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Abstract: With the tremendous growth of Cloud Vendors, Cloud vendor (CV) prioritization is a
complex decision-making problem. Previous studies on CV selection use functional and non-functional
attributes, but do not have an apt structure for managing uncertainty in preferences. Motivated by
this challenge, in this paper, a scientific framework for prioritization of CVs is proposed, which will
help organizations to make decisions on service usage. Probabilistic linguistic term set (PLTS) is
adopted as a structure for preference information, which manages uncertainty better by allowing
partial information ignorance. Decision makers’ (DMs) relative importance is calculated using the
programming model, by properly gaining the advantage of the partial knowledge and attributes, the
weights are calculated using the extended statistical variance (SV) method. Further, DMs preferences
are aggregated using a hybrid operator, and CVs are prioritized, using extended COPRAS method
under the PLTS context. Finally, a case study on CV prioritization is provided for validating the
scientific framework and the results are compared with other methods for understanding the strength
and weakness of the proposal.

Keywords: cloud vendors; COPRAS method; muirhead mean; programming model and statistical variance

1. Introduction

Cloud computing is a powerful internet-based concept, that provides services to customers, based
on their demand. It is a self-contained, independent entity, which provides hardware, as well as
software resources, on demand [1]. The three prominent categories of services offered in the cloud are
infrastructure as a service (IaaS), software as a service (SaaS), and platform as a service (PaaS), which,
in general, is called X-as a service (XaaS) [2]. From a survey on cloud technologies [3], it was forecasted
that by 2020, almost 50% of the government sectors would migrate to cloud paradigms for their daily
activities. Further, IDC (www.idc.com) predicted that almost 70% of the software revenue would be
from cloud code and ENISA (www.enisa.europa.eu) identified that 68% of the organization feel cloud
as a feasible alternative to traditional IT support.

Although these surveys provide the attractive side of the cloud, Mondal et al. [4] presented a
counter analysis, and argued that more than 45% of the organization are still hesitant to use cloud
paradigms. Buyya et al. [2] claimed that the cloud could be viewed as a basic amenity like water, gas,
etc., which can be rented or purchased. As organizations have decided to migrate to cloud technology,
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choosing a suitable CVs is a crucial task. Generally, CVs are selected, based on the quality of service
(QoS) attributes that satisfy the needs of customers. However, a scientific framework, for prioritization
of CVs, is still an unresolved problem and, owing to several CVs and trade-offs between QoS attributes
in the market, the challenge becomes substantial, and there is an urge for a systematic decision
framework [5]. As no two CVs are the same, the process of decision-making becomes complicated.

Many researchers attempted to develop a systematic approach to select suitable CVs, in order to
satisfy the needs of the organization. From the literature, it is observed that most of the established
scientific framework falls under three categories namely, crisp data with multi-criteria decision-making
(MCDM), fuzzy data with MCDM, and other optimization and similarity-based methods.

• Crisp data with MCDM methods

Kumar et al. [6,7], designed a hybrid method for CVs selection, using an analytic hierarchy process
(AHP) and techniques for order of preference, by similarity to an ideal solution (TOPSIS) method. AHP
was used to calculate the weights of the attributes and TOPSIS method was adopted for prioritization.
Rădulescu et al. [8], proposed a systematic approach for ranking the vendors, based on a simple
additive weighted (SAW) and modified TOPSIS. The SAW method was used to calculate the weights
of the attributes and TOPSIS for prioritization.

Under the crisp data with MCDM category, popular methods that were used were AHP and TOPSIS.
Generally, the crisp data are difficult to obtain, and the uncertainty and vagueness in the process of
preference elicitation, are not properly realized. Although the AHP method calculate the weights of the
attributes, they are complex because of the pairwise comparison and yield unreasonable weight values,
without capturing the hesitation of the decision makers. Further, the TOPSIS method determines the
ranking of CVs by considering the rank index measure, which produces irrational ranking, due to the
ignorance of relative distance measure. Moreover, the TOPSIS method suffers from the rank reversal
issue [9].

• Fuzzy data with MCDM methods

Kumar et al. and Patiniotakis et al. [10,11], proposed a fuzzy AHP method for CVs selection under
uncertainty. Subjective and objective attributes are considered for analysis of the CVs. A scientific decision
framework is proposed for CV selection by integrating different MCDM methods, under subjective and
objective attributes’ preferences [12]. Wagle et al. and Krishankumar et al. [13–15] proposed a decision
framework for CV selection, under intuitionistic fuzzy sets (IFS) context. Wagle et al. [13] adopted
a new ranking algorithm by considering cloud users, auditors, and service delivery measurements.
Krishankumar et al. [14,15], proposed a hybrid method for prioritization by aggregation preferences, by
calculating the attributes’ weights and ranking CVs.

Although these methods handle uncertainty to some extent, the originality of the preference
information is not completely retained. Further, the weight estimation methods, discussed in this
category, do not capture the hesitation properly, and the aggregation of preferences ignores the
calculation of decision maker’s weight and interrelationship among attributes.

• Other methods

In this category, the literature related to optimization and similarity-based methods were discussed.
Somu et al. [16] devised the hypergraph-based binary fruit fly optimization algorithm (HBFFOA) to
estimate the trustworthiness, and rank the cloud alternatives, by considering both, the subjective and
objective assessment of the CVs. Ding et al., Zeng et al., and Pan et al. [17–19] proposed frameworks,
based on the similarity index measure. Ding et al. [17] presented a two-step ranking system, based
on Kendal ranking cross-correlation (KRCC) and similarity of the neighbors significance, while
Zeng et al. [18] designed a recommender system that adopts a collaborative filtering technique, using
spearman coefficient that can predict QoS ratings and rankings. Pan et al. [19] proposed an approach
by measuring the trust and degrees, and estimated the similarity, based on the Jaccard similarity and
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Pearson correlation coefficients. Ghosh et al. [20] developed a new algorithm for selecting the CVs, by
using two QoS parameters namely trust and competency.

The methods discussed in this category address the problem of CV selection from a different
perspective, but these suffer from the problem of optimal parameter setting that complicates the
decision-making process. Moreover, uncertainty and vagueness are not properly handled by
these methods.

Table 1 presents a summary of recent studies on CVs selection from the viewpoint of multi-attribute
group decision-making (MAGDM) perspective. Motivated by the critical insights made above, the
following key challenges are encountered:

• There is no proper structure for capturing the uncertainty in the preferences provided by the DMs.
• During the aggregation of preferences, the interrelationships between attributes are not

properly captured.
• Relative importance (weights) of each DM is not systematically calculated, which causes

inaccuracies in the aggregation of preferences.
• Attribute weights are not systematically calculated, which causes inaccuracies in prioritization of

CVs, and moreover, the hesitation, during preference elicitation, is also not properly captured.
• Prioritization of CVs by considering the nature of attributes and from different angles is lacking.

Motivated by these challenges and to address the same, some contributions are made:

• Probabilistic linguistic term set (PLTS) [21] is used as the data structure for preference elicitation,
which manages uncertainty by associating occurring probability values for each linguistic term.
This overcomes the limitation of hesitant fuzzy linguistic term set (HFLTS) [22], which ignores
occurring probability values. The PLTS is a generalization of linguistic distribution assessment [23],
which allows partial ignorance.

• The relative importance of each DM is calculated systematically by using the newly proposed
programming model that utilizes the partial information about the reliability of each DM effectively.

• Attributes’ weights are calculated systematically by considering DMs’ hesitation during preference
elicitation with the help of statistical variance (SV) method under the PLTS context.

• Preferences are aggregated sensibly by considering the interrelationship between attributes by
using a hybrid operator. The linguistic terms are aggregated using a case-based method, and
occurring probabilities are aggregated using Muirhead mean operator under the PLTS context.
Moreover, the DMs’ relative importance values are calculated systematically, which provides
much reasonable aggregation of preferences.

• COPRAS method is extended under PLTS for prioritizing CVs, which considers the nature of
attributes and handles preferences from different angles.

The remainder of the paper consists of the following sections. Section 2 presents the basic concepts
of linguistic term set (LTS), HFLTS, and PLTS. Section 3 provides the proposed decision framework
which is the core research focus that consists of methods for attributes’ and DMs’ weight calculation,
aggregation of preferences, and prioritization. Section 4 contains a numerical example for CV selection,
and Section 5 conducts a comparative analysis of proposed and state-of-the-art methods. Finally,
Section 6 provides concluding remarks and future research directions.
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Table 1. Summary from the recent literature of Cloud vendors (CVs) selection.

Ref Application QoS Parameters Preference Type Aggregate Method Weight of Attrib ute and DMs Ranking

[6] Cloud service evaluation and
selection

CPU performance
Disk I/O consistency

Disk Performance
Memory performance

Cost

Numeric No Attribute: AHP DMs: No TOPSIS

[7] Cloud service selection Accountability, Agility, Assurance,
Cost, Performance, Security Numeric No Attribute: Pairwise comparison

DMs: No TOPSIS

[8] Cloud service provider ranking Cost, Security, and privacy, and
Performance Numeric No Attributes: SAW

DMs: No Modified TOPSIS

[10] Selection of cloud service
providers Cost, performance, and security Both No Attribute: Pairwise comparison

DMs: No Fuzzy AHP

[11] Cloud service recommendation
based on preference

Service response time, support
satisfaction Both No Attribute: Pairwise comparison

Decision makers: No Fuzzy AHP

[12] Cloud vendor selection Technology, Organization, and
Environment Both Weighted arithmetic

operator
Attributes: SV
DMs: TOPSIS Aggregation-based ranking

[13] Cloud service ranking Availability, Reliability,
Performance, Cost, Security BothLinguistic Intersection operator

of IFN No Service-based ranking

[14] Cloud vendor selection
Reimbursement, Uptime,

Configurability, Data transfer, Block
storage

Both SIFWG
Attribute: Normalized rank

summation operator
DMs: No

IF-AHP

[15] Cloud vendor selector
Economics, Technology,

Organization, Environment, CV
profile

Both AIFWG operator Attribute: IFSV
DMs: No IF-VIKOR

[16] Identification of trustworthy
cloud service providers Trust Numeric No Attribute: No

DMs: No HBFFOA

[17] Cloud service candidate
selection

Customers preferences and
expectations of QoS Both No No Enhanced KRCC

[18] QoS rating and ranking of
service providers

Upload responsiveness of three
storage clouds Numeric No No Spearman coefficient

[19] Selection of trustworthy cloud
services Trust enhanced similarity Numeric No No

Similarity measure by Jjaccard’s
coefficient and distance
computation by Pearson
Correlation coefficient

[20] Cloud service provider
selection Trust. Competence and Risk Both No No Ranking-based on trust and

competence
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2. Basic Concepts of LTS, HFLTS, and PLTS

Definition 1. Let S = {sv|v = 0, 1, . . . , t} be an LTS with t being a positive integer and so and st are the initial
and final terms. The following features hold true,

If r > u then, sr > su;
Negation of sr = su with r + u = t.
Zadeh [24] formed the initial idea of a linguistic variable, and Herrera et al. [25–27] made its apt usage in group
decision-making.

Definition 2. Consider S as before and HFLTS is given by,

HS =
{
x, hHS(x)

∣∣∣x ∈ X
}

(1)

where hHS(x) = h(x) be some linguistic terms from S.

Definition 3. Consider S as before and PLTS is given by,

L(p) =

Lk
(
pk

)
|Lk
∈ S, k = 1, 2, . . . , #L(p), 0 ≤ pk

≤ 1,
∑

k

pk
≤ 1

 (2)

For convenience, Li(p) = Lk
i

(
pk

i

)
∀i > 0 is the probabilistic linguistic element (PLE) and collection of such PLEs

forms the PLTS L(p).

Definition 4. Consider two PLEs h1 and h2 as define before then the operational laws are given by,

L1(p)
⊕

L2(p) = g−1(g(h1) + g(h2)) (3)

L1(p)
⊗

L2(p) = g−1(g(h1) × g(h2)) (4)

where g and g−1 are adopted from [28].

3. Proposed Decision Framework for CV Selection

Before presenting the core methods of the decision framework, it is substantial to discuss the
specifics of the problem being addressed. There are l DMs each forming a decision matrix of order
m× n, where m is the number of CVs and n is the number of attributes. The PLTS information is used
for rating CVs over each attribute. Initially, the l decision matrices of order m× n are aggregated to
form a single decision matrix of order m× n. During the process of aggregation, the interrelationship
among attributes is considered effectively and weights of each DM are calculated in a systematic
manner. Then, attributes’ weights are calculated by using a matrix of order l× n. This is a vector of
order 1× n, By using this vector and the aggregated matrix, a vector of order 1×m is formed (from the
ranking method) which is used for the prioritization of CVs.

3.1. Proposed Attributes’ Weight Calculation Method

This section puts forward a new method for calculating weights of attributes under PLTS context.
The idea is to extend the SV method to PLTS. Previous weight calculation methods viz., analytical
hierarchy process (AHP), optimization model, entropy measures, etc., suffer from the following
weaknesses, such as, (i) complex implementation procedure, (ii) unreasonable weight values, and (iii)
ineffective capturing of hesitation of DMs. To address the weaknesses, Liu et al. used the SV method
for weight calculation, which enjoys the following advantages: (i) SV method is simple and easy to
implement, (ii) produces reasonable weight values by focusing on all data points before determining
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the distribution, and (iii) captures hesitation effectively, by assigning high weights to those attributes,
which cause confusion to DMs during preference elicitation.

Motivated by the strength of the SV method, in this paper, we extend the SV method to PLTS
context. The procedure for calculating weights when the information about attributes is completely
unknown is given below:

Step 1: Form a weight calculation matrix with PLTS information of order l× n where l denotes the
number of DMs and n denotes the number of attributes.

Step 2: Transform the PLTS information into a single value matrix by using Equation (5).

svali j =

#L(p)∑
k=1

vkpk (5)

where vk is the kth subscript of the linguistic term, #L(p) is the total number of instances, and
pk is the kth occurring probability associated with that linguistic term.

Step 3: Determine the SV for each attribute by using Equation (6). The SV is a vector of order 1× n.

σ2
j =

∑#DM
l=1

(
svall j − sval j

)2

#DM− 1
(6)

where sval j is the mean value of the jth attribute, σ2
j is the SV of the jth attribute, and #DM is

the total number of DMs.
Step 4: Normalize the SV from step 3 to obtain weights of attributes. Use Equation (7) to obtain the

weight vector of order 1× n.

w j =
σ2

j∑
j σ

2
j

(7)

where w j is the weight of the jth attribute.

3.2. Proposed DMs’ Weight Calculation Method

This section proposes a new method for DMs’ weight calculation under PLTS context. Generally,
DMs’ weight values are directly obtained, which causes inaccuracies in the decision-making process
and are prone to imprecision, due to external factors like time, cost, environmental pressure, etc. [29].
Motivated by this issue, researchers started proposing methods for DMs’ weight calculation. Koksalmis
and Kabak [30] conducted an attractive analysis of different methods for DMs’ weight calculation,
and claimed that weights of DMs must be systematically calculated for reducing inaccuracies and
imprecision in the decision-making process.

Motivated by this claim, in this paper, a new programming model is proposed for DMs’ weight
calculation under PLTS context. To the best of our knowledge, this is the first study that calculates
DMs’ weights with PLTS information. Moreover, in this paper, we make use of the partially known
information about each DM to calculate the weights. Some advantages of the proposed method are:
(i) it provides rational weight values, which reduce inaccuracies in the decision-making process and
(ii) utilizes the partial information about each DM effectively to calculate weights. Attracted by these
advantages, the procedure is presented below for DMs’ weight calculation.

Step 1: Transform the decision matrix from each DM into weighted decision matrices by using
Equation (8).

L(p) =
{
vk

(
1−

(
1− pk

)w j
)}

(8)

where vk is the subscript of the kth linguistic term, pk is the probability associated with the kth

linguistic term, and w j is the weight of the jth attribute.
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Equation (8) is applied to all the elements of the decision matrix from each DM. Now all matrices
are transformed into weighted decision matrices.

Step 2: Calculate positive ideal solution (PIS) and negative ideal solution (NIS) from the decision
matrices obtained from step 1. The PIS and NIS values are calculated for each attribute, and it
is given by Equations (9) and (10).

h+ = max j∈bene f it


#L(p)∑
k=1

vkpk

 or min j∈cost


#L(p)∑
k=1

vkpk

 (9)

h− = max j∈cost


#L(p)∑
k=1

vkpk

 or min j∈bene f it


#L(p)∑
k=1

vkpk

 (10)

where h+ is the PIS and h− is the NIS.

Equations (9) and (10) calculate PIS and NIS for each attribute and the PLTS information
corresponding to the respective obtained value is considered for further process.

Step 3: A programming model is proposed for determining weights of DMs. This model is solved
using MATLAB® optimization toolbox for calculating the weights of DMs.

Model 1.

Min Z =
#DM∑
l=1

dwl

m∑
i=1

n∑
j=1

(
d
(
Li j(p), h+j

)
− d

(
Li j(p), h−j

))
Subject to

0 ≤ dwl ≤ 1∑
l

dwl = 1

Here d(a, b) is calculated using Equation (11) with a and b being any two PLEs.

d(a, b) =

√√√√#L(p)∑
k=1

((
vk

apk
a

)
−

(
vk

bpk
b

))2
(11)

Model 1 is solved by properly making use of the partial information about each DM which provides the
weight for each DM.

3.3. Proposed Hybrid Aggregation Operator under PLTS Context

This section presents a hybrid aggregation operator for aggregating PLEs. The operator has two
stages. In the first stage, the linguistic terms are aggregated, and in the second stage, the occurring
probability values associated with each linguistic term are aggregated. A new procedure is proposed for
aggregating the linguistic term. The MM operator is extended under the PLTS context for aggregating
the occurring probability value associated with each linguistic term.

Previous aggregation operators under PLTS context do not capture the interrelationship among
attributes and produce virtual sets. Motivated by this challenge and to address the same, in this paper,
a hybrid operator is proposed, which captures the inter-relationship between attributes properly and
avoids the formation of virtual sets.
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Definition 5. The aggregation of PLEs by using the proposed hybrid operator is a mapping Dn
→ D, and it is

given by,

Hybrid
(
vk

1, vk
2, . . . , vk

#DM

)
=

 condition 1 i f the f requency o f linguistic term occurrence is unique
condition 2 i f the f requency o f linguistic term occurrence is not unique

 (12)

where condition 1 calculates the mean value of the linguistic term and then round-off is used to avoid virtual sets;
condition 2 calculates the frequency of the linguistic term and the term with maximum frequency is chosen as
aggregated value.

Hybrid
(
pk

1, pk
2, . . . , pk

#DM

)
=


#DM∏
l=1

#DM∏
q=1

(
pk

l

)λq


dwl


1∑

q λq

(13)

where dwl is the weight of the lth DM obtained from Section 3.2, λ1,λ2, . . . ,λ#DM are the risk appetite values
associated with each DM which can have possible values from the set {1, 2, . . . , #DM}.

Here Equation (12) is used to aggregate the linguistic term, and Equation (13) is used to aggregate the
associated occurring probability values.

Property 1: Commutativity
If L∗l (p) ∀l = 1, 2, . . . , #DM is any permutation of PLEs then, Hybrid

(
L∗1(p), L∗2(p), . . . , L∗#DM(p)

)
=

Hybrid(L1(p), L2(p), . . . , L#DM(p)).
Property 2: Bounded
If Li(p) ∀l = 1, 2, . . . , #DM is a collection of PLEs then, L−(p) ≤ Hybrid(L1(p), L2(p), . . . , L#DM(p)) ≤

L+(p). Here, L−(p) = mini

#Li(p)∑
k=1

(
vk

i pk
i

) and L−(p) = maxi

#Li(p)∑
k=1

(
vk

i pk
i

).

Property 3: Idempotent
If L1(p), L2(p), . . . , L#DM(p) = L(p) then, Hybrid(L1(p), L2(p), . . . , L#DM(p)) = L(p).
Property 4: Monotonicity
Consider a set of PLEs L∗l (p) ∀l = 1, 2, . . . , #DM such that L∗l (p) ≥ Li(p) ∀l = 1, 2, . . . , #DM then,

Hybrid
(
L∗1(p), L∗2(p), . . . , L∗#DM(p)

)
≥ Hybrid(L1(p), L2(p), . . . , L#DM(p)).

Theorem 1. The aggregation of PLEs by using the proposed hybrid operator produces a PLE.

Proof. The proposed hybrid operator aggregates PLEs in two stages. In the first stage, linguistic terms
are aggregated, and in the second stage, the associated occurring probability values are aggregated.
Clearly, from Equation (12), no virtual element is obtained and hence, the linguistic information is
rationally aggregated. Now, we must prove that the aggregation of associated occurring probability
value yields a probability value. For this, we make use of the Bounded property. This property shows
that the aggregated value is bounded within the lower and upper limits. By extending the property,

we get 0 ≤

#DM∏
l=1

#DM∏
q=1

(
pk

l

)λq

dwl


1∑
q λq

≤ 1.

Thus, 0 ≤ Hybrid
(
pk

1, pk
2, . . . , pk

#DM

)
≤ 1 holds true. By combining the idea, we can infer that the

aggregation produces a PLE. �
Some advantages of the proposed hybrid operator are:

• Formation of a virtual set is avoided.
• The inter-relationships between attributes is properly captured.
• Risk appetite values are considered along with the relative importance of each DM.
• The relative importance of each DM is calculated systematically by properly capturing the

uncertainty in the process.
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3.4. Extended COPRAS Method Under PLTS Context

This section puts forward a new extension to the COPRAS method under PLTS context. The initial
idea for COPRAS method was obtained from [31] and Zavadskas et al. [32] analyzed different MAGDM
methods, and described the importance of COPRAS method, in solving decision-making problems.
COPRAS is a simple and straightforward method for ranking alternatives. It captures the direct and
proportional relationship between alternatives and attributes with significance and utility degrees.
Further, the COPRAS method could provide ranking from different angles, which promote rational
decision-making [31].

Motivated by these strengths, researchers used the COPRAS method for various decision-making
problems. Zavadskas et al. [33,34] used the COPRAS method, with grey numbers for ranking project
managers and contractors. Vahdani et al. [35] and Gorabe et al. [36] used the COPRAS method for
robot selection in industries. Chatterjee et al. [37,38] and Nasab et al. [39] extended the COPRAS
method for material selection. Chatterjee and Kar [40] extended COPRAS for Z-numbers and applied
the same for renewable energy source selection. Yazdani et al. [41] presented a hybrid method for the
green supplier selection by combining quality function deployment (QFD) and the COPRAS method.

From the analysis made above, it can be inferred that the COPRAS method is powerful for
prioritization of alternatives and its extension to PLTS context is not developed so far. Motivated by the
advantages of the COPRAS method, in this paper, the COPRAS method is extended for PLTS context.
The systematic procedure is given below:

Step 1: Identify the benefit and cost type attributes. The aggregated matrix from Section 3.3 (of order
m× n) and the attributes’ weight vector (of order 1× n) from Section 3.1 is considered as input
for the prioritization process.

Step 2: Calculate the COPRAS parameters by using Equations (14) and (15). These parameters are
calculated for each alternative under both equal and unequal attributes’ weight conditions.

Pi =
z⊕

j=1

w jvk
i j ×

z⊕
j=1

1−
(
1− pk

i j

)w j (14)

Ri =
z+1⊕
j=1

w jvk
i j ×

z+1⊕
j=1

1−
(
1− pk

i j

)w j (15)

Step 3: Determine the prioritization order by using Equation (16). This parameter is also calculated
for each alternative.

Qi = ϕPi + (1−ϕ)
∑

i Ri

Ri
(

1∑
i Ri

) (16)

where ϕ is the strategy value in the range 0 to 1.

Before demonstrating the numerical example of CV selection, it is better to present the diagrammatic
representation of the decision framework to clearly understand the working of the proposed decision
framework (refer Figure 1 for clarity).

Figure 1 depicts the overall workflow of the proposed decision framework for CV selection.
The framework is used to initially determine the weights of the attributes. Then, the DMs’ weights
are determined, and the preferences are aggregated, using these weight vectors. Further, the CVs are
prioritized by using a ranking method under PLTS context. The aggregated matrix and the attributes’
weight values are taken as input for prioritization. Finally, the proposed framework is validated by
using a numerical example which is presented below.
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4. Numerical Example of Cloud Vendor Selection

This section demonstrates the practical use of the proposed framework by prioritizing CVs. An
organization in Chennai wants to attain global standards, and so they think of migrating their infrastructural
needs to cloud. This brings enough time and resources for planning the core developmental activities. For
achieving the desired objective, the board decides to constitute a panel of three DMs including., senior
technical officer d1, audit and finance personnel d2 and senior computer engineer d3 who provide their
preferences over each CV for a specific attribute.

The panel analyzes different CVs who offer IaaS, and by adopting the Delphi method, they picked
13 CVs for analysis. By the process of repeated discussion and brainstorming, the panel finalized
five CVs (A1, A2, A3, A4, A5) who actively offer IaaS. Then, the DMs made a literature analysis, and
by the method of voting, six attributes were chosen for analysis. These six attributes (C1, C2, C3,
C4, C5, C6) were chosen after a detailed discussion and analysis of various benchmark standards
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being, information communication technology service quality (ICTSQ), application performance index
(APDEX), service measurement index (SMI) and ISO/IEC 9126 [42]. Along with these benchmarks,
some literature reviews are also analyzed for obtaining proper attributes for evaluation. All attributes
were listed and based on the scoring method, six attributes are finalized, and they are accountability,
assurance, agility, performance, cost, and risk of CV.

The systematic procedure for the proposed decision framework is given below:

Step 1: Start.
Step 2: Form three decision matrices of order 5× 6 where five CVs are rated by using six attributes.

The DMs use PLTS information for preference elicitation.

Table 2 depicts the PLTS information provided by each DM for rating CVs over a specific
attribute. Each DM uses two instances to rate the CVs, and they associate an occurring probability
value for each linguistic term. The LTS used for analysis is a 5-Likert rating scale given by S ={
so = very low, s1 = low, s2 = medium, s3 = high, s4 = very high

}
.

Table 2. PLTS information provided by d1

Decision Maker-1

CSPs C1 C2 C3 C4 C5 C6

A1
{

s1(0.44)
s3(0.34)

} {
s1(023)
s2(0.49)

} {
s1(0.32)
s5(0.19)

} {
s1(0.48)
s3(0.12)

} {
s3(0.38)
s2(0.58)

} {
s2(0.62)
s2(0.27)

}
A2

{
s5(0.37)
s5(0.17)

} {
s3(0.46)
s1(0.44)

} {
s5(0.59)
s2(0.02)

} {
s3(0.16)
s2(0.18)

} {
s3(0.30)
s1(0.24)

} {
s4(0.64)
s4(0.03)

}
A3

{
s1(0.27)
s2(0.33)

} {
s3(0.36)
s5(0.49)

} {
s3(0.11)
s2(0.61)

} {
s4(0.09)
s3(0.27)

} {
s1(0.44)
s2(0.53)

} {
s3(0.26)
s5(0.47)

}
A4

{
s4(0.24)
s5(0.68)

} {
s2(0.70)
s4(0.07)

} {
s2(0.34)
s2(0.42)

} {
s2(0.68)
s4(0.01)

} {
s4(0.80)
s2(0.15)

} {
s3(0.23)
s3(0.39)

}
A5

{
s2(0.47)
s4(0.04)

} {
s1(0.47)
s4(0.15)

} {
s2(0.19)
s4(0.74)

} {
s2(0.14)
s5(0.39)

} {
s1(0.09)
s2(0.58)

} {
s4(0.22)
s3(0.32)

}
Decision Maker-2

A1
{

s4(0.32)
s4(0.48)

} {
s2(0.24)
s4(0.12)

} {
s4(0.23)
s3(0.33)

} {
s4(0.33)
s2(0.21)

} {
s5(0.26)
s5(0.61)

} {
s3(0.44)
s3(0.13)

}
A2

{
s2(0.47)
s1(0.33)

} {
s3(0.27)
s4(0.33)

} {
s3(0.26)
s4(0.50)

} {
s2(0.11)
s1(0.06)

} {
s3(0.19)
s3(0.38)

} {
s4(0.47)
s4(0.49)

}
A3

{
s1(0.70)
s1(0.09)

} {
s3(0.43)
s3(0.24)

} {
s2(0.37)
s4(0.26)

} {
s2(0.59)
s1(0.26)

} {
s1(0.24)
s4(0.44)

} {
s4(0.37)
s2(0.20)

}
A4

{
s4(0.44)
s4(0.02)

} {
s2(0.27)
s3(0.20)

} {
s5(0.45)
s3(0.20)

} {
s4(0.41)
s2(0.38)

} {
s2(0.40)
s2(0.48)

} {
s2(0.22)
s4(0.42)

}
A5

{
s4(0.43)
s1(0.50)

} {
s3(0.59)
s5(0.15)

} {
s1(0.38)
s3(0.42)

} {
s4(0.53)
s2(0.09)

} {
s1(0.34)
s1(0.25)

} {
s1(0.15)
s3(0.05)

}
Decision Maker-3

A1
{

s5(0.47)
s3(0.35)

} {
s3(0.44)
s5(0.50)

} {
s1(0.31)
s5(0.50)

} {
s3(0.40)
s3(0.12)

} {
s3(0.29)
s5(0.43)

} {
s4(0.25)
s3(0.67)

}
A2

{
s1(0.33)
s4(0.37)

} {
s5(0.39)
s5(0.29)

} {
s5(0.02)
s3(0.12)

} {
s5(0.42)
s3(0.11)

} {
s3(0.03)
s4(0.61)

} {
s2(0.49)
s1(0.19)

}
A3

{
s1(0.15)
s2(0.19)

} {
s1(0.28)
s4(0.54)

} {
s4(0.54)
s3(0.45)

} {
s1(0.43)
s3(0.44)

} {
s2(0.28)
s2(0.32)

} {
s3(0.48)
s2(0.04)

}
A4

{
s1(0.17)
s1(0.62)

} {
s3(0.47)
s1(0.37)

} {
s4(0.43)
s1(0.47)

} {
s5(0.40)
s5(0.26)

} {
s1(0.13)
s2(0.03)

} {
s5(0.30)
s2(0.33)

}
A5

{
s3(0.03)
s4(0.84)

} {
s3(0.35)
s5(0.45)

} {
s1(0.66)
s1(0.33)

} {
s5(0.50)
s1(0.27)

} {
s4(0.29)
s5(0.41)

} {
s3(0.82)
s4(0.10)

}

Step 3: Form an attribute weight calculation matrix of order 3 × 6 where three DMs provide their
preferences on each of the six attributes.

Table 3 presents the evaluation matrix for calculating attributes’ weights. Each DM provides
his/her preference over each attribute and using these preferences, the attributes’ weights are calculated
by using the procedure given in Section 3.1. The mean value for each attribute is given by (2.23, 3.08,
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1.82, 1.82, 2.03, 1.16) and the variance value for each attribute is given by (2.96, 0.34, 0.65, 0.86, 0.88,
1.16). By normalizing the variance, we get the weight of values as (0.17, 0.24, 0.14, 0.14, 0.16, 0.15).

Table 3. Attributes weight calculation matrix.

DMs C1 C2 C3 C4 C5 C6

D1
{

s2(0.35)
s1(0.12)

} {
s5(0.47)
s1(0.20)

} {
s1(0.37)
s2(0.40)

} {
s3(0.89)
s4(0.05)

} {
s2(0.20)
s1(0.72)

} {
s4(0.58)
s5(0.07)

}
D2

{
s5(0.29)
s5(0.54)

} {
s5(0.42)
s4(0.22)

} {
s3(0.14)
s3(0.38)

} {
s3(0.31)
s4(0.14)

} {
s3(0.40)
s2(0.39)

} {
s4(0.02)
s1(0.56)

}
D3

{
s2(0.49)
s5(0.15)

} {
s5(0.30)
s5(0.44)

} {
s5(0.37)
s3(0.29)

} {
s1(0.33)
s3(0.26)

} {
s2(0.42)
s5(0.43)

} {
s2(0.44)
s3(0.47)

}

Step 4: Aggregate the three decision matrices by using the proposed aggregation operator (refer
Section 3.3). The operator uses DMs’ weights calculated from Section 3.2 for aggregation.

Table 4 depicts the weighted preference information of each DM which is obtained by using
Equation (8). These values are used for calculating the PIS and NIS values for each attribute, and they
are shown in Table 5. The attributes C1 to C4 are of benefit type, and the remaining are cost type
attributes. By using Equations (9) and (10), the PIS and NIS values are calculated for each attribute,
and they are used to determine the weights of the DMs.

Table 4. Weighted PLTS information of decision makers.

Decision Maker-1

CSPs C1 C2 C3 C4 C5 C6

A1
{

s1(0.82)
s3(0.71)

} {
s1(0.09)
s2(0.20)

} {
s1(0.22)
s5(0.13)

} {
s1(0.43)
s3(0.10)

} {
s3(0.34)
s2(0.53)

} {
s2(0.68)
s2(0.31)

}
A2

{
s5(0.75)
s5(0.42)

} {
s3(0.19)
s1(0.18)

} {
s5(0.44)
s2(0.01)

} {
s3(0.14)
s2(0.16)

} {
s3(0.27)
s1(0.21)

} {
s4(0.70)
s4(0.04)

}
A3

{
s1(0.61)
s2(0.69)

} {
s3(0.14)
s5(0.20)

} {
s3(0.07)
s2(0.46)

} {
s4(0.08)
s3(0.24)

} {
s1(0.40)
s2(0.49)

} {
s3(0.30)
s5(0.52)

}
A4

{
s4(0.56)
s5(0.97)

} {
s2(0.34)
s4(0.02)

} {
s2(0.24)
s2(0.30)

} {
s2(0.62)
s4(0.01)

} {
s4(0.76)
s2(0.13)

} {
s3(0.26)
s3(0.44)

}
A5

{
s2(0.85)
s4(0.11)

} {
s1(0.19)
s4(0.05)

} {
s2(0.13)
s4(0.58)

} {
s2(0.12)
s5(0.35)

} {
s1(0.08)
s2(0.53)

} {
s4(0.25)
s3(0.36)

}
Decision Maker-2

A1
{

s4(0.68)
s4(0.86)

} {
s2(0.09)
s4(0.04)

} {
s4(0.16)
s3(0.23)

} {
s4(0.29)
s2(0.18)

} {
s5(0.23)
s5(0.56)

} {
s3(0.49)
s3(0.15)

}
A2

{
s2(0.85)
s1(0.69)

} {
s3(0.10)
s4(0.13)

} {
s3(0.18)
s4(0.36)

} {
s2(0.10)
s1(0.05)

} {
s3(0.17)
s3(0.34)

} {
s4(0.52)
s4(0.55)

}
A3

{
s1(0.97)
s1(0.24)

} {
s3(0.17)
s3(0.09)

} {
s2(0.26)
s4(0.18)

} {
s2(0.55)
s1(0.23)

} {
s1(0.21)
s4(0.40)

} {
s4(0.42)
s2(0.23)

}
A4

{
s4(0.82)
s4(0.06)

} {
s2(0.10)
s3(0.07)

} {
s5(0.32)
s3(0.14)

} {
s4(0.36)
s2(0.34)

} {
s2(0.36)
s2(0.44)

} {
s2(0.25)
s4(0.47)

}
A5

{
s4(0.81)
s1(0.87)

} {
s3(0.26)
s5(0.05)

} {
s1(0.27)
s3(0.30)

} {
s4(0.48)
s2(0.08)

} {
s1(0.31)
s1(0.22)

} {
s1(0.17)
s3(0.06)

}
Decision Maker-3

A1
{

s5(0.85)
s3(0.72)

} {
s3(0.18)
s5(0.21)

} {
s1(0.21)
s5(0.36)

} {
s3(0.36)
s3(0.10)

} {
s3(0.26)
s5(0.39)

} {
s4(0.29)
s3(0.73)

}
A2

{
s1(0.69)
s4(0.75)

} {
s5(0.15)
s5(0.11)

} {
s5(0.01)
s3(0.08)

} {
s5(0.37)
s3(0.10)

} {
s3(0.03)
s4(0.56)

} {
s2(0.55)
s1(0.22)

}
A3

{
s1(0.38)
s2(0.46)

} {
s1(0.11)
s4(0.23)

} {
s4(0.40)
s3(0.32)

} {
s1(0.38)
s3(0.39)

} {
s2(0.25)
s2(0.29)

} {
s3(0.53)
s2(0.05)

}
A4

{
s1(0.42)
s1(0.94)

} {
s3(0.19)
s1(0.15)

} {
s4(0.31)
s1(0.34)

} {
s5(0.36)
s5(0.23)

} {
s1(0.12)
s2(0.03)

} {
s5(0.34)
s2(0.37)

}
A5

{
s3(0.09)
s4(1.00)

} {
s3(0.14)
s5(0.18)

} {
s1(0.50)
s1(0.23)

} {
s5(0.45)
s1(0.24)

} {
s4(0.26)
s5(0.37)

} {
s3(0.87)
s4(0.12)

}
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Table 5. Ideal solution for each attribute from decision makers’ matrix.

Decision Maker-1

CSPs C1 C2 C3 C4 C5 C6

PIS
{

s4(0.56)
s5(0.97)

} {
s3(0.14)
s5(0.20)

} {
s2(0.13)
s4(0.58)

} {
s2(0.12)
s5(0.35)

} {
s3(0.27)
s1(0.21)

} {
s2(0.68)
s2(0.31)

}
NIS

{
s1(0.61)
s2(0.69)

} {
s1(0.19)
s4(0.05)

} {
s1(0.22)
s5(0.13)

} {
s3(0.14)
s2(0.16)

} {
s4(0.76)
s2(0.13)

} {
s3(0.30)
s5(0.52)

}
Decision Maker-2

PIS
{

s4(0.68)
s4(0.86)

} {
s3(0.26)
s5(0.05)

} {
s5(0.32)
s3(0.14)

} {
s4(0.36)
s2(0.34)

} {
s1(0.31)
s1(0.22)

} {
s1(0.17)
s3(0.06)

}
NIS

{
s1(0.97)
s1(0.24)

} {
s2(0.09)
s4(0.04)

} {
s1(0.27)
s3(0.30)

} {
s2(0.10)
s1(0.05)

} {
s5(0.23)
s5(0.56)

} {
s4(0.69)
s4(0.02)

}
Decision Maker-3

PIS
{

s5(0.85)
s3(0.72)

} {
s3(0.18)
s5(0.21)

} {
s4(0.40)
s3(0.32)

} {
s5(0.35)
s5(0.23)

} {
s1(0.11)
s2(0.03)

} {
s2(0.55)
s1(0.22)

}
NIS

{
s1(0.38)
s2(0.46)

} {
s3(0.19)
s1(0.14)

} {
s5(0.01)
s3(0.08)

} {
s3(0.35)
s3(0.10)

} {
s4(0.26)
s5(0.37)

} {
s4(0.29)
s3(0.73)

}

By applying Model 1, we can obtain the objective function which is solved by using optimization
toolbox in MATLAB® to obtain the weight values. The objective function is given by 5.24dw1 +

1.63dw2 + 5.61dw3, and the constraints are given by dw1 ≤ 0.35, dw2 ≤ 0.35 and dw3 ≤ 0.40. The weights
of DMs are given by dw1 = 0.35, dw2 = 0.35, and dw3 = 0.30.

By using the DMs’ weights calculated above, the hybrid aggregation operator aggregates the
preferences, and it is shown in Table 6. The risk appetite values are taken as 2, 2, and 1.

Table 6. Aggregated PLTS preferences by using proposed hybrid operator.

CSPs C1 C2 C3 C4 C5 C6

A1
{

s3(0.40)
s3(0.39)

} {
s3(0.31)
s4(0.49)

} {
s1(0.32)
s5(0.35)

} {
s3(0.39)
s3(0.19)

} {
s3(0.33)
s4(0.50)

} {
s4(0.37)
s3(0.43)

}
A2

{
s3(0.39)
s3(0.27)

} {
s3(0.44)
s1(0.35)

} {
s5(0.20)
s2(0.09)

} {
s3(0.31)
s2(0.19)

} {
s3(0.18)
s1(0.35)

} {
s2(0.53)
s1(0.12)

}
A3

{
s1(0.32)
s2(0.18)

} {
s1(0.42)
s3(0.28)

} {
s3(0.34)
s2(0.28)

} {
s1(0.29)
s3(0.21)

} {
s1(0.45)
s2(0.24)

} {
s3(0.44)
s3(0.13)

}
A4

{
s4(0.27)
s3(0.19)

} {
s3(0.53)
s4(0.07)

} {
s4(0.40)
s2(0.15)

} {
s4(0.50)
s4(0.03)

} {
s4(0.38)
s2(0.05)

} {
s4(0.31)
s3(0.13)

}
A5

{
s3(0.20)
s4(0.24)

} {
s3(0.42)
s3(0.32)

} {
s2(0.37)
s1(0.51)

} {
s4(0.30)
s1(0.38)

} {
s4(0.22)
s3(0.50)

} {
s4(0.41)
s3(0.26)

}

Step 5: Results are compared with other methods, and the strengths and weaknesses are discussed in
Section 5.

Table 7 depicts the parameter values of the COPRAS ranking method. The values are calculated
for each CV, and at ϕ = 0.5, the CVs are prioritized by using the Q values for both equal and unequal
weights. For unequal weights, the ranking order is given by A2 > A4 > A3 > A5 > A1 and for equal
weights, the ranking order is given by A2 > A4 > A3 > A5 > A1.
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Table 7. COPRAS parameters values for equal and unequal attributes’ weights.

CSPs
Equal Weights Unequal Weights

P R Q P R Q

A1 2.39 0.40 3.17 83.26 23.61 164.49
A2 1.61 0.12 7.48 64.98 8.39 378.13
A3 1.20 0.21 4.36 38.30 12.17 257.47
A4 2.05 0.18 5.42 73.77 11.85 281.73
A5 1.92 0.35 3.25 74.21 20.15 181.11

From Figure 2, it can be observed that the prioritization order of highly preferred CV does not
change, even after adequate changes are made to the strategy values. For both equal and unequal
attributes’ weights, the prioritization order changes after 0.7, but the order of the CV that is ranked
first remains unchanged, ensuring the stability of the proposed method.
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Step 6: End.

5. Comparative Investigation of Proposed Framework vs. Others

This section deals with the comparative analysis of the proposed framework with other
state-of-the-art methods. To ascertain homogeneity in the process of comparison, we consider
other methods pertaining to MADM contexts. The methods considered for comparison between the
following authors: Garg et al. [1], Kumar et al. [6], Kumar et al. [7], and Liu et al. [12]. The factors for
analysis are gathered from the literature and intuition, and used for investigation. Table 8 depicts the
comparative analysis of different methods.

From Table 8, some of the advantages of the proposed framework can be realized:

1 The data structure used for preference information considers both the linguistic evaluation and
the occurring probability associated with each term. This allows the rational selection of CV, based
on a set of attributes.

2 The aggregation of preferences is done effectively by capturing the interrelationship among
attributes. This allows effective aggregation of the preferences.

3 The hesitation of DMs, during preference elicitation, is also effectively captured during the weight
calculation of attributes.

4 DMs’ weight values are calculated in a systematic manner by making better use of partial information.
5 CVs are prioritized rationally by mitigating rank reversal issue when adequate changes are made

to the CVs.
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Table 8. Investigation of different factors: Proposed versus others.

Factors
Cloud Vendor Selection Methods

Proposed [1] [6] [8] [18]

Data for analysis PLEs Crisp Fuzzy number
Rating style Likert scale SLA Likert scale

Aggregation performed? yes no
DMs’ weight considered? yes no yes

Attributes’ weights considered? yes no yes
Prioritization of CVs? yes

Rank reversal issue Mitigated from CVs’
perspective Occurs Mitigated from

CVs’ perspectives
Interrelationship between attributes Effectively considered Not considered

Hesitation in preference information Effectively considered Not considered Effectively
considered

Partial information on each DM Effectively considered Not considered Not needed

To further realize the strength of the proposed framework, a simulation study is carried out, which
determines the processing time of different methods for different CVs being considered. Initially, we
formed matrices in a random fashion of order m× n with PLTS information. Here, m is the number
of CVs and n is the number of attributes, and we vary m in a step-wise manner by considering 300,
500, 3000, 5000, 30,000, and 50,000 CVs for analysis. These CVs are rated with respect to six attributes,
whose weights are already determined (refer to the previous section). We calculated the processing
time of the proposed ranking method and other methods through a PLTS based AHP [43], PLTS based
VIKOR [44], and PLTS based TOPSIS [21], presented in Figure 3.
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From Figure 3, it is evident that the proposed ranking method consumes less time to execute,
compared to other state-of-the-art methods. Also, as the size of m grows, the state-of-the-art methods
consume enormous time to execute. Further, the proposed ranking method takes a reasonable amount
of time to execute the larger size of m. The values presented in Figure 3 are mean values of 100 iterations.

6. Conclusions

This paper proposes a new decision framework under the PLTS context for the rational
prioritization of CVs. The framework provides a systematic method for attributes’ weight calculation
and DMs’ weight calculation. Also, the preferences from each DM are aggregated effectively by
capturing the interrelationship among attributes. CVs are prioritized by extending the COPRAS
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method under PLTS context and from the sensitivity analysis of weights and strategy values, it can be
inferred that the proposed framework is stable.

The proposed framework is a ‘ready-made’ tool for CVs selection. Based on the preference
information (PLTS) provided by the DMs, a suitable CV is selected in a systematic manner for the
process. The framework helps the vendor plan their strategies on various attributes to compete in
the global market and helps customers make rational decisions regarding their purchase and use of
services. DMs need some training with the data structure for effectively using the framework to make
rational decisions, and these are the implications derived from the study.

For future research, plans have been made to use the concepts proposed in this paper to properly
recommend CVs to a group of customers. Also, plans have been made to propose new decision
frameworks for CV selection under other fuzzy variants including, picture fuzzy sets [45], m-polar
fuzzy sets [46], and neutrosophic fuzzy sets [47].
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8. Rădulescu, C.Z.; Rădulescu, D.M.; Harţescu, F. A cloud service providers ranking approach, based on SAW
and modified TOPSIS methods. In Proceedings of the 16th International Conference on Informatics in
Economy (IE 2017), Bucharest, Romania, 4–5 May 2017.

9. Opricovic, S.; Tzeng, G.H. Compromise solution by MCDM methods: A comparative analysis of VIKOR and
TOPSIS. Eur. J. Oper. Res. 2004, 156, 445–455.

10. Kumar, R.R.; Kumar, C. An evaluation system for cloud service selection using fuzzy AHP. In Proceedings of
the 11th International Conference on Industrial and Information Systems (ICIIS 2016), Uttarkhand, India,
3–4 December 2016.

http://dx.doi.org/10.1016/j.future.2012.06.006
http://dx.doi.org/10.1016/j.future.2008.12.001
http://dx.doi.org/10.1016/j.ijinfomgt.2015.03.001
http://dx.doi.org/10.1016/j.future.2016.08.014
http://dx.doi.org/10.1007/s13369-017-2975-3
http://dx.doi.org/10.4018/IJACI.2018070101


Symmetry 2019, 11, 682 17 of 18

11. Patiniotakis, I.; Verginadis, Y.; Mentzas, G. PuLSaR: Preference-based cloud service selection for cloud service
brokers. J. Internet Serv. Appl. 2015, 6, 1–14. [CrossRef]

12. Liu, S.; Chan, F.T.S.; Ran, W. Decision making for the selection of cloud vendor: An improved approach
under group decision-making with integrated weights and objective/subjective attributes. Expert Syst. Appl.
2016, 55, 37–47. [CrossRef]

13. Wagle, S.S.; Guzek, M.; Bouvry, P. Cloud service providers ranking based on service delivery and consumer
experience. In Proceedings of the 4th IEEE International Conference on Cloud Networking (CloudNet 2015),
Niagara Falls, ON, Canada, 5–7 October 2015.

14. Krishankumar, R.; Arvinda, S.R.; Amrutha, A.; Premaladha, J.; Ravichandran, K.S. A decision making
framework under intuitionistic fuzzy environment for solving cloud vendor selection problem. In Proceedings
of the 2017 International Conference on Networks and Advanced Computational Technologies (NetACT),
Kerala, India, 20–22 July 2017.

15. Krishankumar, R.; Ravichandran, K.S.; Tyagi, S.K. Solving cloud vendor selection problem using intuitionistic
fuzzy decision framework. In Neural Computing and Applications; Springer: Berlin, Germany, 2018; pp. 1–14.

16. Somu, N.; Gauthama, G.R.; Kirthivasan, K.; Shankar, S.S. A trust centric optimal service ranking approach
for cloud service selection. Future Gener. Comput. Syst. 2018, 86, 234–252. [CrossRef]

17. Ding, S.; Wang, Z.; Wu, D.; Olson, D.L. Utilizing customer satisfaction in ranking prediction for personalized
cloud service selection. Decis. Support Syst. 2017, 93, 1–10. [CrossRef]

18. Zheng, X.; Da Xu, L.; Chai, S. Ranking-Based Cloud Service Recommendation. In Proceedings of the 1st
International Conference on Edge Computing IEEE 2017, Honolulu, HI, USA, 25–30 June 2017.

19. Pan, Y.; Ding, S.; Fan, W.; Li, J.; Yang, S. Trust-enhanced cloud service selection model based on QoS analysis.
PLoS ONE 2015, 10, e0143448. [CrossRef]

20. Ghosh, N.; Ghosh, S.K.; Das, S.K. SelCSP: A framework to facilitate selection of cloud service providers.
IEEE Trans. Cloud Comput. 2015, 3, 66–79. [CrossRef]

21. Pang, Q.; Wang, H.; Xu, Z. Probabilistic linguistic term sets in multi-attribute group decision making. Inf. Sci.
2016, 369, 128–143. [CrossRef]

22. Rodriguez, R.M.; Martinez, L.; Herrera, F. Hesitant fuzzy linguistic term sets for decision making. IEEE Trans.
Fuzzy Syst. 2012, 20, 109–119. [CrossRef]

23. Zhang, G.; Dong, Y.; Xu, Y. Consistency and consensus measures for linguistic preference relations based on
distribution assessments. Inf. Fusion 2014, 17, 46–55. [CrossRef]

24. Zadeh, L.A. The concept of a linguistic variable and its application to approximate reasoning-I. Inf. Sci. 1975,
8, 199–249. [CrossRef]

25. Herrera, F.; Herrera-Viedma, E.; Verdegay, J.L. A Sequential Selection Process in Group Decision Making
with a Linguistic Assessment Approach. Inf. Sci. 1995, 239, 223–239. [CrossRef]

26. Herrera, F.; Herrera-Viedma, E.; Verdegay, J.L. A model of consensus in group decision making under
linguistic assessments. Fuzzy Sets Syst. 1996, 78, 73–87. [CrossRef]

27. Herrera, F.; Herrera-Viedma, E.; Verdegay, J.L. A rational consensus model in group decision making using
linguistic assessments. Fuzzy Sets Syst. 1997, 88, 31–49. [CrossRef]

28. Gou, X.; Xu, Z. Novel basic operational laws for linguistic terms, hesitant fuzzy linguistic term sets and
probabilistic linguistic term sets. Inf. Sci. 2016, 372, 407–427. [CrossRef]

29. Gupta, P.; Mehlawat, M.K.; Grover, N. Intuitionistic fuzzy multi-attribute group decision-making with an
application to plant location selection based on a new extended VIKOR method. Inf. Sci. 2016, 370, 184–203.
[CrossRef]

30. Koksalmis, E.; Kabak, Ö. Deriving Decision Makers’ Weights in Group Decision Making: An Overview of
Objective Methods. Inf. Fusion 2018, 49, 146–160. [CrossRef]

31. Zavadskas, E.K.; Kaklauskas, A.; Turskis, Z.; Tamošaitiene, J. Selection of the effective dwelling house walls
by applying attributes values determined at intervals. J. Civ. Eng. Manag. 2008, 14, 85–93. [CrossRef]
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