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Abstract: In this paper, we investigate some properties and identities for fully degenerate Bernoulli
polynomials in connection with degenerate Bernstein polynomials by means of bosonic p-adic
integrals on Zp and generating functions. Furthermore, we study two variable degenerate Bernstein
polynomials and the degenerate Bernstein operators.
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1. Introduction

Let p be a fixed prime number. Throughout this paper, Z, Zp, Qp and Cp, will denote the ring of
rational integers, the ring of p-adic integers, the field of p-adic rational numbers and the completion of
algebraic closure of Qp, respectively. The p-adic norm |q|p is normalized as |p|p = 1

p .

For λ, t ∈ Cp with |λt|p < p−
1

p−1 and |t|p < 1, the degenerate Bernoulli polynomials are defined
by the generating function to be

t

(1 + λt)
1
λ − 1

(1 + λt)
x
λ =

∞

∑
n=0

βn(x|λ) tn

n!
, (1)

(See [1–3]). When x = 0, βn(λ) = βn(0|λ) are called the degenerate Bernoulli numbers. Note that
limλ→0 βn(x|λ) = Bn(x), where Bn(x) are the ordinary Bernoulli polynomials defined by

t
et − 1

ext =
∞

∑
n=0

Bn(x)
tn

n!
, (2)

and Bn = Bn(0) are called the Bernoulli numbers. The degenerate exponential function is defined by

ex
λ(t) = (1 + λt)

x
λ =

∞

∑
n=0

(x)n,λ
tn

n!
, (3)

where (x)0,λ = 1, (x)n,λ = x(x− λ)(x− 2λ) · · · (x− (n− 1)λ), for n ≥ 1. From (1), we get

βn(x|λ) =
n

∑
l=0

(
n
l

)
βl(λ)(x)n−l,λ. (4)
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Recentely, Kim-Kim introduced the degenerate Bernstein polynomials given by

(x)k,λ

k!
tk(1 + λt)

1−x
λ =

∞

∑
n=k

Bk,n(x|λ) tn

n!
, (5)

(See [4–6]). Thus, by (5), we note that

Bk,n(x|λ) =
{
(n

k)(x)k,λ(1− x)n−k,λ, if n ≥ k,

0, if n < k.
(6)

where n, k are non-negative integers. Let UD(Zp) be the space of uniformly differentiable functions on
Zp. For f ∈ UD(Zp), the degenerate Bernstein operator of order n is given by

Bn,λ( f |λ) =
∞

∑
k=0

f
(

k
n

)(
n
k

)
(x)k,λ(1− x)n−k,λ

=
∞

∑
k=0

f
(

k
n

)
Bk,n(x|λ),

(7)

(See [4–6]). The bosonic p-adic integral on Zp is defined by Volkenborn as

∫
Zp

f (x)dµ0(x) = lim
N→∞

1
pN

pN−1

∑
x=0

f (x), (8)

(see [7]). By (8), we get ∫
Zp

f (x + 1)dµ0(x)−
∫
Zp

f (x)dµ0(x) = f ′(0), (9)

where d
dx f (x)

∣∣
x=0 = f ′(0).

From (8), Kim-Seo [8] proposed fully degenerate Bernoulli polynomials which are reformulated
in terms of bosonic p-adic integral on Zp as

∫
Zp
(1 + λt)

x+y
λ dµ0(y) =

1
λ log(1 + λt)

(1 + λt)
1
λ − 1

(1 + λt)
x
λ =

∞

∑
n=0

Bn(x|λ) tn

n!
, (10)

and for x = 0, Bn(λ) = Bn(0|λ) are called fully degenerate Bernoulli numbers.
Note that the fully degenerate Bernoulli polynomial was named Daehee polynomials with

α-parameter in [9]. On the other hand,

∫
Zp
(1 + λt)

x+y
λ dµ0(y) =

∞

∑
n=0

∫
Zp
(x + y)n,λdµ0(y)

tn

n!
. (11)

By (10) and (11), we get ∫
Zp
(x + y)n,λdµ0(y) = Bn(x|λ), (n ≥ 0). (12)

Recall that the Daehee polynomials are defined by the generating function to be

log(1 + t)
t

(1 + t)x =
∞

∑
n=0

Dn(x)
tn

n!
, (13)

and for x = 0, Dn = Dn(0) are called the Daehee numbers (see [10,11]).
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Also, the higher order Daehee polynomials are defined by the generating function to be(
log(1 + t)

t

)k
(1 + t)x =

∞

∑
n=0

D(k)
n (x)

tn

n!
, (14)

and for x = 0, D(k)
n = D(k)

n (0) are called the higher order Daehee numbers. From (10), we observe

1
λ log(1 + λt)

(1 + λt)
1
λ − 1

(1 + λt)
x
λ =

t

(1 + λt)
1
λ − 1

(1 + λt)
x
λ

log(1 + λt)
λt

=

(
∞

∑
m=0

βm(x|λ) tm

m!

)(
∞

∑
l=0

Dl
(λt)l

l!

)

=
∞

∑
n=0

(
n

∑
m=0

(
n
m

)
βm(x|λ)Dn−mλn−m

)
tn

n!
.

(15)

By (10) and (14), we get

Bn(x|λ) =
n

∑
m=0

(
n
m

)
βm(x|λ)Dn−mλn−m, (n ≥ 0). (16)

From (3) and (10), we observe that

∞

∑
n=0

Bn(x|λ) tn

n!
=

1
λ log(1 + λt)

(1 + λt)
1
λ − 1

(1 + λt)
x
λ

=

(
∞

∑
m=0

Bm(λ)
tm

m!

)(
∞

∑
l=0

(x)l,λ
tl

l!

)

=
∞

∑
n=0

(
n

∑
m=0

(
n
m

)
Bm(λ)(x)n−m,λ

)
tn

n!
.

(17)

By (17), we get

Bn(x|λ) =
n

∑
m=0

(
n
m

)
Bm(λ)(x)n−m,λ, (n ≥ 0). (18)

From (1) and (3), we note that

t =
(
(1 + λt)

1
λ − 1

) ∞

∑
m=0

βm(λ)
tm

m!

=

(
∞

∑
l=0

(1)l,λ
tl

l!

)(
∞

∑
m=0

βm(λ)
tm

m!

)
−

∞

∑
m=0

βm(λ)
tm

m!

=
∞

∑
n=0

(
n

∑
m=0

(
n
m

)
(1)n−m,λβm(λ)

)
tn

n!
−

∞

∑
n=0

βn(λ)
tn

n!

=
∞

∑
n=0

(
n

∑
m=0

(
n
m

)
(1)n−m,λβm(λ)− βn(λ)

)
tn

n!
.

(19)

Comparing the cofficients on both sides of (19), we get

n

∑
m=0

(
n
m

)
(1)n−m,λβm(λ)− βn(λ) = δ1,n, (n ≥ 0), (20)

where δk,n is the Kronecker’s symbol.
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By (4) and (20), we have
βn(1|λ)− βn(λ) = δ1,n. (21)

The generating function of fully degenerate Bernoulli polynomials introduced in (5) can be
expressed as bosonic p-adic integral but the generating function of degenerate Bernoulli polynomials
introduced in (1) is not expressed as a bosonic p-adic integral. This is why we considered the fully
degenerate Bernoulli polynomials, and the motivation of this paper is to investigate some identities of
them associated with degenerate Bernstein polynomials.

In this paper, we consider the fully degenerate Bernoulli polynomials and investigate some
properties and identities for these polynomials in connection with degenerate Bernstein polynomials
by means of bosonic p-adic integrals on Zp and generating functions. Furthermore, we study two
variable degenerate Bernstein polynomials and the degenerate Bernstein operators.

2. Fully Degenerate Bernoulli and Bernstein Polynomials

From (10), we observe that

∞

∑
n=0

Bn(1− x|λ) tn

n!
=

1
λ log(1 + λt)

(1 + λt)
1
λ − 1

(1 + λt)
1−x

λ

=

(
− 1

λ

)
(1 + (−λ)(−t))

(1 + (−λ)(−t))−
1
λ − 1

(1 + (−λ)(−t))−
x
λ

=
∞

∑
n=0

Bn(x| − λ)(−1)n tn

n!
.

(22)

From (22), we obtain the following Lemma.

Lemma 1. For n ∈ N∪ {0}, we have

Bn(1− x|λ) = (−1)nBn(x| − λ). (23)

From (16) and (21), we get

Bn(1|λ)− Bn(λ) =
n

∑
m=0

(
n
m

)
(βm(1|λ)− βm(λ)) Dn−mλn−m

=
n

∑
m=0

(
n
m

)
δ1,mDn−mλn−m, (n ≥ 0).

(24)

From (1), we observe that

∞

∑
n=0

βn(x + 1|λ) tn

n!
= (1 + λt)

1
λ

(
∞

∑
m=0

βm(x|λ) tm

m!

)

=

(
∞

∑
l=0

(1)l,λ
tl

l!

)(
∞

∑
m=0

βm(x|λ) tm

m!

)

=
∞

∑
n=0

(
n

∑
m=0

(
n
m

)
(1)n−m,λβm(x|λ)

)
tn

n!
.

(25)

By (25), we get

βn(x + 1|λ) =
n

∑
m=0

(
n
m

)
(1)n−m,λβm(x|λ). (26)



Symmetry 2019, 11, 709 5 of 11

By (26), with x = 1, we have

βn(2|λ) =
n

∑
m=0

(
n
m

)
βm(1|λ)(1)n−m,λ

=(1)n,λβ0(1|λ) + n(1)n−1,λβ1(1|λ) +
n

∑
m=2

(
n
m

)
βm(1|λ)(1)n−m,λ

=(1)n,λ + n(1)n−1,λ (β1(λ)− 1) +
n

∑
m=2

(
n
m

)
βm(λ)(1)n−m,λ

=(1)n,λ + n(1)n−1,λβ1(λ)− n(1)n−1,λ +
n

∑
m=2

(
n
m

)
βm(λ)(1)n−m,λ

=− n(1)n−1,λ +
n

∑
m=0

(
n
m

)
βm(λ)(1)n−m,λ

=− n(1)n−1,λ + βn(1|λ).

(27)

Therefore, by (27), we obtain the following theorem.

Theorem 1. For n ∈ N, we have

βn(2|λ) = −n(1)n−1,λ + βn(1|λ). (28)

Note that
(1− x)n,λ = (−1)n(x− 1)n,−λ, (n ≥ 0). (29)

Therefore by (12), (23), and (29), we get∫
Zp
(1− x)n,λdµ0(x) = (−1)n

∫
Zp
(x− 1)n,−λdµ0(x) =

∫
Zp
(x + 2)n,λdµ0(x). (30)

Therefore, by (30) and Theorem 1, we obtain the following theorem.

Theorem 2. For n ∈ N, we have∫
Zp
(1− x)n,λdµ0(x) =

∫
Zp
(x + 2)n,λdµ0(x) = n(1)n−1,λ(λ− 1)B1(λ) +

∫
Zp
(x)n,λdµ0(x). (31)

Corollary 1. For n ∈ N, we have

(−1)nBn(−1| − λ) = (1)n−1,λ (1− nB1(λ)) + Bn(λ) = Bn(2|λ). (32)

By (17), we get

Bn(1− x|λ) =
n

∑
m=0

(
n
m

)
Bm(λ)(1− x)n−m,λ

=
n

∑
m=0

(
n
m

)
(x)m,λ(1− x)n−m,λ

Bm(λ)

(x)m,λ

=
n

∑
m=0

Bm,n(x|λ)Bm(λ)
1

(x)m,λ
.

(33)
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In [8], we note that

1
(x)m,λ

=
1

x(x− λ)(x− 2λ) · · · (x− (m− 1)λ)

=
m−1

∑
k=0

(−1)k

(m− 1)!

(
m− 1

k

)
(−λ)1−m

x− kλ
, (m ∈ N).

(34)

By (33) and (34) we get

Bn(1− x|λ) =
n

∑
m=0

Bm,n(x|λ)Bm(λ)
1

(x)m,λ

=(1− x)n,λ +
n

∑
m=1

Bm,n(x|λ)Bm(λ)
1

(x)m,λ

=(1− x)n,λ +
n

∑
m=1

Bm,n(x|λ)Bm(λ)
(−λ)1−m

(m− 1)!

m−1

∑
k=0

(−1)k
(

m− 1
k

)
1

x− kλ
.

(35)

Therefore, by (35), we obtain the following theorem.

Theorem 3. For n ∈ N∪ {0}, we have

Bn(1− x|λ) = (1− x)n,λ +
n

∑
m=1

Bm,n(x|λ)Bm(λ)
(−λ)1−m

(m− 1)!

m−1

∑
k=0

(−1)k
(

m− 1
k

)
1

x− kλ
. (36)

Corollary 2. For n ∈ N∪ {0}, we have

Bn(2|λ) = (2)n,λ +
n

∑
m=1

Bm,n(−1|λ)Bm(λ)
(−λ)1−m

(m− 1)!

m−1

∑
k=0

(−1)k+1
(

m− 1
k

)
1

1 + kλ
. (37)

For k ∈ N, the higher-order fully degenerate Bernoulli polynomials are given by the
generating function (

1
λ log(1 + λt)

(1 + λt)
1
λ − 1

)k

(1 + λt)
x
λ =

∞

∑
n=0

B(k)
n (x|λ) tn

n!
, (38)

(See [8,12,13]). When x = 0, B(k)
n (λ) = B(k)

n (x|0) are called the higher-order fully degenerate
Bernoulli numbers. From (5) and (38), we note that

(
log(1 + λt)

λt

)k ∞

∑
n=k

Bk,n(x|λ) tn

n!
=(x)k,λtk(1 + λt)

1−x
λ

(
log(1 + λt)

λt

)k 1
k!

=

(
(1 + λt)

1
λ − 1

)k

(
(1 + λt)

1
λ − 1

)k (x)k,λ

(
1
λ

log(1 + λt)
)k

(1 + λt)
1−x

λ
1
k!

=(x)k,λ

k

∑
m=0

(
k
m

)
(−1)m−k(1 + λt)

m
λ

(
1
λ log(1 + λt)

(1 + λt)
1
λ − 1

)k

(1 + λt)
1−x

λ
1
k!

=(x)k,λ

k

∑
m=0

(
k
m

)
(−1)m−k

(
1
λ log(1 + λt)

(1 + λt)
1
λ − 1

)k

(1 + λt)
1−x+m

λ
1
k!

=(x)k,λ

k

∑
m=0

(
k
m

)
(−1)m−k

∞

∑
n=0

Bn(1− x + m|λ) tn

n!
1
k!

=
∞

∑
n=0

(
(x)k,λ

k

∑
m=0

(
k
m

)
(−1)m−kBn(1− x + m|λ) 1

k!

)
tn

n!
,

(39)
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and hence, we get(
log(1 + λt)

λt

)k ∞

∑
m=k

Bk,m(x|λ) tm

m!
=

(
∞

∑
l=0

D(k)
l λl tl

l!

)(
∞

∑
m=k

Bk,m(x|λ) tm

m!

)

=
∞

∑
n=k

(
n

∑
l=0

D(k)
l λl Bk,n−l(x|λ)

)
tn

n!
.

(40)

Therefore, by (39) and (40), we obtain the following theorem.

Theorem 4. For k, n ∈ N, we have

1
k!
(x)n,λ

k

∑
m=0

(
k
m

)
(−1)m−kBn(1− x + m|λ) =

{
∑n

l=0 D(k)
l λl Bk,n−l(x|λ), if n ≥ k,

0, if n < k.
(41)

Let f ∈ UD(Zp). For x1, x2 ∈ Zp, we consider the degenerate Bernstein operator of order
n given by

Bn,λ( f |x1, x2) =
n

∑
k=0

f
(

k
n

)(
n
k

)
(x1)k,λ(1− x2)n−k,λ =

n

∑
k=0

f
(

k
n

)
Bk,n(x1, x2|λ), (42)

where Bn,k(x1, x2|λ) are called two variable degenerate Bernstein polynomials of degree n as followings
(see, [2–6,9,14–27]):

Bk,n(x1, x2|λ) =
(

n
k

)
(x1)k,λ(1− x2)n−k,λ, (n ≥ 0). (43)

The authors [3] obtained the following:

∞

∑
k=0

Bk,n(x1, x2|λ)
tn

n!
=

(x1)k,λ

k!
tke1−x2

λ (t). (44)

The authors [8] obtained the following:

Bk,n(x1, x2|λ) =
(

n
k

)
(1− (1− x1))n−(n−k),λ (1− x2)n−k,λ

=Bn−k,n(1− x2, 1− x1|λ),
(45)

and

Bk,n(x1, x2|λ) = (1− x2 − (n− k− 1)λ)Bk,n−1(x1, x2|λ)
+ (x1 − (k− 1)λ)Bk−1,n−1(x1, x2|λ).

(46)

From (42), we note that x1, x2 ∈ Zp, if f (x) = 1, then we have

Bn,λ(1|x1, x2) =
n

∑
k=0

Bk,n(x1, x2|λ)

=
n

∑
k=0

(
n
k

)
(x1)k,λ(1− x2)n−k,λ

=(1 + x1 − x2)n,λ,

(47)

and if f (t) = t, then we have

Bn,λ(t|x1, x2) = (x1)1,λ(x1 + 1− λ− x2)n−1,λ, (48)

and if f (t) = t2, then we have
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Bn,λ(t2|x1, x2) =
1
n
(x1)1,λ(x1 + 1− λ− x2)n−1,λ +

n− 1
n

(x1)2,λ(1 + x2 − 2λ− x2)n−2,λ. (49)

The authors [3] obtained the following:

(x)1,λ =
1

(x1 + 1− λ− x2)n−1,λ
Bn(t|x1, x2), (50)

and

(x)2,λ =
1

(x1 + 1− 2λ− x2)n−2,λ

n

∑
k=2

(k
2)

(n
2)

Bk,n(x1, x2|λ), (51)

and

(x)i,λ =
1

(1 + x1 − x2 − iλ)n−i,λ

n

∑
k=i

(k
i)

(n
i )

Bk,n(x1, x2|λ). (52)

Taking double bosonic p-adic integral on Zp, we get the following equation:

∫
Zp

∫
Zp

Bk,n(x1, x2|λ)dµ0(x1)dµ0(x2) =

(
n
k

) ∫
Zp
(x1)k,λdµ0(x1)

∫
Zp
(1− x2)n−k,λdµ0(x2). (53)

Therefore, by (53) and Theorem 2, we obtain the following theorem.

Theorem 5. For n, k ∈ N∪ {0}, we have∫
Zp

∫
Zp

Bk,n(x1, x2|λ)dµ0(x1)dµ0(x2)

=

{
(n

k)Bn(λ) ((1)n−1,λn(λ− 1)Bn(λ) + Bn−k(λ)) , if n > k,

Bn(λ), if n = k.

(54)

We get from the symmetric properties of two variable degenerate Bernstein polynomials that for
n, k ∈ N with n > k,∫

Zp

∫
Zp

Bk,n(x1, x2|λ)dµ0(x1)dµ0(x2)

=
k

∑
m=0

(
n
k

)(
k
m

)
(−1)k+m(1)m,λ

×
∫
Zp

∫
Zp
(1− x1)k−m,−λ(1− x2)n−k,λdµ0(x1)dµ0(x2)

=

(
n
k

) ∫
Zp
(1− x2)n−kdµ0(x2)

k

∑
m=0

(
n
k

)(
k
m

)
(−1)k+m(1)m,λdµ0(x2)

×
{
(1)k−m,−λ(k−m)(−λ− 1)B1(−λ) +

∫
Zp
(x1)k−m,−λdµ0(x1)

}
=

(
n
k

)
Bn−k,λ(2)

k

∑
m=0

(
n
k

)(
k
m

)
(−1)k+m(1)m,λ

×
{
(1)k−m,−λ(k−m)(−λ− 1)B1(−λ) + Bk−m,−λ(2)

}

(55)

Therefore, by Theorem 5, we obtain the following theorem.
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Theorem 6. For n, k ∈ N∪ {0}, we have the following identities:

1. If n > k, then we have

Bn ((1)n−1,λn(λ− 1)B1(λ) + Bn−k(λ))

= Bn−k,λ(2)
k

∑
m=0

(
n
k

)(
k
m

)
(−1)k+m(1)m,λ

× ((1)k−m,−λ(k−m)(−λ− 1)B1(−λ) + Bk−m,−λ(2)) .

(56)

2. If n = k, then we have

Bk(λ) =
k

∑
m=0

(
k
n

)
(1)k+m(1)k,λ ((1)k−m,−λ(k−m)(−λ− 1)B1(−λ) + Bk−m,−λ(2)) . (57)

3. Remark

Let us assume that the probability of success in an experiment is p. We wondered if we could
say the probability of success in the 9th trial is still p after failing eight times in a ten trial experiment,
because there is a psychological burden to be successful. It seems plausible that the probability
is less than p. The degenerate Bernstein polynomial Bn(x|λ) is used in the probability of success.
Thus, we give examples in our results as follows:

Example 1. Let n = 2, we have

B2(2|λ) =2(1)1,λ(λ− 1)B1(λ) + B2(λ)

= 2(λ− 1)
(
−1

2

)
+

λ

2
+

1
6

= −λ

2
+

7
6

.

Example 2. Let n = 1, we have

B1(1− x|λ) =(1− x)1,λ +
1

∑
m=1

Bm,1(x|λ)Bm(λ)
(−1)1−m

(m− 1)!

m−1

∑
k=0

(−1)k
(

m− 1
k

)
1

x− kλ

= (1− x)1,λ + B1,1(x|λ)B1(λ)
1
x

= −x +
1
2

.

Example 3. Let n = 1, k = 2, we have

(x)1,λ

2

∑
m=0

(
2
m

)
(−1)m−2B1(1− x + m|λ) = x (B1(1− x|λ)− 2B1(2− x|λ) + B1(3− x|λ))

= −x
((
−x +

1
2

)
− 2

(
−x +

3
2

)
+

(
−x +

5
2

))
= 0.

4. Conclusions

In this paper, we studied the fully degenerate Bernoulli polynomials associated with degenerate
Bernstein polynomials. In Section 1, Equations (12), (18), (20) and (21) are some properties of them.
In Section 2, Theorems 1–3 are results of identities for fully degenerate Bernoulli polynomials in
connection with degenerate Bernstein polynomials by means of bosonic p-adic integrals on Zp
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and generating functions. Theorems 4–6 are results of higher-order fully Bernoulli polynomials in
connection with two variable degenerate Bernstein polynomials by means of bosonic p-adic integrals
on Zp and generating functions.
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