an identity if the following formulas
are used:

emengmn = U0, (6)

Γl
mn =

1
U0

∂2ϕ

∂xm∂xn

(
el + bl

)
, (7)

elbl = 0, (8)

where bl is a vector.
The left-hand sides of formulas (6) and (8) are the tensors, therefore the formulas are covariance

invariant. For the covariant conservation of formula (7), it is necessary that the covariant derivatives
be equal to zero, en,m = 0, bl

,m = 0 and(
∂2ϕ

∂xm∂xn

)
,l
=

(
∂en

∂xm

)
,l
= 0. (9)

We define the metric tensor by the following formula:

gmn =
4

U0
emen + amen + anem, (10)

where there am is a vector. From the condition gmngmn = 4, the equation follows, amem = 0.
The equation for the covariant derivative gmn,k = 0 is identically satisfied, if en,m = 0 and

am,n = 0, then

∂am

∂xl
= −

3
U0

∂em

∂xl
, (11)

∂em

∂xn =
∂en

∂xm ,
∂am

∂xn =
∂an

∂xm ,
∂bm

∂xn =
∂bn

∂xm . (12)

Calculation of the Cristoffel’s symbols Γn
ml = 1

2 gkn
(
∂gmk
∂xl +

∂glk
∂xm −

∂gml
∂xk

)
and comparison with the

definition (7) lead to the following equation:

1
U0

∂em

∂xl
(en + bn) =

4
U0

en ∂em

∂xl
+ an ∂em

∂xl
+ en ∂am

∂xl
, (13)

if the calculations take into account the equalities (12). Equation (13) turns into an identity, if we take
into account Equation (12) and

bn = U0an. (14)

Formulas (6)–(14) determine the relationships between the vector em and gmn, Γl
mn, am, and bl.

2.2. Algebraic form of the Einstein’s Equations

To determine the vector en and metric tensor (10), one must use the Einstein’s equation
Rkm = 8πG

c4

(
Tkm −

1
2 gkmT

)
(here we use the notation of the classic textbook [11]). The energy-momentum

tensor of the complex field is Tkm = 2Ψ2

hc U0ekem. The calculation of the Ricci tensor Rmn through the
symbols Γl

mn and Equation (12) allows us to obtain the Einstein’s equation in the following form:(
∂2em

∂xl∂xn
−
∂2em

∂xn∂xl

)(
el + U0al

)
= −ζU0(2emen + U0amen + U0anem), (15)
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where ζ = 8πG
hc5 Ψ2. The derivatives of the left side of Equation (15) are determined from Equation (9):

∂2em

∂xn∂xl
= Γk

mn
∂ek

∂xl
+ Γk

ln
∂ek
∂xm =

1
U0

(
ek + U0ak

)(∂em

∂xn
∂ek

∂xl
+
∂el
∂xn

∂ek
∂xm en

)
. (16)

In this case, Equation (15) is rewritten as follows:(
∂em

∂xk
∂en

∂xl
−
∂em

∂xn
∂ek

∂xl

)(
ek + U0ak

)(
el + U0al

)
= −ζ(U0)

2(2emen + U0amen + U0anem). (17)

The Equation (17) has an algebraic equation for a vector em if we introduce another definition for
the tensor ∂em

∂xn :
∂em

∂xn = emγn + enγm, (18)

where γm is a vector. We also use the general form of the solution of Equation (11):

U0am = −3em + ξm, (19)

where the vector ξm does not depend on coordinates xk, i.e., ∂ξm
∂xn and ξmem = 3U0. As a result,

Equation (17) is written in algebraic form:

emen(y− 2z)2
−U0(y− 2z)(enγm + emγn) + (U0)

2γmγn = ζ(U0)
2(4emen − ξmen − ξnem), (20)

where y = γkξ
k and z = γkek. The vector em can be found by convolving Equation (20) with the

vector en:

em = U0
(y− 3z)γm − ζ(U0)

2ξm

(y− 2z)(y− 3z) − ζ(U0)
2 . (21)

Equations (18) and (21) define the class of geometrical solutions for problem (1)–(3) for the
metric tensor

gmn =
1

U0
(−2emen + enξm + emξn), (22)

and the Cristoffel’s symbols

Γl
mn =

1
U0

(enγm + emγn)
(
−2el + ξl

)
, (23)

if the vectors γk and ξk are chosen. Options, that lead to contradictions, should be excluded from this
choice: y = 3z, y = 0, z = 0, y = 2z, and γmγm = 0.

So, the Einstein’s equation is reduced to the algebraic form (20). Using it and Equation (18), we
find the function em(xn).

Convolution of Equation (20) with emen, γmγn, and ξmξn gives three corresponding equations:

(y− 3z)2 = −2ζ(U0)
2, (24)

(z(y− 2z) −U0γmγ
m)2 = −2ζ(U0)

2z(y− 2z), (25)

2(y− z)2 = 3ζU0(6U0 − ξnξ
n). (26)

Equation (24) defines the relationship between y and z, Equations (25) and (26) define the functions
γmγm and ξnξn.
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Using formula (24) in formula (21) we get, em = U0
γm+βU0ξm

z+3βU0
, where β =

(
−
ζ
2

)1/2
is an imaginary

number. Then the Equation (18) is reduced to the form (the condition ∂ξm
∂xn = 0 is used):

∂γm

∂xn −
γm + βU0ξm

z + 3βU0

∂z
∂xn = 2γmγn + βU0(ξmγn + ξnγm). (27)

The Equation (27) includes three unknowns—two functions γm(xk), z(xk), and a constant vector
ξm. Their choice determines the vector em(xn). As an example, we present the following choice of
equations for functions γm(xk), z(xk):

∂γm

∂xn = 2γmγn + βU0(γn + βξn)ξm, (28)

∂z
∂xn = β(z + 3βU0)ξn. (29)

They turn Equation (27) into an identity. The complex solution of Equation (29) has the form:

z = eβξnxn
− 3βU0 = cos


√
ζ
2
ξnxn

+ i

sin


√
ζ
2
ξnxn

− 3U0

√
ζ
2

. (30)

The solution of Equation (28) is more bulky:

γm = βU0ξme2
∫ y
ξmξm dη

∫ y
(ξmξm)

+ β

e2
∫ y
ξmξm dη

dη, (31)

where dη = ξndxn, the functions ξnξn and y are determined from Equations (25) and (26) using
solution (30). To determine the vector em and metric tensor (22), it is necessary to use the real parts of
the functions (30) and (31). The given solution of problem (1)–(3) has a pulsating space-time.

Despite the relative bulkiness of the described method of constructing a solution to problem
(1)–(3), it is simple and easily verified by analytical calculations, and also allows numerical modeling
of all solutions.

Note that for the problem in question, Lagrangian (3) is zero, but the field energy density is
not zero:

E =
1
hc

(
gmn ∂ψ

∂xm
∂ψ∗

∂xn + U(ψψ∗)

)
=

2
hc

U0Ψ2. (32)

The interval of the phase trajectory for the circle (1) is equal to

dF2 = (dψ1)
2 + (dψ2)

2 = dψdψ∗ = Ψ2emendxmdxn. (33)

Using formulas (22), one can transform formula (33) to the following form:

dF2 =
1
2

Ψ2U0

(
−ds2 +

1
U0

(emξn + enξm)dxmdxn
)
. (34)

Formula (34) shows how the local geometry of the phase space (1) is related to the local
space-time geometry.

When the phase transformation is ϕ↔ ϕ̃+ α and the field amplitude is Ψ = Ψ̃, but the potential
parameter is changed U0 ↔ Ũ0 , then the Lagrange’s equation, the Einstein’s equations, covariant
vectors em, ξm, γm, the Christoffel’s symbols do not change. However, the metric tensor is multiplied
by a constant coefficient:

gmn(ϕ)↔
Ũ0

U0
g̃mn(ϕ̃). (35)
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As a result, the transformation of the phase of the complex field leads to the compression or

stretching of the space-time interval ds2
↔

Ũ0
U0

d̃s2 . This means that the volumes of space-time with

fields ψ and ψ̃ are similar geometrically, therefore, the directly observed Newtonian law of law does
not change. On the contrary, continuous conformal transformations distort the geometry and are
accompanied by a change in the Newtonian law of gravitation.

Thus, if there are two regions of space-time in which complex scalar fields are connected by a phase
transformation ϕ↔ ϕ̃+ α , then the spatial scales in these regions are connected by a transformation

dl↔
(

Ũ0
U0

)1/2
d̃l . Let there be a set of regions in which the phases of the fields and the spatial scales are

connected by the equations ϕi = ϕ+ αi and (dl)i+1 ↔

(
Ũ0
U0

)1/2
(dl)i , respectively. Then a sample of

physically similar structures from these regions will form a fractal.

3. Spatial Variations of the Hubble Constant and Local Gravitational Perturbations

Hubble’s article on “relation between distance and radial velocity among extra-galactic nebular”
was published 90 years ago [12]. This discovery was the first law of the observational cosmology. The
Hubble constant is the most important cosmological parameter. It is used to estimate cosmological
distances to galaxies and their clusters. It is used in the theoretical cosmology through the Hubble
parameter, H =

.
a
a , where a is the scale factor of the cosmological model and a dot above the letter

means the differentiation according to the cosmological time of the model t. The Hubble parameter
characterizes the speed of the expansion of the universe space. In a homogeneous and isotropic
cosmological model, the Hubble parameter depends only on cosmological time t (at each moment of
time, the expansion rate at all points of the 3D-space is identical). Then in the modern era, the Hubble
constant H0 = H(t0) has to be identical in all directions.

The results of the latest local measurements H0 were very carefully performed in [13,14]
using data on Cepheids in 23 galaxies, supernovae SN Ia were observed in 19 galaxies (redshifts
0.01 < z < 0.15, observations by the Hubble Space Telescope). The average value is equal to
HHST

0 = (73.48± 1.66)km/s/Mpc for the standard cosmological model.
Global estimates H0 are obtained by fitting cosmological parameters of the model to observations

of the CMB anisotropy and galaxy clustering. According to the latest data from the Planck collaboration
for a spatially flat model, we have HPl

0 = (67.4± 0.5)km/s/Mpc [15].
In recent publications, an unexpectedly large difference between HHST

0 and HPl
0 is explained by the

possibility of the presence of still unclear errors of measurements or hypotheses about the dark energy
model (for example, [16]) or about the inhomogeneity of dark matter distribution (for example, [17,18]).

Here we propose a simpler hypothesis to explain the inequality HHST
0 , HPl

0 remaining within the
GR framework and without the use of exotic forms of matter. The hypothesis itself appeared due to a
careful look at the measurement data HHST

0 in various galaxies [13]. A sample of these data is shown in
Table 1. It appears that the measured values HHST

0 form a manifold that is approximately described
by the power of low characterizing fractals. It has the following form HHST

0 ≈ qiH∗, and q = 1.023.
Here H∗ = 65km/s/Mpc and the values of the exponent i are shown in Table 1. The proximity of value
q = 1.023 to 1 may indicate a very small deviation from the isotropic expansion of space.

Let’s suppose that this form reflects the real local properties of the space expansion in the vicinity
of the supernovae (or galaxies) that were used for the measurement. Variations of the expansion speed
relative to the value HPl

0 indicate the presence of local gravitational perturbations in the vicinity of
each source (local changes of the space-time metric relative to the metric of the background reference
system). The fractality indicates that the processes generating these gravitational perturbations have
an identical nature. Such processes can be gravitational waves generated by the asymmetric collapse
of a supernova core or cosmological gravitational perturbations. The fractality of the Hubble constant
should also be observed in the fractal cosmological model.
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Table 1. Hubble constant (data [13]).

Galaxy HHST
0 (km/s/Mpc) i

M101 68.39 2
N1015 80.09 9
N1309 70.24 3
N1365 68.39 2
N1448 77.77 8
N2442 73.42 5
N3021 63.94 −1
N3370 76.00 7
N3447 74.37 6
N3972 77.98 8
N3982 64.80 −1
N4038 79.69 9
N4258 72.25 5

N4424 63.97 −1
N4536 71.48 4
N4639 77.98 8
N5584 78.67 9
N5917 72.75 5
N7250 74.75 6
U9391 66.53 1

Let’s consider local gravitational perturbations in the vicinity of the galaxy which hosts Cepheids
and supernovae. These sources are used to measure the Hubble constant in [13]. We use the
synchronous space-time metric

ds2 = gikdxidxk = a2dη2 +
(
a2δαβ + hαβ

)
dxαdxβ, (36)

where Latin indices run through values 0, 1, 2, 3, and Greek 1, 2, 3. The coordinates of the background
reference system are η and xα, the cosmological time t is related to the conformal time η by the Equation
adη = cdt, and hαβ is a local gravitational perturbation.

The commoving distance of galaxy rg is measured along the isotropic geodesic of the space-time
with metric (1). For the isotropic geodesic ds = 0, then c2dt2 = −

(
gαβ + hαβ

)
kαkβdr2. Here the isotropic

wave vector is ki = dxi

dr , kiki = 0, and kα =
qα

a2 , kα = qα, qα and qα don’t depend on t, kαkα =
q2

a2 .
The commoving distance of galaxy rg is equal to

rg =

zg∫
0

kαdxα = c

zg∫
0

dt
dz

kαkα√
−

(
gαβ + hαβ

)
kαkβ

dz = cq2

zg∫
0

dt
dz

1
a

dz√(
δαβ −

hαβ
a2

)
qαqβ

(37)

Let’s consider that dt
dz = 1

H0
1√

Ωm(1+z)3+ΩΛ

, where the cosmological parameters for the flat ΛCDM

model are Ωm = 0.28, ΩΛ = 0.72. The luminosity distance of galaxy is dL =
(
1 + zg

)
rg. It is used in

the distance modulus equation of source, (m−M)PL = 5 log dL
Mpc + 25, where (m−M)PL is a distance

module for Cepheids. The authors of [11] found values HHST
0 for dozens of Cepheids in each galaxy.

The most probable value HHST
0 (included in Table 1) was determined from the condition of equality of

the distance modules for Cepheids and a supernova in the same galaxy.
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Using Equation (37), we found the expression for the Hubble constant taking into account the
gravitational perturbation:

H0 = cq
(
1 + zg

)
105−

(m−M)PL
5

zg∫
0

1 + z√
Ωm(1 + z)3 + ΩΛ

dz√(
1−

hαβqαqβ

a2q2

) . (38)

The Hubble constant for the background frame HPl
0 is obtained from Equation (38) with

hαβqαqβ

a2q2 = 0.
Then the relative variation of the Hubble constant is:

H0 −HPl
0

HPl
0

≈

1
2

zg∫
0

1+z√
Ωm(1+z)3+ΩΛ

hαβqαqβ

a2q2 dz

zg∫
0

1+z√
Ωm(1+z)3+ΩΛ

dz

, (39)

where
hαβqαqβ

a2q2 � 1.
For a local perturbation of the metric we can assume that the main contribution to the integral of

the term of a fraction (38) is a perturbation in the vicinity of the galaxy at an epoch z = zg. Then, to

estimate the variation of the value of the Hubble constant, we used two conditions
hαβqαqβ

a2q2 ≈
qαqβ

q2

(
hαβ
a2

)
zg

,

and hαβ(z < zg) ≈ 0. In this case we obtained:

H0 −HPl
0

HPl
0

≈
1
2

qαqβ

q2

(hαβ
a2

)
zg

. (40)

Let’s consider the case, when the galaxies used in [13] belong to the outskirts of the local supercluster.
The medium density contrast in the superclusters is of the order δε

ε ≈ 0.1 (see, for example, [19]).

This density contrast corresponds to the metric perturbation hαβ and δε
ε ≈

qαqβ

q2

(
hαβ
a2

)
zg

. As a result,

the variation of the Hubble constant is
H0−HPl

0
HPl

0
≈

1
2
δε
ε ≈ 0.05. This value is comparable to the average

variation of the Hubble constant in measurements [11]. The above example shows that variations of
the Hubble constant can be used to study local gravitational perturbations.

In the fractal cosmological model, the space-time is considered as a set of self-similar regions of
space-time. This self-similarity is due, in particular, to the fact that the transition from one region to
another is reduced to stretching or shrinking the interval. Metric tensors of two regions are related
by the relation: g̃αβ = U0

Ũ0
gαβ, where U0

Ũ0
is a constant number, it can be different for different pairs

of regions. Consider the metric g̃αβ in the vicinity of the galaxy as weakly perturbed relative to the
metric of a homogeneous and isotropic space-time gαβ for the region in which the observer is located.

Then g̃αβ = gαβ + hαβ, and hαβ =
(

U0

Ũ0
− 1

)
gαβ. The direction of the isotropic geodetic upon transition

from one region to another does not change. Using Equation (39), we found that in such a model, the

observer will find a variation of the Hubble constant,
H0−HPl

0
HPl

0
≈

1
2


U0
Ũ0
−1

a2


zg

. The values of the Hubble

constant for a set of self-similar regions will form a fractal set, H0n ≈ δiHPl
0 , where δ = 1 + 1

2


U0
Ũ0
−1

a2


zg

.
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4. Discussion

Above, it is proposed to consider the puzzle of fractals as a consequence of the properties of
space-time and the symmetry of the interaction fields of matter. In this case, it is necessary to use the
geometric theory of gravity, which is similar to GR. We have described the method of constructing the
problems solution (1)–(3) and shown that it had simple and easily verified analytical solutions with
geometrical properties. It is important that these solutions for complex scalar fields be generalized to
multidimensional fields.

This class of geometric solutions of the general relativity equation allows analogy to spatial
fractals in large-scale structures of the universe due to its invariance with respect to discrete scale
transformation of interval, ds↔ qd̃s . As an application, the treatment of spatial variations of the
Hubble constant HHST

0 [13] is considered. It is noted that the values HHST
0 form almost fractal sets. It

has been shown that the variations of HHST
0 may be connected with local gravitational perturbations of

the space-time metrics in the vicinity of the galaxies containing Cepheids and supernovae selected
for measurement. The value of variations HHST

0 can indicate the presence of local variations in the
space-time metric (local gravitational perturbations) on the outskirts of the local supercluster, and their
self-similarity indicates the fractal distribution of matter in this region. This example shows that the
variations of the Hubble constant can be used to study local gravitational perturbations.
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