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Abstract: In this paper, the results of the investigation of multi-quark equations in the
Nambu–Jona-Lasinio (NJL) model in the mean-field expansion are presented. The multi-quark
functions have been considered up to the third order of expansion. One of the purposes of our
computations is the study of corrections of higher orders to parameters of the model. The important
problem of the application of the NJL model is regularization. We compare the NJL model with
4-dimensional cutoff regularization and the dimensionally analytical regularization. We also discuss
so-called “predictive regularization” in the NJL model, and a modification of this regularization,
which is free of the Landau pole, is proposed. To calculate the high-order corrections, we use
the Legendre transform method in the framework of bilocal-source formalism, which allows one
effectively to take into consideration the symmetry constraints. A generalization of the mean-field
expansion for other types of multi-quark sources is also discussed.
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1. Introduction

Quantum chromodynamics as the theory of strong interactions has achieved great successes in
the description of various hadronic processes. Due to the asymptotic freedom of this theory it explains
processes at short distances. However, for the quantitative description of the region of intermediate
and large distances, simplified effective models are necessary.

In 1961, Nambu and Jona-Lasinio [1] constructed a superconducting-type model based on
four-fermion interaction for understanding a nucleon mass nature and a mechanism of spontaneous
breaking of chiral symmetry.

Eguchi [2] and Kikkawa [3] reformulated the Nambu–Jona-Lasinio (NJL) model for quark fields
(see also [4,5]). Hatsuda and Kunihiro [6] used an improved NJL model for description of dense and hot
media of hadrons. This model can be applied to study light nuclei as well. The NJL model is currently
the most successful model of quantum chromodynamics in non-perturbative region (see [7–12] for
reviews and further references).

The applications of NJL model in recent years, has intensified in various problems of nuclear
physics and a cosmology (see [13–29] and references therein). Of great interest is the generalization
of the NJL model, which contains the quark confinement mechanism (the so-called Polyakov-loop
extended Nambu–Jona-Lasinio model, or PNJL model; see, for example [22] and references therein).
Consideration of this model, however, is beyond the scope of our work.
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Among applications of phenomenological models are investigations of multi-quark functions,
which are main topic of the present work. The formalism of multilocal sources are basic idea behind
of this approach [30,31]. The method of multilocal sources has been used in various field-theoretical
studies and may be employed for similar calculations in effective model as well [32,33].

The multi-quark functions appear in the mean-field expansions (MFE) of the NJL model in
higher-order terms. To obtain the MFE the iteration scheme of the Schwinger-Dyson solutions with the
bilocal fermion source have been used [32,33]. This iterative approach is fruitful because equations
under discussion have a simple structure, and the solution of these equations at all orders is an
algebraic problem. In this work we consider equations for correlation functions of the NJL model up to
the third order of MFE. The leading order (LO) and a first step of this scheme include the equations for
the quark propagator, the two-quark function and the next-to-leading (NLO) correction to the quark
propagator. The second order of MFE includes the equations for the four-quark and the three-quark
functions and the equations for the NLO two-quark function and next-to-next-to-leading order (NNLO)
quark propagator.

We have solved the four-quark and three-quark equations. The third step of iterations,
which includes equations for the six-quark and five-quark functions and the equations for the NLO
four-quark and three-quark functions, is also investigated.

The NJL model in the MFE contains quark loops and corresponding ultraviolet divergences.
Therefore, regularization procedure is the essential point for this model. Traditionally used
regularizations for the NJL model are based on a four-dimensional (4D) cutoff in Euclidean momenta
or a three-dimensional momentum cutoff. The Pauli-Villars regularization, or non-local Gauss
form-factors, are also used. However, the most popular and very convenient for calculations
dimensional regularization is the least used for the NJL model. The reason is related to the next
issue: a regularizations parameter for NJL model is involved in physical quantities. Therefore, it is
the essential parameter for NJL model. However, the parameter of dimensional regularization is
a deviation from the physical dimension of space, which cannot be connected directly with any
physical quantity.

An alternative approach is a consideration of the dimensional regularization as a variant of the
analytical regularization. In framework of this treatment all computations are made in 4D Euclidean
momentum space. For regularization of the divergent integrals, a weight function into integrand is
included, and the regularization parameter is a power of this function. This variant of dimensional
regularization is consistently developed and applied to the NJL model by Krewald and Nakayama [34].
The parameter of such regularization is not at all a deviation from the physical dimension of space.
We assume that this parameter can be treated as a “trace of gluons” in the effective four-quark
self-action of NJL model. Such treatment in some sense is similar to the non-local versions of the
NJL model.

In our paper we analyze the dimensional regularization in the NLO of the MFE in the frame
of Krewald and Nakayama approach. (We introduce the new term “dimensionally analytical
regularization” (DAR) for avoiding an unnecessary association with the traditional
dimensional regularization)

An interesting attempt for a deliverance of the NJL model from the regularization dependence
made in the work of Battistel, Dallabona and Krein (BDK) [35] (see also [36,37]). Main idea of the
method, named by authors as “predictive regularization”, consists of a separation of the finite parts of
divergent integrals from the divergent ones, and then the integration is done without regularization.
A significant result of work [35] is a proof of the fulfillment of symmetry constraints for correlation
functions. We discuss some features of the computational scheme of work [35]. The main problem of
this method is the singularity of meson propagators in the region of Euclidean momenta. The existence
of these Landau singularities is an essential problem for any computations beyond the leading
approximation. A modification of this scheme is proposed, which is free from Landau poles and
conserves the main features of the approach of [35] (see also [38–40])
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The structure of the paper is following. In Section 2 we construct MFE in the fermion bilocal-source
formalism. The DAR of the NJL model is discussed in Section 3. The predictive regularization and the
problem of Landau ghost is discussed in Section 4.

A purpose of our computations is to study the corrections of higher orders to parameters of
the model, such as the chiral condensate and pion-decay constant. The sigma-meson and pion
contributions to the chiral quark condensate are considered in Section 5. The chiral condensate is
the principal order parameter of dynamical chiral symmetry breaking (DCSB). As our computations
demonstrate, the pion contribution to chiral condensate is inversely proportional to the regularization
parameter of DAR and is independent of other parameters of the model. The sigma-meson contribution
is small for admissible values of the parameter (see [41–43]).

In Section 6 we investigate the corrections to the two-quark function by the method of the
Legendre transform with respect to the bilocal source [30,31]. As is shown, this method is an effective
way to take into account the constraints following from the chiral Ward identity (see also [44]).

In Section 7 we consider the higher orders of the iteration scheme. We calculate the three-quark
function, which describes the decay σ→ ππ and a correction to pion-decay constant.

In Section 8 the generalization of the MFE for the NJL model in the framework of the diquark and
triple-quark sources formalism is shortly discussed. Such generalization can be fruitful, in particular,
for the quantum-field description of nucleons.

2. The Mean-Field Expansion in the Bilocal-Source Formalism

Let us consider the chiral-symmetric NJL model. The model is based on u and d quark fields ψ(x).
The two-flavor NJL model Lagrangian is

L = ψ̄i∂̂ψ +
g
2

[
(ψ̄ψ)2 + (ψ̄iγ5τaψ)2

]
, (1)

where g is the four-fermion coupling constant with the mass dimension m−2. Here we omit the bare
masses of u and d quarks which are much smaller than the QCD scale. The chiral SUV(2)× SUA(2)
invariance prohibits a mass term in the Lagrangian. In Equation (1) ψ ≡ ψαc

j , where α = 1, 2, 3, 4,

c = 1, ..., Nc and j = 1, 2 are spinor, color and isotopic (flavor) indexes correspondingly, and ∂̂ ≡ γµ∂µ.
The SU(2)-group generators τa are normalized as tr(τaτb) = 2δab.

The generating functional G of vacuum expectation values of T-products of fields
(correlation functions) can be written as the following functional integral with bilocal quark-antiquark
source η:

G(η) =
∫

d(ψ, ψ̄) exp i
{ ∫

dxL−
∫

dxdyψ̄(y)η(y, x)ψ(x)
}

. (2)

The n-th functional derivation with respect to source η of generating functional G is the 2n-point
(n-particle) function:

δnG
δη(y1, x1) · · · δη(yn, xn)

∣∣∣∣
η=0

= in < 0 | T
{

ψ(x1)ψ̄(y1) · · ·ψ(xn)ψ̄(yn)
}
| 0 >≡ Sn

 x1 y1

· · · · · ·
xn yn

 .

The translational invariance of the functional integration measure implies relation

∫
d(ψ, ψ̄)

δ

δψ̄(x)
ψ̄(y) exp

{ ∫
dxL(x)−

∫
dxdyψ̄(x)η(x, y)ψ(y)

}
= 0,
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that can be written as the functional-differential Schwinger–Dyson equation (SDE):

δ(x− y)G + i∂̂x
δG

δη(y, x)
+ ig

{ δ

δη(y, x)
tr
[

δG
δη(x, x)

]
− γ5τa δ

δη(y, x)
tr
[

γ5τa δG
δη(x, x)

]}

=
∫

dx1η(x, x1)
δG

δη(y, x1)
. (3)

To formulate the MFE we shall use the procedure which was proposed in Reference [45]. A leading
approximation is the SDE (3) with zero r.h.s.:

G(0) + i∂̂x
δG(0)

δη
+ ig

{ δ

δη
tr
[

δG(0)

δη

]
− γ5τa δ

δη
tr
[

γ5τa δG(0)

δη

]}
= 0.

The solution of the leading approximation equation is the functional

G(0) = exp
{

Tr
(

S ∗ η
)}

,

where Tr is the operator trace and ∗ is the multiplication of operators. A function S (quark propagator)
in above formula for G(0) is the solution of following equation

δ(x) + i∂̂S(x) + igS(x) tr[S(0)] = 0. (4)

The leading approximation produces the linear iteration procedure in which the term with bilocal
source η must be considered to be perturbation [32,33]. Thus, we can construct the iteration scheme
for generating functional G

G = G(0) + G(1) + · · ·+ G(n) + · · · .

This series consists of the step-by-step solutions of the following equations

G(n) + i∂̂x
δG(n)

δη
+ ig

{ δ

δη
tr
[

δG(n)

δη

]
− γ5τa δ

δη
tr
[

γ5τa δG(n)

δη

]}
= η ∗ δG(n−1)

δη
. (5)

The functional G(n) is
G(n) = P(n)G(0).

Here P(n) are 2n -th degree polynomials on bilocal source η.
Leading-order correlator S is a quark propagator (a single-particle function). It is

Scd,jk = δcdδjk(m− p̂)−1, (6)

where m is the dynamical quark mass that is a solution of the gap equation of the NJL model in the
chiral limit

m = −8igmNc

∫ dq̃
m2 − q2 . (7)

(In our work, we include a phase factor in an integration over momentum space dq̃ ≡ d4q/(2π)4).
The basic order parameter, which defines a degree of DCSB, is a quantity

χ =< 0|ψ̄ψ|0 >= i trS(x)|x→0,

where we take the trace over all discrete indices. It is easy to see that from Equations (6) and (7)
it follows

χ = −m
g

. (8)

It is a regularization-independent formula.
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The quark chiral condensate c is defined for each flavor separately and in the chiral limit
considered here it is

c =
(

χ

2

)1/3

. (9)

Equation (7) is the main equation, which describes the principal phenomenon of NJL
model—DCSB. The divergent integral in Equation (7) should be considered to be a regularization
(see Section 3).

2.1. First-Step Equations

In this subsection we discuss the structure of first step of iteration scheme.
Gap Equation (7) always has the chiral-symmetric trivial solution m = 0. An energetically

preferable physical solution m 6= 0, i.e., a solution with DCSB also exists, and below we shall consider
a solution at m 6= 0 only.

The functional of the first step of iteration scheme can be represented as

G(1) =

{
1
2

Tr
(

S2 ∗ η2
)
+ Tr

(
S(1) ∗ η

)}
G(0). (10)

In this step two-quark function S2 and NLO correction S(1) to quark propagator emerge.
According to Equation (5) at n = 1 we obtain for two-particle functions S2 and NLO correction to

quark propagator S(1) following equations:

S2

(
x y
x′ y′

)
= −S(x− y′)S(x′ − y)

+ig
∫

dx1

{(
S(x− x1)S(x1 − y)

)
tru

[
S2

(
x1 x1

x′ y′

)]

−
(

S(x− x1)γ5τaS(x1 − y)
)

tru

[
γ5τaS2

(
x1 x1

x′ y′

)]}
, (11)

(here and hereafter tru denotes the upper line trace of functions S2) and

S(1)(x− y) = ig
∫

dx1S(x− x1)
{

S2

(
x1 y
x1 x1

)
− γ5τaS2

(
x1 y
x1 x1

)
γ5τa

}
+ ig

∫
dx1S(x− x1)S(x1 − y)tr[S(1)](0). (12)

These equations are reduced in the momentum space to a system of simple algebraic forms.
The graphical representations of two-quark function see on Figure 1, where the graphical notations of
Figure 2 are used.

Figure 1. Graphical representation of equation for two-quark function.

Figure 2. Diagram rules.
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2.2. Pion and Sigma-Meson

Let us go to the amputated two-quark function

F2 = S−1 ∗ S−1 ∗ S2 ∗ S−1 ∗ S−1, (13)

and separate the connected part of F2

Fc
2

(
x y
x′ y′

)
= F2

(
x y
x′ y′

)
+ S−1(x− y′)S−1(x′ − y). (14)

As a result of this procedure we get following equation for two-quark function Fc
2 :

Fc
2

(
x y
x′ y′

)
= −igδ(x− y)δ(x− y′)δ(x′ − y){1 · 1− γ5τa · γ5τa}

+igδ(x− y)
∫

dx1dy1

{
tru

[
S(x− x1)Fc

2

(
x1 y1

x′ y′

)
S(y1 − y)

]

− γ5τatru

[
γ5τaS(x− x1)Fc

2

(
x1 y1

x′ y′

)
S(y1 − y)

]}
. (15)

Accounting the color, flavor, and Lorentz structures of the inhomogeneous term of this equation
we obtain the general form of solution

Fc
2

(
x y
x′ y′

)
= δ(x− y)δ(x′ − y′){1 · 1Aσ(x− x′) + γ5τa · γ5τa Aπ(x− x′)}, (16)

where Aσ and Aπ are the sigma meson (scalar) and pion (pseudoscalar) amplitudes, correspondingly.
These are the solutions of the following equations

Aσ(x) = −igδ(x) + ig
∫

dx1tr[S(x− x1)S(x1 − x)]Aσ(x1), (17)

Aπ(x) = igδ(x)− ig
∫

dx1tr[γ5S(x− x1)γ5S(x1 − x)]Aπ(x1). (18)

Going to the momentum space and accounting for gap Equation (7), one gets

Aσ(p) =
1

4Nc(4m2 − p2)I0(p)
(19)

and
Aπ(p) =

1
4Nc p2 I0(p)

. (20)

Here
I0(p) =

∫
dq̃

1
(m2 − (p + q)2)(q2 −m2)

(21)

is the divergent single-loop integral that should be treated as some regularization.
The scalar and pseudoscalar amplitudes, as can be observed in Equations (19) and (20), contain the

simple poles, which indicate to the scalar particle with mass 2m (the sigma-meson) and to the massless
pseudoscalar particle (pion). Such appearance of the pseudoscalar massless particle (Goldstone boson)
in the spectrum has agree with the general Nambu-Goldstone-Bogoliubov (NGB) theorem.
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From equation S(1) (12) for the NLO correction to quark propagator we can calculate the meson
corrections to quark mass. This equation is transformed in the momentum space to a system of simple
algebraic forms, which contain the NLO mass operator Σ(1) = S−1 ∗ S(1) ∗ S−1. We obtain from (12):

Σ(1)(x) = S(x)Aσ(x) + 3S(−x)Aπ(x) + ig δ(x) tr[S(1)(0)]. (22)

3. Regularization Issue: DAR

The NJL model is based on the unrenormalized 4-fermion contact interaction, and the choice of
the regularization scheme is an important issue in the effective use of this model. The integral I0 in
frameworks of different regularizations is finite for P2 = 4m2 and for P2 = 0, (see, e.g., [8] for review)
(The NJL model as the effective model of QCD is based on the color-current expansion and the Fierz
transformation of the one-gluon exchange interaction (see, for example, [9] and references therein).
Such approach implies the presence of some parameter which regulates the ultraviolet properties of
the model. For this reason, a regularization with momentum cutoff seems to be very natural for this
model. Other regularizations, although they do not have such a transparent physical interpretation,
in some cases can be more convenient for computations or for the taking into account some special
properties of the model), but a most popular gauge-invariant dimensional regularization should be
used in this model with some special treatment.

We study in this section the NJL model with dimensional regularization in approach of Krewald
and Nakayama [34] (see also [45–51]). Contrary to renormalized models, a regularization parameter
of the NJL model is involved in formulas for observable quantities. This parameter is one of the
essentials for the NJL model. However, dimensional regularization parameter, which typically is
taken as a deviation of space dimension, does not allow any physical interpretation. Nevertheless,
a different approach to the dimensional regularization exists: it can be considered as a variant of
an analytical regularization. In this approach all calculations are made in 4D Euclidean momentum
space, and the regularization parameter is treated as a power of a weight function, which regularizes
divergent integrals. This approach to the dimensional regularization, based on ideas of Wilson and
Collins, was consistently developed and applied to the NJL model by Krewald and Nakayama [34]
in the mean-field approximation. We stress that in this treatment of dimensional regularization,
the regularization parameter is not at all a deviation in the physical dimension of space.

The general characteristics of the approach are:

(i) All computations are made in 4D Euclidean space;
(ii) Translational invariance is supposed;

(iii) The regularization procedure includes of modification of integration measure via the weight
function which provides the convergence of integrals.

In this connection we shall use the term “dimensionally analytical” for this regularization to
stress its properties which differ from the conventional approach of the dimensional regularization in
a formal D-dimensional space.

Let us study of the NJL model gap Equation (7) for example. After performing integration by
angles, the gap equation in the case m 6= 0 in Euclidean space is

2g
Ω4

(2π)4

∫ q2
e dq2

e
m2 + q2

e
= 1,

where Ω4 = 2π2. Let us (according the previous comment) include to the integrand the weight function

wΛ,D(q2
e ) = wΛ(q2

e )wD(q2
e ) = θ(Λ2 − q2

e )

(
µ2

q2
e

)2−D/2

.

The weight function wΛ,D is the product of two weight functions wΛ and wD. The first function
wΛ corresponds to the 4D cutoff regularization, and the second power function wD conforms to DAR.
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The integration over dq2
e results in

2gm2Ω4

(2π)4

(
m2

µ2

)D/2−2

B Λ2
m2+Λ2

(D/2, 1− D/2) = 1.

Here Bx(u, v)—the incomplete Beta-function.

(a) Cutoff: By setting D = 4, we have the following result:

κΛ

(
1− m2

Λ2 log(1 +
Λ2

m2 )

)
= 1, (23)

where

κΛ =
gNcΛ2

2π2 . (24)

(b) Dimensionally analytical regularization: When Λ2 → ∞, accounting for the formula
B1(D/2, 1− D/2) = Γ(D/2)Γ(1− D/2) and rescaling the scale parameter µ2 as

(µ2)2−D/2 =
ΩD
Ω4

(2π)4

(2π)D (M)2−D/2 (25)

we obtain

κΓ(1− D/2)

(
m2

4πM2

)D/2−2

= 1, (26)

where instead of g we introduce the dimensionless quantity

κ =
gNcm2

2π2 . (27)

Formula (26) corresponds exactly to the result of integration in D-dimensional space with
the prescription

dq̃ ≡ d4q
(2π)4 →

(M2)2−D/2dDq
(2π)D ,

however, in our situation the computation was performed in the usual 4D space, i.e., in our case D is
not a dimension of space. It is a parameter which enables the convergence. In particular, we are not
restricted by the limit D → 4 for the analysis of the results. We assume that a possible technique of
regularization parameter is a power of some supplementary factor—the measure of gluon influence
on the effective local 4-quark self-interaction of the NJL model.

We choose the regularization parameter ξ as: (The parameter ξ differs from the typically used
parameter ε = (4 − D)/2. They are related as ε = 1 + ξ. Introduction of this notation protect
unnecessary associations with the usual definition of the dimensional regularization.)

D = 2− 2ξ. (28)

In terms of the parameter ξ the gap Equation (26) is

κΓ(ξ)

(
4πM2

m2

)1+ξ

= 1. (29)
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The interval of convergence of the integral is 0 < ξ < 1. As we shall see below, this is also the
interval of the physical values of the model parameters.

The LO chiral condensate correspondingly is

(c3)(0) = i trS(0) = − m3

4π2

(
4πM2

m2

)1+ξ

Γ(ξ) = −m
g

.

Two-Quark Amplitude and Model Parameters in Leading Approximation

First-step two-quark amplitude A (a connected part of amputated two-quark function) possesses
the following color and flavor structure:

Acd,jk
c′d′ ,j′k′ = δcdδc′d′

[
δjkδj′k′Aσ + τa

jkτa
j′k′Aπ

]
. (30)

Here Aσ is the scalar amplitude, and Aπ is the pseudoscalar amplitude. In momentum space
these amplitudes of the NJL model depend on a momentum p only, where p is a sum of quark and
antiquark momenta. They have the form [46]:

Aσ(p) = − ig
1− LS(p)

, (31)

where LS(p) = ig
∫

dq̃ trS(p + q)S(q) is the scalar quark loop, and

Aπ(p) =
ig

1 + LP(p)
, (32)

where LP(p) = ig
∫

dq̃ trS(p + q)γ5S(q)γ5 is the pseudoscalar quark loop.
Using simple algebra and gap Equation (7), it is easy to obtain for Aσ and Aπ in above-mentioned

representations (19) and (20), where integral I0 (see (21)) can be calculated as above. Going to Euclidean
space, using a Feynman parameterization and changing an integration variable (which is possible due
to translational invariance of the procedure), we perform the angular integration. According to our
prescriptions, then we introduce into the integrand a weight function and calculate the integral over
dq2

e . For DAR we again obtain the result, which exactly corresponds to the result of integration with
the formal transition to D-dimensional space:

IDAR
0 (p2) =

i(4π)1+ξ Γ(1 + ξ)

(4π)2

∫ 1

0
du

(
M2

m2 − u(1− u)p2

)1+ξ

.

The integral over dq2
e converges at −1 < ξ < 1. Taking into account the gap Equation (29) we

obtain:

IDAR
0 (p2) =

i
(4π)2

ξ

κ

∫ 1

0
du

(
1− u(1− u)

p2

m2

)−1−ξ

=
i

(4π)2
ξ

κ
F(1 + ξ, 1; 3/2;

p2

4m2 ), (33)

where F(a, b; c; z) is Gauss hypergeometric function.
For 4D cutoff we correspondingly obtain:

IFDC
0 (p2) =

i
(4π)2

∫ 1

0
du
[
log
(

1 +
Λ2

m2 − u(1− u)p2

)
− Λ2

Λ2 + m2 − u(1− u)p2

]
. (34)
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Formulas for the condensate and the two-particle amplitudes allow to fix values of the model
parameters in the leading approximation of MFE. For this purpose, we use regularization-independent
Formulas (8), (9) and a formula for pion-decay constant in the NJL model (see [8]):

f 2
π = −4iNcm2 I0(0). (35)

For DAR we obtain from (33):

IDAR
0 (0) =

i
(4π)2

ξ

κ
, (36)

and for 4D cutoff (FDC) (see (34)):

IFDC
0 (0) =

i
(4π)2

[
log

Λ2 + m2

m2 − Λ2

Λ2 + m2

]
. (37)

Correspondingly we obtain for DAR very simple formula:

( f 2
π)

DAR =
ξ

2g
. (38)

For 4D cutoff the analogous formula is

( f 2
π)

FDC =
3m2

4π2

[
log(1 +

Λ2

m2 )−
Λ2

m2 + Λ2

]
. (39)

These formulas allow the definition of the values of principal model parameters. We choose
the value fπ = 93 MeV for the pion-decay constant. Since chiral quark condensate c is not directly
measured value, we shall determine sets of parameters for typical values of this quantity. For DAR it is
necessary also to fix a value of M (“subtraction point”). In work [45] we have used for this purpose
a value of decay width π0 → 2γ. Analysis of results of this work demonstrates that for very large
range of condensate values (from −160 to −250 MeV) the value of M is practically permanent and is
M ≈ 100 MeV. Since here we shall take M = 100 MeV.

The pseudoscalar amplitude associates with the pion, which in the chiral limit is a massless
Goldstone boson. In both regularizations under consideration we can define a pion propagator as a
pole term of the pseudoscalar amplitude:

Apole
π (p) =

1
4Nc I0(0)p2 , (40)

where I0(0) is defined by Equation (36) for DAR and by (37) for 4D cutoff.
The situation is different for the scalar amplitude. Function I0(p2) possesses in both

regularizations a cut which originates in the point p2 = 4m2. For 4D cutoff it is possible to define a
scalar sigma-meson propagator as

Apole
σ (p) =

1
4Nc I0(4m2)(4m2 − p2)

, (41)

since

IFDC
0 (4m2) =

i
(4π)2

[
log

Λ2 + m2

m2 +
Λ
m

arctan
m
Λ

]
is a finite quantity. However, for DAR IDAR

0 (4m2) is finite only at ξ < −1/2:

IDAR
0 (4m2)|ξ<−1/2 = − i

8gNcm2
ξ

1 + 2ξ
.
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To interpret the sigma-meson as a particle in the NJL model with DAR we use the following trick:
since in the interval −1 < ξ < −1/2 integral I0 converges we use the value in the point p2 = m2 as
a foundation for an analytical continuation of the pole part of the amplitude on parameter ξ to the
physical interval 0 < ξ < 1. Then the sigma-meson propagator for DAR will be

(Apole
σ (p))DAR =

2igm2(1 + 2ξ)

(4m2 − p2)ξ
. (42)

This formula was used for a computation of the sigma-meson contribution in chiral condensate in
work [45]. Surely, such procedure of definition of sigma-meson propagator seems to be a somewhat
artificial. A more consistent procedure is a separation of a leading singular part of amplitude in the
interval of physical values of regularization parameter ξ.

The separation of leading singularity near the point p2 = 0 results for the pseudoscalar amplitude
the same result (40), i.e., the pion in DAR possesses all properties of usual observable particle. For the
scalar amplitude it is not so. At p2 → 4m2 we have in interval 0 < ξ < 1:

IDAR
0

∼=
i
√

πΓ(ξ + 1/2)
16gNcm2Γ(ξ)

(
4m2

4m2 − p2

)ξ+1/2

,

and, correspondingly, the leading singularity is

(ALS
σ )DAR ∼= −

igΓ(ξ)√
πΓ(ξ + 1/2)

(
4m2

4m2 − p2

)1/2−ξ

, (43)

and the leading singularity of scalar amplitude in the model with DAR is of the fundamentally different
type in comparison with the cutoff model. Instead of the pole term, which can be naturally interpret as
sigma-particle propagator, we obtain for DAR the power behavior which depends on the regularization
parameter ξ. Thus, we come to the conclusion that for DAR at physical parameter values the scalar
amplitude Aσ does not possess a pole term, which can be interpret as a physical scalar meson.

4. Regularization Issue: Predictive Formulation of the Nambu-Jona-Lasinio Model and
Ghost Problem

A very interesting attempt for deliverance the NJL model from the regularization dependence
was made in the work [35] (see also [36,37]). The main idea of this approach is to avoid the explicit
evaluation of divergent integrals with any specific regularization. The finite parts of integrals are
separated of the divergent ones and are integrated without any regularization. Then the NJL model
becomes predictive in the sense that its consequences do not depend on the specific regularization
of divergent integrals. An important result of work [35] is a proof of the fulfillment of all symmetry
constraints. The choice of parameters results in the acceptable values of the quark mass and other
parameters of the model.

In this section we analyze some features of this computational scheme We shall name the
computational scheme of work [35] as the BDK approach, or the implicit regularization. In particular,
we point a connection of the BDK approach with the differential regularization of Gelfand and
Shilov [52]. The hard problem of the BDK approach is singularity of meson propagators in the
Euclidean region of momenta. The presence of this singularity (Landau pole, or Landau ghost [53])
prevents to any computations beyond the leading approximation. We discuss a modification of the
scheme (see also [38–40]), which is free of Landau poles and maintains the major features of the
BDK approach.

The leading approximation of the model is the mean-field approximation, which coincides with
the LO of 1/Nc–expansion. All correlation functions of the leading approximation are given in terms
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of single-loop integrals. The problem of computations of these integrals can be transformed to the
definition of following five divergent integrals (see [35]):

{I1; Iµ
1 } =

∫
dk̃

{1; kµ}
(k + k1)2 −m2 , (44)

{I2; Iµ
2 ; Iµν

2 } =
∫

dk̃
{1; kµ; kµkν}

[(k + k1)2 −m2][(k + k2)2 −m2]
. (45)

Here m is the dynamical (constituent) quark mass, which is a non-trivial solution of the gap
equation for the NJL model.

A basic tool for the definition of integrals (44) and (45) in the BDK approach is an algebraic
identity for the propagator function (see Equation (28) in work [35]). With the identity the
divergent parts of integrals (44) and (45) have been rewritten via three tensorial and two scalar
external-momentum-independent integrals which were treated in the sense of some unspecified
regularization. Then integrals (44) and (45) have been represented in terms of these five integrals and
two standard convergent integrals (see formulas of section III in work [35]).

In this connection we note some general regularization-independent property of integrals (44)
and (45), namely integrals {I1; Iµ

1 } and {I2; Iµ
2 ; } are connected with following relations

∂I1(k1; m2)

∂m2 = I2(k1, k1; m2) (46)

and
∂Iµ

1 (k1; m2)

∂m2 = Iµ
2 (k1, k1; m2). (47)

These expressions are regularization-independent and play a significant role in the method.
It is not so difficult to verify the validity of these relations for conventional regularization schemes.
However, their validity is not evident directly from above-mentioned formulas of work [35]. To prove
these relations, we must define derivatives of the external-momentum-independent integrals over
m2. For this purpose, we notice that derivatives of logarithmically divergent integrals are convergent
integrals and can be calculated without any regularization. This calculation gives us zero value for
derivatives of tensorial logarithmically divergent integrals. Then one can verify that the derivatives of
quadratically divergent integrals are the corresponding logarithmically divergent integrals. Taking
into accounting the circumstance we can easy to derive Equations (46) and (47) for BDK expressions
of integrals (44) and (45). Since relations (46) and (47) can be used for alternative definitions of
quadratically divergent integrals I1 and Iµ

1 without additional regularization, their importance is clear.
Using the expressions (44) and (45) for integrals in work [35], the symmetry constraints on

single-loop correlation functions have been analyzed. Based on these relations all symmetry properties
of the theory (such as Furry theorem, Ward identities, etc.) can be fulfilled for all single-loop correlation
functions. This point is one of the important results of [35]. From the point of view of above discussion
the BDK consistency relations simply assert zero values of corresponding integration constants.

The choice of parameters of the NJL model with Lagrangian (1) in the leading approximation
is mainly defined by two divergent integrals, namely logarithmically divergent integral I2 and
quadratically divergent integral I1. Integral I1 is a part of the gap equation

m = −8igNcm · I1, (48)

which defines dynamical (constituent) quark mass m. Integral I2 determines the structure of meson
propagators. Both these integrals can easily be defined with differential regularization without using
the above-mentioned algebraic identity for the propagator function.
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To define I2 one can use well-known technique of Gelfand and Shilov [52]. Specifically, let us
introduce new external variables p = k1 − k2 and P = k1 + k2. Then derivatives ∂I2/∂pµ , ∂I2/∂Pµ are
convergent integrals, and their computation gives us

∂I2

∂pµ
=

ipµ

16π2

∫ 1

0
du

u(1− u)
m2 − u(1− u)p2 ,

∂I2

∂Pµ
= 0. (49)

Basing on these results and using identity p2 ∂ f
∂p2 = 1

2 pµ
∂ f

∂pµ
, we naturally go to the following

definition:

I2(p2) = − i
16π2

∫ 1

0
du log

m2 − u(1− u)p2

m2
0

, (50)

where m0 is the integration constant. This expression coincides with the BDK ones if constant m0 is
related to I2(0) as

I2(0) = −
i

16π2 log
m2

m2
0

. (51)

The permutation of two limits—differentiation and regularization removing—is an essential
feature of the above computation. Sure, such permutation is implied also in work [35] in
the computations of finite parts. This permutation is an essence of Gelfand-Shilov differential
regularization [52], which is based on the infinite differentiability of generalized functions.

To define integral I1 we employ regularization-independent relation (46), which gives

I1 =
i

16π2 (m
2 log

m2
0

m2 + m2 −m2
1), (52)

where m2
1 is the integration constant of Equation (46). This definition also corresponds to BDK ones.

To calculate m0 and m1 and, therefore, to define I0 and I1 in full, we take into account two
regularization-independent relations of NJL model, namely

f 2
π =

4Ncm2

i
I2(0), (53)

where fπ is the pion-decay constant, and

χ = 2c3 =
8Ncm

i
I1, (54)

where χ =< 0|ψ̄ψ|0 > and c is the quark condensate. We have from Equation (53)

I2(p2) =
i

16π2

[4π2 f 2
π

Ncm2 −
∫ 1

0
du log(1− u(1− u)

p2

m2 )
]
. (55)

Then, using Equations (52) and (54), we obtain for m1

m2
1 = m2 +

4π2 f 2
π

Nc
− 4π2c3

Ncm
. (56)

Equation (56), which we shall refer as BDK equation, plays a key role in the BDK approach.

In terms of new variable x = − (Nc/2π2)1/3

c m Equation (56) can be rewritten as

x3 − 3ax + 2 = 0, (57)

where a = (Nc/2π2)2/3

3c2 (m2
1 −

4π2 f 2
π

Nc
). Depending on the value of parameter a, three cases are possible:
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(1) at a < 1 Equation (57) possesses one real negative root x1 < 0;
(2) at a = 1 Equation (57) possesses one negative root x1 = −2 and one positive root x2 = 1.
(3) at a > 1 Equation (57) possesses one negative root x1 < 0 and two positive roots 0 < x2 < 1 and

x3 > 1.

At c < 0 the second case (a = 1) alone is physically accepted. In work [35], only this case
as a solely possible choice for model parameters is taken. The value of the dynamical quark mass,
which corresponds to positive root x2 = 1 at Nc = 3, is m = −1.873 c. At condensate value
c = −250 MeV it gives m = 468 MeV. The coupling constant g can be extracted from the well-known
relation of the NJL model

g = −m/2c3, (58)

which is also regularization-independent (see, e.g., [8]). Noteworthy, the quark-mass value and the
coupling value depend on the quark condensate value only, and do not depend on the pion constant
value. The last one defines the value of m1, which is m1 = 879 MeV at fπ = 93 MeV.

Let us compare the parameter values of the BDK approach with the parameter values of
other regularizations. The value of quark mass (468 MeV) in the BDK approach is noticeably
greater compared to the values in the 4D momentum cutoff regularization (236 MeV) and the
Pauli-Villars regularization (240 MeV) (at given value of quark condensate c = −250 MeV).
Moreover, the quark-mass dependence on the condensate value is quite different. In the BDK
approach the quark mass is proportional to the condensate, whereas in four-momentum cutoff and
Pauli-Villars regularization the quark-mass increases at decreasing the absolute value of condensate.
At c = −210 MeV the quark mass is m = 393 MeV in the BDK approach and m = 423 MeV in the 4D
momentum cutoff. At the same time, from the point of view of the phenomenology the parameter
values in BDK approach are quite reasonable, and expressions for the correlation functions are much
simpler in comparison with any traditional regularization.

Analytical properties of correlation functions in the Euclidean region manifests an essential
difference of the BDK approach from other regularizations. Meson propagators in the BDK
approach possess a non-physical singularity—a pole at the negative momentum square
p2

L = −4.29m2 = −(969 MeV)2.
The existence of similar pole was discovered firstly in quantum electrodynamics [53].

The existence of the Landau ghost in a system of fermions coupled to a chiral field has been observed
in work [54]. It is a characteristic feature of theories without an asymptotic freedom in deep-Euclidean
region. This Landau pole is a serious problem of the BDK approach, since any calculations with
meson loops become problematic. Though a subject of [35] is a single-loop approximation, and such
calculations exceed the framework of this work, its impracticability means a principal impossibility of
computations of corrections to leading approximation and cannot be acceptable.

Moreover, due to the smallness of fine structure constant α the Landau pole in quantum
electrodynamics is in the very distant asymptotic region ((M2

L)
QED ' −m2

e exp{ 3π
α }, where me is the

electron mass and α ' 1/137), and its presence can be neglected. Indeed, at the much smaller energies
the quantum electrodynamics becomes a part of an asymptotically free grand unification theory with
self-consistent asymptotic behavior. In the NJL model with the implicit regularization the situation
is different. The Landau pole is placed near the physical area of the model, and above reasoning is
impossible in principle, since Landau mass value M2

L = −p2
L only twice larger in comparison with the

quark mass: ML ' 2m. The conventional regularizations, such as the 4D cutoff or the Pauli-Villars
regularization, are free on this problem—the meson propagators in these regularizations do not have
the Landau poles. Therefore, BDK approach, with a certain appeal and simplicity, contains the serious
shortcoming as the nearby Landau pole.
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Hence, a compromise approach is needed, which maintains the major features of implicit
regularization and at the same time solves the problem of the Landau pole. Such compromise can be
reached with the Feynman regularization for logarithmically divergent integral I2:

Ir
2(p2) =

∫ d4q
(2π)4

{ 1
(m2 − (p + q)2)(m2 − q2)

− 1
(M2

r − (p + q)2)(M2
r − q2)

}
, (59)

where Mr is a regulator mass (M2
r > m2), and the definition of quadratically divergent integral I1 as

before is made by Equation (46).
At p2 < 0 integral (59) can be rewritten as

Ir
2 =

i
16π2 F(− p2

m2 ),

where

F(x) =
∫ 1

0
du log

M2
r /m2 + u(1− u)x
1 + u(1− u)x

. (60)

One easily can prove the absence of zeroes of this function at x > 0. Evaluating elementary

integrals in Equation (60) and introducing variables v = 1
2 (
√

1 + 4
x − 1) and vr =

1
2 (
√

1 + 4M2
r

xm2 − 1)
we obtain the following expression:

F = 2
[
log

1 + vr

1 + v
+ vr log(1 +

1
vr
)− v log(1 +

1
v
)
]
. (61)

Since M2
r > m2, then vr > v, and from elementary inequalities log 1+vr

1+v > 0 and vr log(1 + 1
vr
) >

v log(1 + 1
v ) it follows that F > 0, i.e., the meson propagators do not possess the Landau pole with

this definition. Other features of this modified regularization are similar to implicit regularization.
In particular, for this modified regularization

Ir
2(0) = −

i
16π2 log

m2

M2
r

, (62)

and I1 is defined by same formula (52) with substitution m0 → Mr, i.e., integration constant m0

everywhere is substituted by regulator mass Mr. This re-definition of I1 still implies an existence of
additional parameter m2

1, which is the integration constant of equation (46). Furthermore, Equation (56)
for the quark mass m, has the same form for the modified regularization, and, consequently,
all parameter values are the same. Note that the condition M2

r > m2 is the direct consequence
of formula (53). Therefore, this modification conserves main features of the implicit regularization
and simultaneously solves the problem of Landau pole. (An alternative method ridding the Landau
ghost is the method of [55], based on the Källen–Lehmann representation. This method has been
used in work [56] to the chiral σ-model. However, in the framework of the implicit regularization the
suggested technique is likely to be preferable since this regularization deals with a set of integrals
while the method of [55–57] should be used to the proper two-point functions)

To define divergent integrals (44) and (45) one can use the following rules for integrals (45):

{I2; Iµ
2 ; Iµν

2 }
r = {I2; Iµ

2 ; Iµν
2 }

BDK(m2)− {I2; Iµ
2 ; Iµν

2 }
BDK(M2

r ). (63)

(The upper index BDK means that each integral with mass m or Mr is given by formulas of [35]).
Then integrals (44) are defined by Equations (46) and (47). With such definitions integrals I2 and Iµ

2 are
convergent without additional regularization. A consistency relation is the coincidence of integration
constants, and Iµ

1 = −kµ
1 I1 as in the BDK approach.

It should be noted that due to linearity of the consistency constraints considered in work [35],
the analysis of symmetry conservation, which was made in this paper, can be carried to the proposed
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modification too. (For the more details of the modified implicit regularization see work [38]. Further
developments of these ideas see in works [39,40])

5. Meson Contributions in Chiral Condensate and in Quark Propagator

Although for most phenomenological applications of the NJL model enough to consider the LO
of MFE, or the LO of 1/Nc-expansion (In the LO the results of both approaches coincide), an analysis
of the structure of the NJL model in NLO of the expansions also of considerable theoretical interest
(see [58–65] and refs. therein). This analysis is necessary for clarification of the area of applicability of
results and their stability under a variation of parameters and quantum fluctuations due to higher-order
effects (Please note that the destabilization induced by the quantum fluctuations do not necessarily
have the direct physical meaning due to absence of the confinement mechanism in the NJL model).
In this section, we will discuss such corrections in the framework of MFE.

First-order equations of the MFE (see [41–43,45]) define corrections to quark propagator.
First-order mass operator Σ(1) = S−1 ∗ S(1) ∗ S−1, where S(1) is a first-order correction to quark
propagator, is defined in x-space by equation

Σ(1)(x) = S(x)Aσ(x) + 3S(−x)Aπ(x) + igδ(x)trS(1)(0). (64)

Introducing dimensionless first-order mass functions a(1) and b(1):

Σ(1) ≡ a(1) p̂− b(1)m, (65)

and defining the first-order condensate

χ(1) = itrS(1)(0) (66)

and a ratio of the first-order condensate to the LO condensate

ρ ≡ χ(1)/χ(0),

we obtain from (64) the expressions for a(1) and b(1) in momentum space:

p2a(1)(p2) =
∫

dq̃
p2 − (pq)

m2 − (p− q)2 [Aσ(q)− 3Aπ(q)], (67)

b(1)(p2) = ρ−
∫ dq̃

m2 − (p− q)2 [Aσ(q) + 3Aπ(q)]. (68)

It follows from Equations (67) and (68) that the corrections to quark propagator consist of two
parts: pion corrections (due to pseudoscalar amplitude Aπ) and contributions due to scalar amplitude
Aσ: a(1) = a(1)π + a(1)σ ; b(1) = b(1)π + b(1)σ .

For the ratio of the first-order condensate (66) to the LO condensate (8) we obtain

ρ = −gχ(1)/m = −8igNc

∫
dp̃

2p2a1 − (m2 + p2)b1

(m2 − p2)2 . (69)

After the computation, the condensate corrections one can to define the corrections to quark mass.
Inverse quark propagator is

m− p̂− Σ(1) = b(p2)− a(p2) p̂ = (1 + b(1))m− (1 + a(1)) p̂.
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If the propagator has a pole in point p2 = m2
r , then b(m2

r ) = mra(m2
r ), and expanding a(1)(m2

r )

and b(1)(m2
r ) near the point m one obtains the formula for the quark-mass correction δm ≡ mr −m:

δm/m ∼= b(1)(m2)− a(1)(m2). (70)

5.1. Pion Contribution

The contributions of pion to the quark propagator are

p2a(1)π (p2) = −3
∫

dq̃
p2 − (pq)

m2 − (p− q)2 Aπ(q), (71)

b(1)π (p2) = ρπ − 3
∫ dq̃

m2 − (p− q)2 Aπ(q). (72)

We shall use the pole approximation (40) for the calculation of these contributions. The pion
contribution to first-order condensate is calculated by formula (69). The integral over dp can be
calculated for DAR in closed form, and the result is the very simple expression:

(ρπ)
DAR =

3
8Ncξ

. (73)

(See also [45], where this result has been found by a slightly different method.)
For the calculation of the pion contribution 4D-cutoff regularization we use Equations (40) and

(37). Further the pion contribution in condensate is calculated with formula (69). For 4D cutoff the
result for ρπ is not described by a simple formula, as for DAR. Nevertheless, the computation is no
any troubles. Note that whereas in DAR ρπ is a function of regularization parameter ξ, in 4D cutoff
this quantity is a function of ratio x ≡ Λ2/m2:

(ρπ)
FDC = ρπ(Λ2/m2).

As examples we give values of (ρπ)FDC for two characteristic values of this ratio. At x = 3
(this value corresponds to value c(0) = −210 MeV of the LO condensate) the computation gives
(ρπ)FDC = −0.272. At x = 19 (this value corresponds to value c(0) = −250 MeV of the LO condensate)
the computation gives (ρπ)FDC = −0.183.

To calculate the pion contribution in quark mass we apply Equation (70). As a result, we obtain:(
δm(π)

m

)DAR

= (ρπ)
DAR − 3

8Ncξ
= 0, (74)

i.e., for the DAR, the pion correction to quark mass equal zero.
For 4D cutoff the pion correction to quark mass is(

δm(π)

m

)FDC

= (ρπ)
FDC +

3
Nc

hπ(Λ2/m2), (75)

where

hπ(x) =
log(1 + x)

8[log(1 + x)− x
1+x ]

.

Signs of (ρπ)FDC(x) and hπ(x) are opposite, and their contributions in δm are mutually
cancelled. As for the DAR, the pion correction to quark mass is zero. We obtain this result,
unlike to the exact result (74) of DAR, by computations in a framework of given accuracy of inputs.
Such coincidence of results in both regularizations suggests an idea that the zero-pion correction to
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quark mass is the regularization-independent fact of NJL model. However, we cannot to proof this
suggestion analytically.

5.2. Scalar Contribution

In this subsection we consider contributions of scalar amplitude Aσ in the chiral quark condensate
and in the mass of quark. In correspondence with (68) and (67) we have

p2a(1)σ =
∫

dq̃
p2 − (pq)

m2 − (p− q)2 Aσ(q), (76)

b(1)σ = ρσ −
∫ dq̃

m2 − (p− q)2 Aσ(q). (77)

To calculate these contributions, we use the leading-singularity approximation:

ALS
σ =

1
4Nc(4m2 − p2)I0(p2)|p2→4m2

.

For the DAR, this approximation is described by Equation (43). From Equation (69) we obtain
the quantity ρσ. A computation gives us the following values for sigma-contribution: at ξ = 0.25 we
obtain (ρσ)DAR = −0.033; at ξ = 0.4 we get (ρσ)DAR = −0.01. As one can see the contribution from
sigma is small and possesses the opposite sign in comparison of the pion contribution, i.e., it decreases
the common contribution.

In the case of the 4D cutoff the leading-singularity approximation for Aσ coincides with the pole
approximation (41). The quantity of ρσ , as ρπ , for the 4D cutoff is a function of x ≡ Λ2/m2:

(ρσ)
FDC = ρσ(Λ2/m2).

At x = 3 we find (ρσ)FDC = −0.007. At x = 19 we obtain (ρσ)FDC = −0.116. In contrast to the
DAR, the sign of contribution for sigma is the same as for pion contribution.

A correction from sigma to quark mass for DAR is(
δm(σ)

m

)DAR

= (ρσ)
DAR − cos πξ

41+ξ Ncπ(1/2− ξ)
(78)

and at ξ = 0.25 : δmDAR
(σ) = −0.086m, at ξ = 0.4 : δmDAR

(σ) = −0.056m. Since a pion correction to
quark mass in this regularization equals zero, these values are full corrections to quark mass for DAR.

For the 4D cutoff the correction from sigma to quark-mass is(
δm(σ)

m

)FDC

= (ρσ)
FDC − 1

Nc
hσ(Λ2/m2), (79)

where

hσ(x) =
4 log(1 + x/4)− log(1 + x)

8[log(1 + x) +
√

x arctan
√

1
x ]

.

At x = 3: δmFDC
(σ)

= −0.022m; at x = 19: δmFDC
(σ)

= −0.158m.
Let consider an issue on accuracy of above computations. A main approximation is the

leading-singularity approximation. Although the leading singularity gives a main contribution in an
integral, nevertheless let consider a part of other terms. To estimate their part for DAR let us apply the
expressions of amplitudes at ξ = 1/2. A computation with formulas (67)–(69) demonstrates that the
contributions of non-pole terms in chiral condensate equal zero. Since the values of parameter ξ are
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near this point, we can maintain that at ξ 6= 1/2 their contributions are also small in comparison with
the main pole-pion contribution.

In the case of 4D cutoff the computations with exact formulas (19) and (20) for the amplitudes also
demonstrate, that pole approximation in the case gives the main contribution in condensate. Therefore,
at x = 3 the computation with the exact formulas (19) and (20) gives for the pion contribution
ρπ = −0.267, i.e., differs from the result of pole approximation less than on 2%. For contribution from
sigma the difference is more significant: the computation with the exact formulas gives ρσ = −0.031,
but since this contribution is much less in comparison with the pion contribution, this difference again
practically does not affect to final result.

5.3. Improved Model Parameters

In this subsection we discuss the modification of the model parameters with the calculated
corrections. We modify an expression for the condensate as follows:

χ = χ(0) + χ(1) = −m
g
(1 + ρ). (80)

The formula for fπ (see (35)) stays the same, since corrections to amplitudes generate in the next
(second) order of MFE. The quark mass:

mr = m + δm,

where δm is defined by Equation (70). For 4D cutoff the system of Equations (80), (39) and (23),
which determines these parameters, has no solution at fπ = 93 MeV and at |c| ≤ 230 MeV. There
is very important circumstance—for 4D cutoff the meson contributions can destabilize the NJL
model. Though these contributions are relatively small (they do not exceed 25% from the leading
contribution), but their opposite sign results in a non-stability of all the system. At that for DAR,
the situation is principally different: due to the positivity of the meson contribution in condensate for
this regularization a stabilization of the model takes place. The quark mass mr almost does not depend
on c, and values of regularization parameter ξ increase in comparison with corresponding LO values,
i.e., shift to an area of stability of model, where meson contributions decrease.

As it follows from results of this section, the NJL model with DAR is stable with respect to
quantum fluctuations caused by scalar-amplitude contributions in chiral condensate, whereas for
the NJL model with 4D cutoff the meson contributions can lead to destabilization. Surely, several
physical applications of the NJL model are connected exclusively with the LO of MFE (mean-field
approximation), and the possibility of such destabilization can be ignored. On the other hand, some
physical applications of the NJL model exist that connected with multi-quark functions (see below),
for which a neglecting by the meson contributions in quark propagator is certainly non-correct from
the point of view of the MFE and, consequently, the stability of basic model parameters with respect to
these contributions becomes essential.

6. The Corrections to the Two-Quark Function and the Legendre Transform

In this section, we apply the method of the Legendre transform with respect to a bilocal
source [30,31] to find the corrections the two-quark function in the NJL model. The principal problem
in the computation of the corrections to the two-particle amplitude is the constraints imposed by chiral
symmetry. An effective way to solve this problem is the Legendre transform method.

We go from generating functional G to the logarithm Z = 1
i log G and define the quark propagator

as a functional of source η

S(x, y|η) = i
δZ[η]

δη(x, y)
. (81)
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Then we consider relation (81) as an equation for η = η[S] and define the generating functional of
the Legendre transform (effective action) as a functional of S:

Γ[S] = Z[η[S]] + i Tr[S ∗ η[S]]. (82)

From Equations (81) and (82) we obtain.

1
i

δΓ
δS(x, y)

= η(x, y). (83)

Taking into account these definitions and relation (83) we can rewrite SDE (3) as follows

1
i

δΓ
δS(x, y)

= S−1(x, y) + i∂̂δ(x− y) + igδ(x− y){tr[S(x, y)] + iγ5τa tr[iγ5τaS(x, y)]}

+ ig
∫ {

S2

(
x y1

x x

)
S−1(y1, y) + iγ5τaS2

(
x y1

x x

)
iγ5τaS−1(y1, y)

}
dy1, (84)

where

S2

(
x y
x′ y′

)
= i

δ2Z
δη(y, x)δη(y′, x′)

=
δS(x, y)

δη(y′, x′)
(85)

is two-quark function. This function as a functional of S is defined by the relation

∫
S2

(
x y
y1 x1

)
δη(x1, y1)

δS(y′, x′)
dx1dy1 =

∫
S2

(
x y
y1 x1

)
1
i

δ2Γ
δS(y′, x′)δS(y1, x1)

dx1dy1

= δ(x− y′)δ(x′ − y), (86)

which is, in fact, the equation for the two-quark function in the formalism of the Legendre transform
with respect to the bilocal source η. The kernel K of this equation is defined as the connected part of the
second derivative of the generating functional of the Legendre transform and is given by the relation

δη(x, y)
δS(y′, x′)

= −S−1(x, y′)S−1(x′, y) + K

(
x y
x′ y′

)
. (87)

Going to amputated two-quark function (13) and taking its connected part (14) we obtain the
equation for connected part Fc

2 of the amputated two-quark function (the two-quark amplitude):

Fc
2

(
x y
x′ y′

)
= −K

(
x y
x′ y′

)

+
∫

S(y1, x2)Fc
2

(
x y
x2 y2

)
S(y2, x1)K

(
x1 y1

x′ y′

)
dx1dx2dy1dy2. (88)

One of principal things in a theory with spontaneous chiral symmetry breaking is the chiral Ward
identity. This identity relates the axial vector part of the two-quark function to the propagator and has
the following form:

tru

[
τaγ5i∂̂zS2

(
z z
x y

)]
= δ(z− y)S(x− z)γ5τa + δ(z− x)τaγ5S(z− y). (89)

The most important consequence of this relation is that the function S2 should have a simple pole
of the form 1/P2 in the quark-antiquark channel (here P = px + py is the total momentum) in the
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case of DCSB. This pole means that a massless pseudoscalar particle (Goldstone boson) appears in the
spectrum of the theory in full accordance with the NGB theorem.

We stress that this identity is a model-independent relation for any local theory with chiral
symmetry and should hold in both the NJL model and QCD-type fundamental theory. In terms of the
generating functional of the Legendre transform, this identity reads

τaγ5i∂̂z(δ(x− z)δ(z− y)) =
∫

tru

[
δη(z, x1)

δS(y, x)
S(x1, z)γ5τa + τaγ5S(z, x1)

δη(x1, z)
δS(y, x)

]
dx1. (90)

This equation indicates that to check the chiral Ward identity in the Legendre transform
formalism, there is no need to calculate the two-quark function, and it suffices to check it for kernel
K. The mean-field approximation for the generating functional of the Legendre transform is SDE (84)
without the last two terms:

η0(x, y) =
1
i

δΓ0

δS(y, x)

= S−1(x, y) + i∂̂δ(x− y) + igδ(x− y){tr[S(x, y)] + iγ5τatr[iγ5τaS(x, y)]}. (91)

Equation (91) with the switched-off source is the equation for the quark propagator in the leading
approximation (see Equation (4)), whose solution is Equation (6).

By differentiation with respect to S we obtain from Equation (91):

1
i

δ2Γ0

δS(y′, x′)δS(y, x)
= −S−1(x, y′) · S−1(x′, y)

+ igδ(x− y)δ(x′ − y′)δ(x− y′){1 · 1 + iγ5τa · iγ5τa}. (92)

The connected part of this expression (i.e., the second term in the r.h.s.) is kernel K in the LO of
the MFE for the NJL model. With the direct calculation, we can easily see that chiral Ward identity (90)
holds in the leading approximation. Prior the computation the two-quark amplitude, we can thus be
sure that the mean-field approximation in the Legendre transform formalism satisfies to the major
symmetry requirement of the NJL model in the chiral limit, namely the NGB theorem.

The equation for the generating functional of the Legendre transform with corrections has
the form,

η(x, y) = S−1(x, y) + i∂̂δ(x− y) + igδ(x− y){tr[S(x, y)] + iγ5τatr[iγ5τaS(x, y)]}+ 1
i

δΓ1

δS(y, x)
, (93)

where

1
i

δΓ1

δS(y, x)
= ig

∫
{S(x, x1)trd[S(x, x2)F0

(
x1 y
x2 y2

)
S(y2, x)]

+
(

iγ5τaS(x, x1)
)

trd[iγ5τaS(x, x2)F0

(
x1 y
x2 y2

)
S(y2, x)]}dx1dx2dy2. (94)

and F0 is the LO two-quark function. Using the equation for F0, we can obtain the more
compact expression

1
i

δΓ1

δS(y, x)
=
∫

S(y1, x1)Fc
0

(
x1 y
x y1

)
dx1dy1. (95)

The differentiation of Equation (95) with respect to the functional variable S yields the correction
to the kernel of the Bethe-Salpeter equation (BSE) for the two-particle function:
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K1

(
x y
x′ y′

)
= Fc

0

(
x′ y
x y′

)
+
∫

S(y1, x1)

δFc
0

(
x1 y
x y1

)
δS(y′, x′)

dx1dy1. (96)

The result is

δFc
0

(
x y

x′′ y′′

)
δS(y′, x′)

= −δ(x′′ − y′′)
{

Aσ(x′′ − y′)
∫

Fc
0

(
x y
x′ y1

)
S(y1 − y′)dy1

+Aσ(x′ − y′′)
∫

S(x′ − x1)Fc
0

(
x y
x1 y′

)
dx1

+iγ5τa
[

Aπ(x′′ − y′)
∫

Fc
0

(
x y
x′ y1

)
S(y1 − y′)iγ5τa dy1

+Aπ(x′ − y′′)
∫

iγ5τaS(x′ − x1)Fc
0

(
x y
x1 y′

)
dx1

]}
. (97)

This equation together with (96) yields the correction to the kernel of the BSE for the two-particle
function. As can be seen, this correction consists of the one-meson and two-meson contributions.

The principal problem of the computation of corrections to the two-quark amplitude is the
requirement that these corrections correspond to the NGB theorem. The chiral Ward identity holds true
in the determinations of these corrections by the Legendre transform method. Therefore, this method
ensures the validity of the NGB theorem. Checking the chiral Ward identity for the kernel of the
BSE including corrections (96) and (97) is a less trivial procedure than similarly verifying the leading
approximation. Nevertheless, the result is positive for this case as well. The obtained result shows that
the considered approximation is physically reasonable, i.e., it is a symmetry-preserving approximation
for calculating the corrections to the two-particle function (for the more details of this computation
see [44]).

7. The Equations for Multi-Quark Functions

In this section, we will focus on multi-quark functions in NJL model and discuss their
field-theoretical status. The multi-quark functions give us a fundamental opportunity to significantly
expand the field of application of the model. Therefore, the three-quark function describes the decay
σ → ππ. The solution of the equation for three-particle function permits also to close the equation
for NLO two-particle function and to calculate a correction to pion-decay constant. The four-quark
function S(1)

4 gives us possibility to describe the pion-pion scattering in quark fields context.

7.1. Four-Quark and Three-Quark Functions

The generating functional of second step is

G(2) [η] =

{
1
4!

Tr
(

S4 ∗ η4
)
+

1
3!

Tr
(

S3 ∗ η3
)

+
1
2

Tr
(

S(1)
2 ∗ η2

)
+ Tr

(
S(2) ∗ η

)}
G(0).

The equations for four-quark and three-quark functions see on Figures 3 and 4.
From the second step of the iteration scheme we obtain four-quark function S4, three-quark

function S3, and also NLO two-quark function S(1)
2 and NNLO quark propagator S(2). For these

functions we have a system of four integral equations. These equations and all equations of following
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steps of the iteration scheme possess the structure, which is similar to the structure of Equation (11)
(We shall use operator notations for the bulky formulas of this section. For full content see [66–68]):

Sn = S0
n + ig

{(
S⊗ S

)
∗ trSn −

(
S⊗ γ5τaS

)
∗ tr
[

γ5τaSn

]}
, (98)

and differ from each other by the structure of inhomogeneous terms S0
n. The inhomogeneous term in

the equation for four-quark function S4 is

S0
4 = −3S⊗ S⊗ S2, (99)

where S2 is defined by Equation (11), i.e., the equation for S4 does not include another three
second-step functions. The inhomogeneous term in the equation for three-quark function S3 includes
four-quark function S4, two-quark function S2, NLO quark propagator S(1) and LO quark propagator
S. This inhomogeneous term is as follows

S0
3 = −2S⊗ S⊗ S(1) − 2S⊗ S2 + ig S ∗

{
trS4 − γ5τatr

[
γ5τaS4

]}
. (100)

Inhomogeneous terms of other second-step equations ( (S(1)
2 )0 and (S(2))0) see in Appendix A of

work [68].
The solution of the system should be started with the equation for four-quark function S4,

then should be solved the equation for three-quark function S3, etc.
For four-quark correlation function S4 with inhomogeneous term (99) we obtain simple

disconnected solution:
S4 = 3S2 ⊗ S2. (101)

The graphical representation for the solution of equation for four-quark function see on Figure 5.
The disconnection means the absence of physical effects due to four-particle functions in the given
order of MFE, and the pion-pion scattering cannot describe in the given order. It will be appearing
only in next step of iteration scheme (third order of MFE).

The expression for the four-quark function gives us the closed equation of type (98) for three-quark
function S3. The inhomogeneous term of this equation is

S0
3 = −2S⊗ S⊗ S(1) − 2S⊗ S2 + ig

{
tr
[

S ∗ S2 ⊗ S2

]
+ 2 tr

[
S ∗ (S2 ⊗ S2)

]}

−ig
{

tr
[

S ∗ γ5τaS2 ⊗ γ5τa1 S2

]
+ 2 tr

[
S ∗ (γ5τaS2 ⊗ γ5τa1 S2)

]}
.

The solution can be obtained likewise to solving of Equation (11) for the two-quark function.
We can go to the amputated function

F3 = S−1 ∗ S−1 ∗ S−1 ∗ S3 ∗ S−1 ∗ S−1 ∗ S−1. (102)

Then we should separate the functions with the same algebraic structures, which are reproduced
by iterations. The connected part of the amputated three-quark function possesses two-meson and
three-meson contributions: Fc

3 = Ftwo−meson
3 + Fthree−meson

3 , where Ftwo−meson
3 is a quadratic functional

of Aσ and Aπ , and Fthree−meson
3 is a functional of third degree.
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Figure 3. Graphical representation of equation for four-quark function.

Figure 4. Graphical representation of equation for three-quark function.

Figure 5. Graphical representation for the solution of equation for four-quark function.

7.2. VERTEX σππ

As a first step in an investigation of three-quark function we shall solve a problem of definition of
σππ−vertex with composite sigma-meson and pions. We introduce a function

Wab
σππ(xx′x′′) ≡ tr

[
S3

 x x
x′ x′

x′′ x′′

 γ5
τa

2
γ5

τb

2

]
(103)

and define scalar vertex Vσ(xx′x′′) ≡ 2iNc
∫

dx1vS(xx′x1)∆σ(x1 − x′′), where

vS(xx′x′′) = tr[S(x− x′)S(x′ − x′′)S(x′′ − x)]

and pseudoscalar vertex Vab
π (xx′x′′) ≡ 2iNc

∫
dx1vP(xx′x1)∆ab

π (x1 − x′′), where

vP(xx′x′′) = tr[S(x− x′)γ5S(x′ − x′′)γ5S(x′′ − x))].

With these definitions we obtain for vertex function Wab the following equation:

Wab
σππ(xx′x′′) = Wab

0 (xx′x′′)

+ 2igNc

∫
dx1lS(x− x1)Wab

σππ(x1x′x′′), (104)

where lS(x) ≡ tr[S(x)S(−x)] is the scalar quark loop. Inhomogeneous term Wab
0 is:

Wab
0 (xx′x′′) = Vab

π (xx′x′′) + Vab
π (xx′′x′)

+4ig
∫

dx1Va1a
π (xx1x′)Sa1b

π (x1 − x′′)

+4ig
∫

dx1Va1b
π (xx1x′′)Sa1a

π (x1 − x′)

−ig
∫

dx1(Vσ(xx1x1)− 4Va1a1
π (xx1x1))Sab

π (x′ − x′′).
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Using above definitions, we have:

[Wab
0 (xx′x′′)]con

= −2Nc

∫
dx1dx2vP(xx1x2)[∆

a1a
π (x2 − x′)∆a1b

π (x1 − x′′)

+∆a1b
π (x2 − x′′)∆a1a

π (x1 − x′)].

The Equation (104) can be easy solved in the momentum space and its solution is

Wab
σππ(pp′p′′) = i∆σ(p)Wab

0 (pp′p′′), (105)

where p is σ−mesons momentum, and p′, p′′ are pion momenta: p = p′ + p′′.
The connected part of Wab is the decay amplitude σ→ ππ. It has the following form:

[Wab
σππ(pp′p′′)]con

=
2Nc

i
∆σ(p)[vP(pp′p′′) + vP(pp′′p′)]∆aa1

π (p′)∆a1b
π (p′′). (106)

(See also Figure 6).
The above calculation is, of course, purely illustrative in view of the very uncertain experimental

status of the sigma meson.

Figure 6. The connected part of sigma-pion-pion-vertex.

7.3. NLO Two-Particle Function and Correction to Pion-Decay Constant

The solution of the equation for three-particle function permits to close the equation for
NLO two-particle function which enables calculation of a correction to pion-decay constant fπ .
The pion-decay constant is defined as

i fπδbb′Pµ =< 0|Jb
µ5|P, b′ >,

where |P, b > is the pion state with momentum P and isospin b, and Jb
µ5 = ψ̄γµγ5

τb

2 ψ is the axial

current. If the two-particle function has a pole term Spole
2 , which corresponds to the pion, then, taking

into account these definitions, this pole term is connected with the pion-decay constant by relation

(2π)4δ(P− P′) f 2
π = i

∫
dxdx′ei(Px−P′x′) tru,d[γµγ5

τa

2
· γµγ5

τa

2
Spole

2

(
x x
x′ x′

)
]. (107)

Here tru,d denotes the traces over up and down lines of function Spole
2 .

In the LO we obtain from (107) the well-known expression for the pion-decay constant ( f (0)π )2

(see Equation (53))
In the NLO formula (107) defines correction ( f (1)π )2 to expression (53). Surely, to calculate this

correction, it is no need in a complete solution of the NLO two-particle equation. In correspondence
with (53) it is quite enough to calculate the pion-pole part only.
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The results of calculation in the scheme with four-dimensional cutoff, which correspond to
different values of quark condensate c = ( 1

2 < ψ̄ψ >)1/3 at physical value of pion-decay constant
fπ = 93 MeV demonstrate that the correction to value of the pion-decay constant increases from 14%
to 28% when the absolute value of the quark condensate increases from (0.21 GeV)3 to (0.25 GeV)3.
These values of the correction to pion-decay constant are not far from results of computations in
works [62,63], though the method of computations is different.

7.4. Structure of Third Step of Iterations

As we have showed above the equation for the four-quark function S4 has a simple disconnected
solution which is the product of first-order two-quark functions (see Equation (101)). As it seen from
this solution, the pion-pion scattering in NJL model is suppressed, i.e., in the second order of MFE
this scattering is absent. This process arises in the third order of our iterative scheme, i.e., in NLO
four-quark function S(1)

4 . The equation for NLO four-quark function S(1)
4 gives us possibility to describe

the pion-pion scattering in quark fields context. A complete solution to this problem is a subject for
future research and is beyond the scope of our work. The following remarks should be considered as
an introduction to the solution of this problem.

Generating functional of third step is

G(3) [η] =

{
1
6!

Tr
(

S6 ∗ η6
)
+

1
5!

Tr
(

S5 ∗ η5
)
+

1
4!

Tr
(

S(1)
4 ∗ η4

)

+
1
3!

Tr
(

S(1)
3 ∗ η3

)
+

1
2

Tr
(

S(2)
2 ∗ η2

)
+ Tr

(
S(3) ∗ η

)}
G(0).

After standard operations we obtain the equations for six-quark function S6 and for five-quark
function S5. Inhomogeneous terms are following:

S0
6 = −5S⊗ S⊗ S4 (108)

and

S0
5 = −4S⊗ S⊗ S3 − 4S⊗ S4 + ig

{
tr
[

S ∗ S6

]
− tr

[
S ∗ γ5τaS6γ5τa

]}
, (109)

accordingly.
The equations for six-quark function and for the five-quark function with inhomogeneous term

(108) and (109) in our iteration scheme are new. For graphical representation of equations for four-quark
and three-quark functions see on Figures 7 and 8. The third step of iterative scheme gives us the
equation for NLO four-quark function S(1)

4 . As we note above the structure of this equation have are
the form (98) with following inhomogeneous term

(S(1)
4 )0 = −3S⊗ S⊗ S(1)

2 − 3S⊗ S3 + ig
{

tr
[

S ∗ S5

]
− tr

[
S ∗ γ5τaS5γ5τa

]}
. (110)

Figure 7. Graphical representation of equation for six-quark function.
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Figure 8. Graphical representation of equation for five-quark function.

The inhomogeneous term (110) of equations for four-quark function S(1)
4 contains five-quark

function S5, three-quark function S3 and two-quark function S(1)
2 . The inhomogeneous term (109) for

five-quark equation include the six-quark function S6, four-quark function S4 and three-quark function
S3. Before the investigation of four-quark function S(1)

4 it is necessary to find the solution of equation
for six-quark function S6, because the inhomogeneous part (109) includes function S6. Also, it is
necessary to use a solution of equation for NLO two-quark function S(1)

2 (see previous section).
The solution of six-quark equation is the sum of products of two-quark functions S2 and four-quark

functions S4:
S6 = 5S2 ⊗ S4. (111)

In this step we also obtain the equations for NLO three-quark function S(1)
3 , NNLO two-quark

function S(2)
2 and the equation for next-to-next-to-next-to-leading order (NNNLO) correction to the

quark propagator S(3), which matter the forms (108), at n = 3, n = 2, n = 1, accordingly. The explicit
forms for inhomogeneous terms of this equations see in Appendix C of work [68].

8. The Generalization of the Method for Other Types of Multi-Quark Sources

In this last section we briefly discuss the generalization of above methods, which includes other
types of multi-quark sources in addition to bilocal source η. This generalization can be useful for the
description of baryons in the framework of MFE.

Primarily, consider the formalism with diquark sources. Let us add two diquark-source terms υ

and ῡ in the exponent of Equation (2):

G(η, υ, ῡ) =
∫

d(ψ, ψ̄) exp i
{ ∫

dxL−
∫

dxdyψ̄(y)η(y, x)ψ(x)

+
∫

dx1dx2ψ̄(x1)ψ̄(x2)υ(x1, x2) +
∫

dx1dx2ῡ(x1, x2)ψ(x1)ψ(x2)
}

. (112)

SDE (3) with these sources is modified as follows:

δ(x− y)G + i∂̂x
δG

δη(y, x)
+ ig

{ δ

δη(y, x)
tr
[

δG
δη(x, x)

]
− γ5τa δ

δη(y, x)
tr
[

γ5τa δG
δη(x, x)

]}

=
∫

dx1η(x, x1)
δG

δη(y, x1)
+ 2

∫
dx1

δG
δυ(y, x1)

υ(x, x1). (113)

Also, we obtain, apart from SDE (113), the additional SDE, which generates by new sources:

i∂̂x1

δG
δῡ(x2, x1)

+ ig
{ δ

δῡ(x2, x1)
tr
[

δG
δη(x1, x1)

]
− γ5τa δ

δῡ(x2, x1)
tr
[

γ5τa δG
δη(x1, x1)

]}

=
∫

dy1η(x1, y1)
δG

δῡ(x2, y1)
− 2

∫
dy1υ(x1, y1)

δG
δη(x2, y1)

. (114)
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The presence of the new diquark-source results in the connection condition for derivatives of
generating functional:

δ2G
δῡ(x2, x1)δη(y, x)

= − δ2G
δῡ(x1, x)δη(y, x2)

. (115)

Consequently, SDE (114) can be rewritten in the alternative forms. Being fully equivalent from the
point of view of an exact solution of SDE’s, these alternative forms, can lead to different approximations
in the MFE. The choice of the suitable forms for the construction of MFE in the case should be made
following of corresponding physical reasons.

In a similar way one can to enter into consideration three-quark sources. Such sources can be useful
for the direct description of nucleons and other baryons omitting the intermediate diquark modelling.

The generating functional with anti-commutative three-quark sources ω and ω̄ is

G(η, ω, ω̄) =
∫

d(ψ, ψ̄) exp i
{ ∫

dxL−
∫

dxdyψ̄(y)η(y, x)ψ(x)

+
∫

dx1dx2dx3ψ̄(x1)ψ̄(x2)ψ̄(x3)ω(x1, x2, x3) +
∫

dx1dx2dx3ω̄(x1, x2, x3)ψ(x1)ψ(x2)ψ(x3)
}

. (116)

With these three-quark sources SDE (3) is modified as follows:

δ(x− y)G + i∂̂x
δG

δη(y, x)
+ ig

{ δ

δη(y, x)
tr
[

δG
δη(x, x)

]
− γ5τa δ

δη(y, x)
tr
[

γ5τa δG
δη(x, x)

]}

=
∫

dx1η(x, x1)
δG

δη(y, x1)
− 3

∫
dx1dx2

δG
δξ(y, x1, x2)

ω(x, x1, x2). (117)

As above, apart from SDE (117), the additional SDE exists, which generates by the three-quark
sources:

i∂̂x1

δG
δω̄(x3, x2, x1)

+ ig
{ δ

δω̄(x3, x2, x1)
tr
[

δG
δη(x1, x1)

]
− γ5τa δ

δω̄(x3, x2, x1)
tr
[

γ5τa δG
δη(x1, x1)

]}

=
∫

dy1η(x1, y1)
δG

δω̄(x3, x2, y1)
+ 3i

∫
dy2dy3

δ2G
δη(y3, x3)δη(y2, x2)

ω(x1, y2, y3). (118)

In the three-quark-source formalism the connection condition for the derivatives of the generating
functional, which is very similar to the condition (115), also exists, and results in alternative forms of
SDE (118).

For these systems of equations one can to elaborate the MFE by the method, which is similar to
that of Section 2. An elaboration of this construction with solutions of corresponding equations is the
object of future investigations.

9. Results and Conclusions

In the present work we have used an iteration scheme of solution of the SDE with the fermion
bilocal source to formulate the MFE for NJL model (Section 2). The equations of any order in this
iterative scheme have a simple analytic structure, and solving the equations of any order is actually an
algebraic problem.

According to the results obtained in following sections, the NJL model with DAR gave us simple
closed formulas not only for the scalar amplitudes and the pion-decay constant, but also for the pion
contribution to the chiral condensate. As it follows from our results, in the NJL model with DAR,
this pion contribution is significant and should be taken into account with a choice of physical values
of the model parameters.

Obtained results demonstrated that the NJL model with DAR essentially differs from the NJL
model with 4D cutoff at least in two problems.



Symmetry 2019, 11, 668 29 of 32

First, there is the different behavior of scalar amplitude in threshold area. For the 4D cutoff
near the threshold it is possible to separate a pole term, which is usually associated with a scalar
particle—sigma-meson (note, however, that reasoning doubts in such interpretation have been stated
as early as in founder’s work [1]). For the DAR, the singularity of scalar amplitude is not pole-type
at physical values of regularization parameter. This fact, even if does not exclude entirely, makes its
interpretation as a physical particle to be awkward.

However, much more principal thing in our opinion is the different behavior of these models with
respect to the quantum fluctuations caused by scalar-amplitude contributions in chiral condensate. As it
follows from results of Sections 5, the NJL model with DAR is stable with respect to these fluctuations,
whereas for the NJL model with 4D cutoff the meson contributions can lead to destabilization.
Surely, several physical applications of the NJL model are connected exclusively with the LO of
MFE (mean-field approximation), for which the possibility of such destabilization can be simply
ignored. On the other hand, some physical applications of the NJL model exist that connected with
multi-quark functions (such as pion-pion scattering, baryons etc.), for which a neglecting by the
meson contributions in quark propagator is certainly non-correct from the point of view of the MFE,
and, consequently, the stability of basic model parameters with respect to these contributions becomes
a determinative significance.

It would be interesting to carry out the similar computations for the implicit regularization
considered in Section 4. The modification of the implicit regularization proposed in this section seems
to be a necessary element of such computations.

In Section 6 we used the method of the Legendre transform with respect to a bilocal source to
determine corrections the two-quark function in the NJL model. As it was shown, this method is an
effective way to take into account the constraints imposed by chiral symmetry.

Calculations of the multi-quark functions by method of Section 7 give us a fundamental
opportunity to expand the field of application of the NJL model. In particular, the computation
of the connected part of the four-quark function based on the third step of the proposed iterative
scheme can be the basis for a quantitative description of pion-pion scattering.

One of the most important problems of particle physics is a quantitative description of scattering
processes at high energies. There are essential reasons to believe that the gluodynamics without quarks
is unable to provide such a description, in particular, the growth of total cross-sections (see [69]). In this
respect, the role of effective quark models of the type NJL increases. A particularly important task
is to describe nucleon interactions. For such a description usually used method is quark—diquark
approximation (see [7,70] for review). The introduction of three-quark sources and the development
of the formalism presented in Section 8 will open the way for describing baryons in quark models
without using this approximation.
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