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Abstract: Hybrid operation of wind farms has been in the limelight in recent years wherein the
stochastic nature of wind causes market operators to choose an optimal strategy to maximize profit.
The current work deals with a multi-criteria decision making approach to choose the best possible
alternatives for a hybrid wind farm operation. A set of three, non-beneficial criteria, namely wind
wakes, wind curtailment, and forced outages, were chosen to evaluate the best alternative. Three
methods, (i) Simple Additive Weighting (SAW), (ii) the Technique for Order or Preference by Similarity
to Ideal Solution (TOPSIS) and (iii) Complex Proportional Assessment (COPRAS), were applied to
identify the best alternative, and the results revealed that for all three methods, borrowing deficit
power from a neighboring wind farm is the best alternative. Comparative analyses in terms of the
data requirement, the effect of dynamic decision matrices, and rank reversal in wind farm application
have also been pioneered.

Keywords: wind farms; hybrid operation; performance evaluation; MCDM; rank reversal; dynamic
decision matrix

1. Introduction

Recently, alternative energy sources have gained much importance owing to their clean operation.
With limited fossil fuel and nuclear resources, solar and wind energy technologies have outgrown
their market share. Given its rich sustainability, a renewable energy power portfolio strengthens the
backbone of a country’s economy [1]. Apart from its positive environmental impact, wind energy
has also created job opportunities globally. With increased penetration of renewable energy sources,
its operation and control has become important [2]. Wind turbines undergo a wide range of dynamic
phenomenon. Achieving economies of scale is the primary objective for a wind farm operation. Given
the random nature of wind speed, accurate wind forecasting schemes aid the operator to minimize
the losses. However, the deficit power to the grid is fulfilled by a system of batteries operating at an
investment cost. Selecting an optimum operational strategy lowers the system cost and increases the
reliability of the power system.

Multi-Criteria Decision Making (MCDM) is a mathematical decision approach in order to select
the best choices out of a given lot. The choices made out from these mathematical models may not
always indicate the best “choice”. The MCDM approach can be divided into two prominent categories,
that is outranking methods and compensatory methods. Compensatory methods involve choices that
are more preferable owing to their positive attributes over negative ones, thus indicating a nominal
trade off between the alternatives. Compensatory methods include Analytical Hierarchical Process
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(AHP) and Fuzzy Logic Decision Making (FLDM). Major applications of compensatory methods
are in the field of water resources, like evaluation of rural water supply, resilience in water scarcity,
and evaluation of desalination plants. On the other hand, outranking methods follow a sequence of
logical decision making steps based on weights assigned to an individual criterion. Commonly-used
outranking methods are the weighted sum and product method, the Technique for Order or Preference
by Similarity to Ideal Solution (TOPSIS), the Complex Proportional Assessment (COPRAS) method,
the Preference Ranking

Organization Method for Enrichment Evaluation (PROMETHEE), and Elimination Et Choix
Traduisant la Realite Method (ELECTREE) [3]. However, the PROMETHEE method suffers from the
problem of rank reversal, which may mislead the decision maker to choose the best alternatives when
compared with other methods [4].

MCDM methods have been utilized across several science and engineering applications to
select the best alternatives based on qualitative and quantitative information often collected via
questionnaires and surveys. In the field of renewable energy, the MCDM methods have been
successfully applied to energy planning, transportation energy management, utility planning, and
building energy management [5]. Georgiou et al. have discussed AHP and PROMETHEE methods for
selecting an efficient energy topology for a reverse osmosis desalination plant and have ranked five
such topologies considering social, economical, and environmental impact [6]. Further, Kundakc et al.
explored MCDM methods to select the best boiler for a dyehouse in the textile industry using
two outranking methods, Measuring Attractiveness by a Categorical- Based Evaluation Technique
(MACBETH) and Evaluation baseed on Distance from Average Solution (EDAS) [7]. Multi-criteria
decision making is also used to select suitable wind turbines for developing a wind farm as explored
by Lee et al. using Interpretive Structural Modeling (ISM) and the Fuzzy Analytical Hierarchical
Process (FAHP) [8]. For each criterion, a sub-criterion is identified and a binary matrix indicating the
relationship between them is created. Mahdy et al. have identified the offshore wind energy potential
in Egypt using the Geographical Information System (GIS)-based AHP technique where several factors
like wind, water depth, and distance from shore were considered [9]. In terms of selecting offshore
turbine structures, Kolios et al. have studied the MCDM approach under stochastic inputs where
factors like environmental impact, depth compatibility, cost of installation, and maintenance cost were
considered as criteria [10]. Al Garni et al. discussed the MCDM approach for evaluating renewable
power sources for Saudi Arabia where the AHP method was used, and the results revealed that
solar PV technology is more preferred followed by solar thermal technology [11]. Several criteria like
environmental, socio-cultural, and political impact were considered. The effect of the normalization of
beneficial and non-beneficial criteria also influences the selection process. Jahan et al. have presented
a comprehensive review of normalization techniques used for streamlining the decision making
process [12].

The most important purpose of adopting any MCDM approach is to translate the performances
of each alternative into a single aggregated value to smooth the progress of the ranking process.
Since no solo mode of analysis is adequate to deal with the different types of complex decision
making problems, as well as there is no distinct aggregation method that is unanimously acceptable
for any kind of decision problem, the Decision Makers (DMs) have to select the method based on
the characteristics of the problem and the information available. Analyzing the above-mentioned
prospects, this paper aims at applying some multi-beneficial MCDM methods that can make the
decision making process trouble free and to be well suited to most of the situations. The major
contribution of this paper is the application of several MCDM methods for hybrid operation of a
wind farm considering dynamic phenomena like wind wakes, wind curtailment, and forced outage
of turbine unit(s). Meanwhile, we also present four alternatives amongst which the best one is to be
selected. The MCDM approach was carried out using Simple Additive Weighting (SAW), TOPSIS, and
the COPRAS method. The cumulative priority scores for each alternative were determined, and the
ranking was validated for two wind datasets.
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This paper is organized as follows: Section 2 discusses the problem formulation for the hybrid
operation of a wind farm where the alternatives are described in detail. Section 3 sheds light on the
MCDM techniques used along with a step-by-step procedure, followed by the results and a discussion
in Section 4. A comparative analysis of the different MCDM techniques is then presented in Section 5,
followed by the concluding remarks in Section 6.

2. Problem Formulation

A wind farm’s secure and reliable operation is dependent on the availability of wind resource.
Wind speed density and wind direction for a given terrain play a significant role in maximizing power
capture. With advanced manufacturing technologies and the availability of automation, the production
costs for a wind turbine have lowered in the past decade [13]. Apart from the wind resource, complex
terrains add a significant problem to the turbine siting process where the irregular land and scanty
resources increase transportation and labor cost significantly. Hence, an accurate wind forecast
schedule seems to compensate the disadvantages posed by initial installation processes. A wind farm
operator must submit a power schedule ahead of time as a part of an agreement with the utility grid.
The random nature of wind speed leads to errors in forecasting, and thus, there exist events of surplus
and deficit power. The current problem of economic operation that deals with the events of surplus and
deficit power is handled by Battery Energy Storage Systems (BESS). The accuracy of wind forecasting
techniques influences the charging or discharging schedule of the BESS. For wind power applications,
commonly-used BESS include lithium-ion, lead-acid and nickel-cadmium batteries. Patel et al. have
discussed several methodologies to achieve optimized hybrid wind power generation, and we extend
these four alternatives to solve the MCDM problem for a wind farm [14].

• Alternative 1 (A1): Let p̂i represent the forecasted wind power in a particular forecast window
and pi be the actual wind power from the wind farm. In scenarios where p̂i is greater than pi,
a penalty is paid for the deficit power by the wind farm operator, and the battery bank is left
unused. The total cost paid by the operator in such k instances is given as:

F1 = β
k

∑
i=1

(
p̂i − pi

)
, (1)

where β represents the penalty cost ($) per 1 kW of deficit power. However, no penalty is to be
paid if pi > p̂i.

• Alternative 2 (A2): In this alternative, the deficit power is fed to the grid via a combination of
two strategies. Firstly, a threshold battery power (pth

b ) is identified, and if the deficit (p̂i − pi) is
greater than the threshold, the penalty is paid for the said difference. The total cost paid by the
operator during such m instances is given as:

F2 = ζ
m

∑
i=1

(
pth

bi − p̂i + pi

)
, (2)

where ζ is the penalty cost (in $/kW) for violating the battery threshold limit.
• Alternative 3 (A3): In this alternative, the deficit wind power is pumped into the grid by

neighboring wind farms, and the penalty for the said difference is paid by the wind farm
operator. Suppose the actual and forecasted wind powers for Wind Farms 2 and 3 are p2i, p̂2i, p3i
and p̂3i respectively, then the penalty cost paid by the operator of Wind Farm 1 is given as:
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F3 =



α
l

∑
i=1

(p2i − p̂2i), if p2i > p̂2i,

α
l

∑
i=1

(p3i − p̂3i), if p3i > p̂3i,

δ
l

∑
i=1

( p̂i − pi),

(3)

where α and δ represent the penalty cost and the cost of using the battery to compensate 1 kW
of deficit power, respectively. It must be noted that the penalty cost of using the battery in this
methodology is higher than the penalty cost in Alternatives 1 and 2.

• Alternative 4 (A4): In this case, the entire deficit power is delivered by the battery bank, and the
cost paid by the operator in u such instances is given as:

F4 = δ
u

∑
i=1

( p̂i − pi), (4)

where δ represents the penalty cost paid by the wind operator to compensate 1 kW of wind power
deficit entirely by battery.

Based on the four alternatives discussed, we now shall assess the criteria under which the said
MCDM problem is to be evaluated. For a wind farm operating in the Prandtl layer (extending up
to 100 m), wind wake is a common aerodynamic phenomenon causing reduced power production
for downwind turbines. Power loss due to wind wakes can be compensated by either of the four
alternatives discussed previously. Similarly, wind curtailment due to generating system limitations
is a common phenomenon as well, where dealing with surplus power is an important task. Henriot
discussed the economic impact of power curtailment in the case of renewable energy sources with
thermal generators [15]. Wind curtailment can be positively dealt with using one of the aforementioned
alternatives. Apart from that, forced outage in a wind farm occurs when a turbine unit is to be drawn
out for cleaning or maintenance purposes and disturbs the forecasted power schedule simultaneously
calling the need for deficit power from any one of the stated methodologies.

Furthermore, wind farm operation is also governed by its surroundings in terms of quality of
the landscape. Landscape quality has been assessed over the years by using several qualitative and
quantitative indicators. The socioeconomic impacts of wind turbine commissioning have led to critical
study of landscape quality. Recently, a cost action report titled “Renewable Energy and Landscape
quality” was analyzed thoroughly, which investigated the relationship between the potential renewable
energy sources and landscape quality [16]. In the present case, the four alternatives describing different
proportions of usage for the penalty and battery have direct and indirect impacts on the landscape
quality of wind farms. In the case of hybrid operation perceived by a system of batteries, the pollution
caused due to lead or any other harmful chemical can degrade the ecological functioning of the site.
However, with the advancement in manufacturing and material design, the harmful effects can be
controlled to preserve the landscape quality. While it is worth to noting that all the wind farms
considered had the same number of wind turbines, in the case of a different number of turbines,
the effect on landscape quality would be different. With a lesser number of wind turbines and a
greater number of battery units, the damage caused due to emissions to the ecosystem would be more
pronounced. Another issue with wind turbines is the problem of noise emission. Noise generated
from wind turbines is mainly categorized as mechanical and aerodynamic noise. The mechanical
noise is mainly due to the gearbox and generator section, while the aerodynamic noise is mainly due
to ambient turbulence or wake-generated turbulence. Several empirical models exist that trace the
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relationship between global emitted noise and wind turbine parameters. According to Lowson [17],
the emitted noise in dB is given as:

LWA = 22 log10 D + 72, (5)

where D is the rotor diameter. Thus, the increase in the emitted noise level would certainly impact
the livelihood of persons surrounding the wind turbine and would pose a barrier to accepting wind
energy in promising areas. Table 1 discusses the criteria used for the said MCDM problem and Figure 1
illustrates the schematic representation of MCDM process.

Table 1. Criteria for the MCDM approach.

Label Criteria Summary

C1 Wind wakes Cause power reduction

C2 Wind curtailment Surplus power either fed to battery
or used as power loan

C3 Forced outage Reduces wind farm capacity

Hybrid Operation of Wind Farms

Wind Wakes Wind Curtailment  Forced Outage

Alternative 1 Alternative 2 Alternative 3 Alternative 4

Figure 1. Schematic representation of the multi-criteria decision making problem for wind farms.

3. MCDM: Materials and Methods

The MCDM approach helps decision makers to identify the best alternatives given that there
exists an array of plausible criteria to justify the choice. An MCDM problem may be formulated in the
form of an m× n matrix where the matrix element, say hij, describes a semantic relationship between
the alternative i w.r.t the criteria j. Such a decision matrix can be expressed as:

H =

C1 C2 . . . Cn


h11 h12 . . . h1j A1

h21 h22 . . . h2j A2
...

...
...

...
hi1 . . . . . . hij Am

In the above matrix H, hij is for i = 1, 2, . . . , m and j = 1, 2, . . . , n, which represents the
performance score for the alternative i w.r.t. the criterion j. In the present work, we approach
the decision making problem through three methods: (i) Simple Additive Weighting (SAW), (ii) the
Technique for Order or Preference by Similarity to Ideal Solution (TOPSIS), and (iii) the Complex
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Proportional Assessment (COPRAS) method. We now describe these methods in brief and how they
provide the best solution.

3.1. Simple Additive Weighting (Saw) Method

Hwang et al. in 1981 devised a method to solve the MCDM problem by assigning each
performance score of alternative Ai with a specific weight wi, and a weighted sum of all the criteria
for a particular alternative is obtained [18]. The step-by-step procedure for the SAW method can be
described as:

• Step 1: Identify the alternatives (A1, A2, . . . , Am) and criteria (C1, C2, . . . , Cn) for the decision
making problem.

• Step 2: Develop a decision matrix for the said MCDM problem.
• Step 3: Construct the normalized decision matrix with its elements as:

Ĥij =
min hij

hij
i = 1, 2, . . . , m; j = 1, 2, . . . , n. (6)

Ĥij =
hij

max hij
i = 1, 2, . . . , m; j = 1, 2, . . . , n. (7)

For non-beneficial criteria, the normalized element of the decision matrix is calculated using
Equation (6) and for beneficial criteria using Equation (7).

• Step 4: Calculate entropy (ej) and divergence values (dj) for each criteria as:

ej = − 1
log m

m

∑
i=1

Ĥij log(Ĥij). (8)

dj = |1− ej| j = 1, 2, . . . , n. (9)

• Step 5: Calculate the weights for the respective criterion using Equation (10):

wj =
dj

∑n
j=1 dj

. (10)

• Step 6: Finally, calculate the priority score for each alternative using Equation (10) and arrange
them according to highest priority:

Si =
n

∑
j=1

wjhij. (11)

3.2. Technique for Order or Preference by Similarity to Ideal Solution Method

The technique for Order or Preference by Similarity to Ideal Solution (TOPSIS) selects the best
choice based on the shortest Euclidean distance to the positive ideal solution and the longest distance
to the negative ideal solution [19]. Lourenzutti et al. have proposed a generalized TOPSIS method
where multiple decision makers have the power to define their own set of criteria, weights, and factors
affecting alternatives, and it was validated for three different case studies [20]. Balioti et al. explored
the TOPSIS method to select an optimal spillway design for a dam site in North Greece [21]. Here, five
spillway designs were treated as alternatives, and nine design criteria were assessed under a fuzzy
environment, whereas the AHP method was used to assign weights to the criteria. The following steps
were used to evaluate the priority score:

• Follow Steps 1–2 as in the case of the SAW method.
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• Construct the normalized decision matrix with its elements as:

Ĥij =
hij√

∑n
j=1 h2

ij

i = 1, 2, . . . , m; j = 1, 2, . . . , n. (12)

• After calculating weights for each criterion, construct a weighted normalized matrix:

ĥ = wjHij; i = 1, 2, . . . , m; j = 1, 2, . . . , n. (13)

• Identify positive and negative ideal solutions S+ and S− respectively as:

S+
j = {(max hij|j ∈ t); (min hij|j ∈ n− t)|i = 1, 2, . . . , m}, (14)

S−j = {(min hij|j ∈ t); (max hij|j ∈ n− t)|i = 1, 2, . . . , m}, (15)

where t represents the number of beneficial criteria and n− t the non-beneficial criteria.
• The p-norm Euclidean distances D+

i and D−i are determined as:

D+
i =

{
n

∑
j=1

(
ĥij − S+

j

)p
}1/p

i = 1, 2, . . . , m; j = 1, 2, . . . , n. (16)

D−i =

{
n

∑
j=1

(
ĥij − S−j

)p
}1/p

i = 1, 2, . . . , m; j = 1, 2, . . . , n. (17)

• Evaluate the relative closeness of each alternative using Equation (18) and rank them in
descending order:

Gi =
D−i

D−i + D+
i

i = 1, 2, . . . , m; 0 ≤ Gi ≤ 1. (18)

3.3. Complex Proportional Assessment (Copras) Method

The COPRAS method implements a stepwise ranking procedure to assess the performance of each
alternative considering conflicting situations. Zolfani et al. implemented COPRAS and AHP to solve
the supplier selection problem with time, cost, quality, and service as key factors [22]. Bhowmik et al.
implemented the entropy-based COPRAS method to solve the problem of selecting an appropriate
green energy source for the region of Tripura, India [23]. Hydro, solar, biomass, and biogas were
chosen as the possible alternatives based on a set of beneficial and non-beneficial criteria. The COPRAS
method is based on the following steps:

• Construct a hierarchy model for the said MCDM problem.
• Arrive at constructing the normalized decision matrix and determine the weights associated with

each criterion as calculated in the case of the TOPSIS method.
• Determine weighted normalized matrix Ĥij using Equation (12).
• Determine the sum of weighted scores for beneficial and non-beneficial criteria using:

R+
i =

t

∑
j=1

ĥij, R−i =
n

∑
j=t+1

ĥij | i = 1, 2, . . . , m, (19)

where t represents the number of beneficial criteria and n− t the non-beneficial criteria.
• Determine relative priorities for each alternative as:

Ui = R+
i +

∑m
i=1 R+

i

R−i ∑m
i=1

1
R−i

. (20)
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• Arrive at the final priority score for each alternative and arrange them in descending order:

Li =
Ui

Umax
× 100%. (21)

4. Results and Discussion

In this section, we implement the MCDM methods for the hybrid operation of wind farms.
The wind farms in Massachusetts, namely Bishop & Clerks (Farm A), Paxton (Farm B), and Blandford
(Farm C), were selected. Two wind speed datasets were collected from from Wind Energy Center,
University of Massachusetts, MA. The wind speed was measured at hub heights of 15 m, 78 m, and
60 m for Farm A, Farm B, and Farm C, respectively, using a cup anemometer. Further, the wind
speed for Farm A and Farm B was transformed to a hub height of 60 m using the logarithmic law [24].
The Datasets were labeled D1 (January 2011) and D2 (January 2013) for the three wind farms [25] with
their descriptive statistics depicted in Table 2. In the present work, we assumed wind direction facing
directly to the turbines, and all the turbines in three wind farms had same rotor diameter of 77 m.

Table 2. Descriptive statistics for wind speed Datasets D1 and D2.

Statistic D1 (January 2011) D2 (January 2013)

Farm A Farm B Farm C Farm A Farm B Farm C

Mean 8.3364 8.3612 5.189 10.146 9.4411 6.1096
Std. Dev. 3.2224 3.0543 2.4075 4.2897 2.8944 2.1752
Skewness −0.0943 −0.1040 0.9670 −0.3428 −0.3219 0.2102

Figure 2 shows the schematic representation for three wind farms along with BESS. The wind
farms feed electrical power to a utility grid. In order to approach the MCDM problem, we first
evaluated the penalty cost for a particular wind farm (here Bishop & Clerks). The penalty cost was
calculated by forecasting the wind power and then comparing it with the actual one. The deficit or
surplus wind power windows were then assessed for penalty cost estimation for all four alternatives
as discussed in Section 2. The wind speed time series for two datasets at a hub height of 60 m is
illustrated in Figure 3. In order to choose the best alternative, we determined the tangible effect of
criteria by calculating the penalty cost incurred in all four alternatives. Further, the non-tangible
effect was determined by examining the Priority Scores (PS) from MCDM methods. The overall
decision was based on cumulative priority score obtained by multiplying the normalized cost score
and priority scores.

For calculating the penalty cost for the four alternatives, we first forecast the wind speed using
Least Squares Support Vector Regression (LSSVR). The dataset of 1000 instances was divided into
800 (training set) and 200 (testing set). Figure 4 shows the magnitude of charging and discharging
powers for the BESS for Dataset D1. The BESS power rating was calculated based on the min-max
principle as implemented by Nguyen et al., where the cumulative sum of discharging and charging
powers was calculated [26]. Table 3 enlists the BESS power capacity and threshold limit for two
datasets D1 and D2.
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Figure 2. Schematic diagram for three wind farms in Massachusetts.
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Figure 3. Wind speed pattern for three wind farms in Massachusetts.
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Figure 4. BESS charging and discharging power for Bishop & Clerks, January 2011.

Table 3. BESS rating for two datasets.

Dataset BESS Rating BESS Threshold Limit

D1 15 MW 110 kW
D2 50 MW 955 kW

In the first alternative, the penalty was paid for every 1 kW of incorrect power predicted. Similarly,
the penalty cost can be estimated for each alternative (A1, A2, A3, A4). The cost for compensating 1 kW
of deficit power in each alternative was β = $ 0.5, ζ = $ 0.75, α = $ 0.4, and δ = $ 0.8. The cost of
dispatching every 1 kW of incorrect forecasted power using the battery in the case of A4 was chosen
as the highest owing to frequent charging and discharging. Further, for calculating cost incurred in
alternative A2, the BESS threshold limit was chosen as 110 kW and 955 kW for Datasets D1 and D2,
respectively. Table 4 highlights the Penalty Cost (PC) (in $) and the normalized cost score for each
alternative for two datasets D1 and D2.

Table 4. Penalty cost and normalized cost score for Datasets D1 and D2. PC, Penalty Cost; NCS,
Normalized Cost Score.

Alternatives D1 D2

PC ($) NCS PC ($) NCS

A1 1971.2 1.1665 6514.2 1.3238
A2 1689.8 1.0000 4920.8 1.0000
A3 3916.5 2.3177 13587 2.7612
A4 2252.8 1.3332 7444.8 1.5129

The Normalized Cost Score (NCS) was calculated by using the minimum normalization technique,
that is the minimum cost was assigned a score of one. It must be noted that here, we have determined
the normalized cost score considering the tangible effect of penalty cost on decision making. Similarly,
the non-tangible effect of criteria on the best alternative was determined by calculating the rank by the
conventional MCDM methods. Finally, the rank for the alternatives was determined by calculating the
Cumulative Priority Score (CPS), which is arithmetic multiplication of NCS and Priority Score (PS).

Next, we proceeded towards constructing the decision matrix. We had four alternatives
(A1, A2, A3, A4) and three criteria (C1, C2, C3), as listed in Table 1. The decision matrix elements
were based on a semantic relationship between each alternative and criteria, as in Table 5. However,
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all the criteria in our case were non-beneficial, and so, we used a semantic scale that assigned the
highest performance score, that is nine, to the equally-preferred alternative and the lowest score, that
is one, to the highly-preferred alternative. In the case of wind wakes, the most preferred alternative
was to pay a penalty for power loss due to wakes via batteries, up to a certain threshold, rather than
paying for every forecast error. Meanwhile wind curtailment is best dealt with if the curtailed power is
fed from batteries. In the case of forced outages, the best alternative was to take a power loan from
neighboring farms or to supply power from batteries. However, the latter seems to be more expensive.

Table 5. Performance scores for the decision matrix [27].

Importance Performance Score Performance Score
as per AHP in Current Work

Equally Preferred (EP) 1 9
Equally to Moderately Preferred (EMP) 2 8

Moderately Preferred (MP) 3 7
Moderately to Strongly Preferred (MSP) 4 6

Strongly Preferred (SP) 5 5
Strongly to Very strongly Preferred (SVP) 6 4

Very strongly Preferred (VP) 7 3
Very strongly to Extremely Preferred (VEP) 8 2

Extremely Preferred (XP) 9 1

In the case of wind wakes, alternative A1 was assigned a score of eight owing to a higher penalty
cost incurred to the market operator. Similarly, a score of three and two was assigned to alternatives
A2 and A3, respectively, due to lower penalty costs, while A4 was assigned a score of nine due to a
higher cost of discharging BESS and thus impacting battery lifetime. For wind curtailment, a score of
five and four was assigned to alternatives A1 and A2, respectively, owing to the large penalty paid due
to derating of wind turbines, while a score of three was assigned to A3 owing to a lesser penalty cost
per kW of deficit wind power forecasted. Forced outage leads to reduction in wind farm capacity, thus
choosing alternative A1 would result in paying a higher penalty cost; whereas borrowing wind power
from a neighboring farm for lost power due to forced outage will be an economic choice for the farm
operator owing to the lesser penalty cost per kW of deficit power. The decision matrix is given as H as
per the performance scores stated by Saaty and H′ as per the our MCDM problem, which assigns the
least score to the most preferred alternative.

H =

C1 C2 C3


2 3 1 A1

7 6 4 A2

8 7 9 A3

1 3 2 A4

, H′ =

C1 C2 C3


8 5 9 A1

3 4 6 A2

2 3 1 A3

9 7 8 A4

Based on the decision matrix H′, we then determined the normalized decision matrix using
Equation (6) and then the weights for each criteria were obtained as discussed in Section 3.1.
The normalized decision matrix for the SAW method is given as:

Ĥ =


0.2500 0.6000 0.1111
0.6667 0.7500 0.1667
1.0000 1.0000 1.0000
0.2222 0.4286 0.1250

 (22)

The weights for the criteria are determined using Equations (8)–(10) and are given as:

w = {0.2864, 0.3296, 0.3840} (23)
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Based on the weights and normalized matrix, we then calculated the Priority Score (PS) and Cumulative
Priority Score (CPS) for the alternatives, which are listed in Table 6.

Table 6. Ranking using the Simple Additive Weighting (SAW) method.

Alternatives D1 D2 Ranking
PS CPS PS CPS

A1 0.3120 0.3640 0.3120 0.4130 3
A2 0.5021 0.5021 0.5021 0.5021 2
A3 1.0000 2.3177 1.0000 2.7612 1
A4 0.2529 0.3372 0.2529 0.3826 4

Thus, according to the SAW method, the alternatives were ranked as A3 � A2 � A1 � A4.
The best alternative was to pay a penalty for deficit power borrowed from a neighboring wind farm.

Next, we solved the MCDM problem using the COPRAS method. The decision matrix remained
the same for all the methods. However, while normalizing the decision matrix, we used Equation (12).
The normalized decision matrix is given as:

Ĥ =


0.6364 0.5025 0.6671
0.2387 0.4020 0.4447
0.1591 0.3015 0.0741
0.7160 0.7035 0.5930

 . (24)

Meanwhile the weights were calculated using the entropy method stated in (Section 3.1) and are
given as:

w = {0.4142, 0.1201, 0.4658}. (25)

Based on the weights and normalized matrix, we then calculated the priority and cumulative priority
score for the alternatives using Equations (20) and (21), which are listed in Table 7.

Table 7. Cumulative priority score and ranking based on the Complex Proportional Assessment
(COPRAS) method.

Alternatives D1 D2 Ranking

PS CPS PS CPS D1 D2

A1 0.2153 0.2511 0.2153 0.2850 4 4
A2 0.3857 0.3857 0.3857 0.3857 2 2
A3 1.0000 2.3177 1.0000 2.7612 1 1
A4 0.2079 0.2772 0.2079 0.3145 3 3

Thus, according to the COPRAS method, the alternatives were ranked as A3 � A2 � A4 � A1.
The best alternative was to pay a penalty for taking a power loan from a neighboring wind farm.
However, this choice seems far fetched due to uncertainties in the neighboring wind farm(s).

Finally, we solved the MCDM problem using the TOPSIS method for which the normalized
decision matrix was obtained using Equation (12), and weights were calculated using the entropy
method. The normalized matrix and weights are given as:

Ĥ =


0.6364 0.5025 0.6671
0.2387 0.4020 0.4447
0.1591 0.3015 0.0741
0.7160 0.7035 0.5930

 . (26)

Meanwhile the weights were calculated using entropy method stated in Section 3.1 and are given as :
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w = {0.4142, 0.1201, 0.4658}. (27)

Next, we identified positive and negative ideal solutions using Equations (14) and (15), given as:

S+ = {0.0659, 0.0362, 0.0345}, (28)

S− = {0.2965, 0.0845, 0.3107}. (29)

Further, the Euclidean distance from the positive ideal and negative ideal solutions was calculated
using Equations (16) and (17), where p = 2 and is found as:

D+ = {0.0580, 0.0155, 0, 0.0570}, (30)

D− = {0.0008, 0.0256, 0.0659, 0.0006}. (31)

Finally, the relative priority and cumulative priority score was calculated for all the alternatives,
which are ranked in Table 8.

Table 8. Ranking using the TOPSIS method.

Alternatives D1 D2 Ranking
PS CPS PS CPS

A1 0.0142 0.0166 0.0142 0.0188 3
A2 0.5323 0.5323 0.5323 0.5323 2
A3 1.0000 2.3177 1.0000 2.7612 1
A4 0.0104 0.0139 0.0104 0.0157 4

Thus, according to the TOPSIS method, the alternatives were ranked as A3 � A2 � A1 � A4.
The best alternative was to pay a penalty for deficit power borrowed from a neighboring wind farm.
The MCDM methods carried out for hybrid operation of wind farms revealed paying a penalty for
borrowed power from a neighboring wind farm as the best alternative. The results of all three methods
were validated based on tangible and non-tangible effects from all the criteria. The ranking and priority
scores for all the alternatives along with their priority score as illustrated in the form of a Pareto chart
graph are shown in Figure 5.
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Figure 5. Pareto charts for alternatives for Datasets D1 and D2.

5. Comparative Analysis of MCDM Methods

It is well accepted that identifying the most appropriate MCDM approach from the list of existing
several methods for a given application is a difficult task. This is due to the inherent benefits and
limitations possessed by each of the methods. This paper pioneered a methodology to evaluate
different MCDM methods in the wind farm application domain based on the data requirement and the
effects of dynamic decision matrices and rank reversal.

The number of data D required in the decision process: This parameter evaluates the number
of data required from the DMs for adopting the considered MCDM methods to evaluate optimized
hybrid wind power generation techniques. Let i be the number of hybrid wind power generation
strategies and j be the number of assessment criteria; therefore, the required number of data required
D in each of the considered MCDM methods for the decision matrix is given as:

D = (i + 1) j. (32)

For the presented case study, all three considered methods, that is SAW, TOPSIS, and COPRAS,
required only 15 judgments. Therefore, it can be stated that all three methods performed similarly in
terms of the level of communication with the DMs for data collection.

In spite of having the considerable significance of MCDM methods in framing efficient assessment
models, there are many criticisms of these methods due to the occurrence of Rank Reversal (RR).
RR mostly refers to a change in the ranking of a preferred alternative when some other alternative
is added or removed in the original decision matrix. In real-life situations, a concerned problem



Symmetry 2019, 11, 675 15 of 17

may amend or change from time to time while taking into account the changes in existing decision
matrices due to the introduction or removal of a new alternative. When the hybrid wind power
generation strategy selection problem was solved by the SAW method, the ranking was generated
as A3 � A2 � A1 � A4, as given in Table 6, which clearly indicates strategy A4 as the worst option.
Now, due to its poor performance and rank, strategy A4 was dropped from the alternative list, and
the new decision matrix (consisting of three alternatives) or the dynamic decision matrix was again
solved using the SAW, TOPSIS, and COPRAS methods. The new ranking as given by these three
methods with the same criteria weights was A3 � A2 � A1, indicating A3 still as the best alternative
and A1 as the worst alternative, as shown in Table 8. From this table, it is clear that when alternative
A4 was deleted, there was no change in the ranking of the other three alternative strategies. Further
proceeding towards deletion of all the worst alternatives from the subsequent dynamic decision
matrices, it has been observed that there was no effect of the dynamic decision matrices on any of
the three methods. A3 remained the best strategy for all the considered alternations in the decision
matrices, thus establishing the robustness and accuracy of these methods for ranking alternatives
under a dynamic environment as depicted in Table 9.

Table 9. Ranking under dynamic decision matrices in the SAW, TOPSIS, and COPRAS methods.

Alternatives Initial A4 A1 A2

Rank

A4 4
A1 3 3
A2 2 2 2
A3 1 1 1 1

Based on the above analyses, it can be concluded that the adopted methods are very credible,
which can be successfully used for rational decision making.

6. Conclusions

A multi-criteria decision making problem for the economic operation of a wind farm was
presented with a set of four alternatives, which were assessed for three criteria. Wind wakes, wind
curtailment and forced outage govern the optimal strategy for a wind operator. The decision matrix
was created based on our understanding and judgment of each criterion on a particular alternative.
The cumulative priority scores were calculated for three MCDM methods. The hybrid operation of
the wind farm was characterized by four alternatives based on three criteria evaluated based on three
MCDM methods. For SAW and TOPSIS, we obtained the ranking as A3 � A2 � A1 � A4, whereas
for COPRAS, A3 � A2 � A4 � A1. The rank reversal in this case was tested by removing A4 and A1,
and the results revealed A3 as the best preferred choice. Given an accurate forecasting scheme, paying
a penalty cost for borrowed deficit power from a neighboring wind farm will result in the economic
operation of the wind farm. Further, the current MCDM problem can be extended considering the
uncertainties in individual wind farms like in the case of wind wakes by implementing the fuzzy
TOPSIS method.
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