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Abstract

:

In this paper, we introduce the extended degenerate r-central factorial numbers of the second kind and the extended degenerate r-central Bell polynomials. They are extended versions of the degenerate central factorial numbers of the second kind and the degenerate central Bell polynomials, and also degenerate versions of the extended r-central factorial numbers of the second kind and the extended r-central Bell polynomials, all of which have been studied by Kim and Kim. We study various properties and identities concerning those numbers and polynomials and also their connections.
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1. Introduction


For λ∈R, we recall that the degenerate exponential function eλx(t) is defined by (see [1,2,3,4,5,6,7])


eλx(t)=(1+λt)xλ



(1)







When x=1, we let eλ(t)=eλ1(t). Note that limλ→0eλx(t)=ext.



We use the notation (x)n to denote the falling factorial sequence (x)n, which is defined by (see [8,9,10,11,12,13,14])


(x)0=1,(x)n=x(x−1)⋯(x−n+1),(n≥1)



(2)







More generally, for λ∈R, the λ-falling factorial sequence (x)n,λ is given by (see [4])


(x)0,λ=1,(x)n,λ=x(x−λ)(x−2λ)⋯(x−(n−1)λ),(n≥1)



(3)







Obviously, it is noted that limλ→1(x)n,λ=(x)n,limλ→0(x)n,λ=xn,(n≥0).



In Reference [4], the λ- binomial expansion is defined by


(1+λt)xλ=∑l=0∞xlλtl=∑l=0∞(x)l,λtll!,



(4)




where


xlλ=(x)l,λl!=x(x−λ)(x−2λ)⋯(x−(l−1)λ)l!.











The central factorial sequence is given by


x[0]=1,x[n]=x(x+n2−1)(x+n2−2)⋯(x−n2+1),(n≥1).











One can then easily show that the generating function of central factorial x[n],(n≥0), is given by (see [3,15,16,17,18,19,20])


t2+1+t242x=∑n=0∞x[n]tnn!



(5)







As is defined in [18], for any non-negative integer n, the central factorial numbers of the first kind are given by


x[n]=∑k=0nt(n,k)xk.



(6)







Then, from (5) and (6), we can show that the generating function of tn,k satisfies the following equation:


1k!2logt2+1+t24k=∑n=k∞tn,ktnn!.











As the inverse to the central factorial numbers of the first kind, the central factorial numbers of the second kind are defined by (see [18,20,21,22])


xn=∑k=0nT2(n,k)x[k],(n≥0)



(7)







The generating function of T2(n,k) can be easily derived from (7), which is given by (see [18])


1k!et2−e−t2k=∑n=k∞T2(n,k)tnn!,(k≥0)



(8)







It can immediately be seen from (8) that


k!T2(n,k)=∑j=0kkj(−1)j(12k−j)n.



(9)







In Reference [22] were introduced the central Bell polynomials defined by


exet2−e−t2=∑n=0∞Bn(c)(x)tnn!.



(10)







The Dobinski-like formula for Bn(c)(x) is given by (see [22])


Bn(c)(x)=∑l=0∞∑k=0∞l+kk(−1)k1(l+k)!l2−k2l+1



(11)







In Reference [3], the degenerate central factorial polynomials of the second kind are defined by


1k!eλ12(t)−eλ−12(t)keλx(t)=∑n=k∞T2,λ(n,k|x)tnn!,(k≥0).



(12)







When x=0, T2,λ(n,k)=T2,λ(n,k|0), these are called degenerate central factorial numbers of the second kind.



Let us recall that the degenerate central Bell polynomials are defined by (see [3])


exeλ12(t)−eλ−12(t)=∑n=0∞Bn,λ(c)(x)tnn!,



(13)







In particular, Bn,λ(c)=Bn,λ(c)(1) are called the degenerate central Bell numbers.



Note that limλ→0Bn,λ(c)(x)=Bn(c)(x),(n≥0).



Carlitz [1] introduced the degenerate Stirling, Bernoulli, and Eulerian numbers as the first degenerate special numbers. Broder [23] investigated the r-Stirling numbers of the first and second kind as the numbers counting restricted permutations and restricted partitions, respectively. We recall here that the r-Stirling numbers of the second kind are given by (see [23])


1k!ert(et−1)k=∑n=k∞S2(r)(n+r,k+r)tnn!,



(14)







In this paper, we will introduce the extended degenerate r-central factorial numbers of the second kind and the extended degenerate r-central Bell polynomials. Central analogues of Stirling numbers of the second kind and Bell polynomials are, respectively, the central factorial numbers of the second kind and the central Bell polynomials. Degenerate versions of the central factorial numbers of the second kind and the central Bell polynomials are, respectively, the degenerate central factorial numbers of the second kind and the degenerate central Bell polynomials. Extended versions of the degenerate central factorial numbers of the second kind and the degenerate central Bell polynomials are, respectively, the extended degenerate r-central factorial numbers of the second kind and the extended degenerate r-central Bell polynomials. The central factorial numbers of the second kind have many applications in such diverse areas as approximation theory [21], finite difference calculus, spline theory, spectral theory of differential operators [24,25], and algebraic geometry [26,27]. For broad applications of the related complete and incomplete Bell polynomials, we let the reader consult the introduction in [11]. Here, we will study various properties and identities relating to those numbers and polynomials, and also their connections. Finally, we note that the present paper can be useful in the area of non-integer systems and let the reader refer to [28] for more research in this direction.




2. Extended Degenerate r-Central Factorial Numbers of the Second Kind and Extended Degenerate r-Central Bell Polynomials


From (12) and (13), we note that


∑n=0∞Bn,λ(c)(x)tnn!=∑k=0∞xk∑n=k∞T2,λ(n,k)tnn!=∑n=0∞∑k=0nxkT2,λ(n,k)tnn!.



(15)







One can compare the coefficients on both sides of (15) to obtain


Bn,λ(c)(x)=∑k=0nT2,λ(n,k)xk,(n≥0).



(16)







Throughout this paper, we assume that r is a nonnegative integer. The following definition is motivated by (14).



Definition 1.

The extended degenerate r-central factorial numbers of the second kind Tλ(r)(n+r,k+r) are defined as


1k!eλr(t)eλ12(t)−eλ−12(t)k=∑n=k∞Tλ(r)(n+r,k+r)tnn!.



(17)









Note that limλ→0Tλ(r)(n+r,k+r)=T(r)(n+r,k+r),(n,k≥0), where T(r)(n+r,k+r) is the extended r-central factorial numbers of the second kind given by


1k!ertet2−e−t2k=∑n=k∞T(r)(n+r,k+r)tnn!.



(18)







Theorem 1.

For n,k∈N∪{0}, with n≥k, we have


Tλ(r)(n+r,k+r)=∑l=knnlT2,λ(l,k)(r)n−l,λ.













Proof. 

By (17), we get


1k!eλ12(t)−eλ−12(t)keλr(t)=∑l=k∞T2,λ(l,k)tll!∑m=0∞(r)m,λtmm!=∑n=k∞∑l=knnlT2,λ(l,k)(r)n−l,λtnn!.



(19)







Therefore, by (17) and (19), we obtain the result. □





We note that by taking the limit as λ tends to 0, we get


T(r)(n+r,k+r)=∑l=knnlrn−lT2(l,k).



(20)







Theorem 2.

For n,k≥0, with n≥k, we have


Tλ(r)(n+r,k+r)=∑m=kn∑l=kmmlS1(n,m)T2(l,k)λn−mrm−l,



(21)




where S1(n,m) are the signed Stirling numbers of the first kind.





Proof. 

Replacing t by 1λlog(1+λt) in (18), we obtain


1k!eλ12(t)−eλ−12(t)keλr(t)=∑m=k∞λ−mT(r)(m+r,k+r)1m!log(1+λt)m=∑m=k∞λ−mT(r)(m+r,k+r)∑n=m∞S1(n,m)λntnn!=∑n=k∞∑m=knλn−mS1(n,m)T(r)(m+r,k+r)tnn!.



(22)







Now, by substituting the expression of T(r)(m+r,k+r) in (20) into (22), we finally get


1k!eλ12(t)−eλ−12(t)keλr(t)=∑n=k∞∑m=kn∑l=kmmlS1(n,m)T2(l,k)λn−mrm−ltnn!,








from which the result follows. □





Example 1.

Here, we will illustrate the formula (21) for small values of n. The following values of T2(n,k) can be determined, for example, from the formula in (9):


T2(n,n)=1,T2(n,0)=δn,0,T2(2,1)=T2(3,2)=T2(4,1)=T2(4,3)=0,T2(3,1)=14,T(4,2)=1.



(23)







In addition, we recall the following values of S1(n,k):


S1(n,n)=1,S1(n,0)=δn,0,S1(2,1)=−1,S1(3,1)=2,S1(3,2)=−3,S1(4,1)=S1(4,3)=−6,S1(4,2)=11.



(24)







Now, from (21), (23), and (24), we easily have


Tλ(r)(n+r,n+r)=1,Tλ(r)(1+r,r)=r,Tλ(r)(2+r,r)=−λr+r2,Tλ(r)(3+r,r)=2λ2r−3λr2+r3,Tλ(r)(4+r,r)=−6λ3r+11λ2r2−6λr3+r4,Tλ(r)(2+r,1+r)=−λ+2r,Tλ(r)(3+r,1+r)=2λ2−6λr+3r2+14,Tλ(r)(3+r,2+r)=−3λ+3r,Tλ(r)(4+r,1+r)=−6λ3+22λ2r−18λr2−32λ+4r3+r,Tλ(r)(4+r,2+r)=11λ2−18λr+6r2+1,Tλ(r)(4+r,3+r)=−6λ+4r.













Theorem 3.

For n,k≥0, with n≥k, we have


Tλ(r)(n+r,k+r)=∑m=0n−km+kmm!rmT2,λ(n,m+k|m2).













Proof. 

Now, we observe that


1k!eλr(t)eλ12(t)−eλ−12(t)k=1k!eλr2(t)eλ12(t)−eλ−12(t)+eλ−12(t)reλ12(t)−eλ−12(t)k=1k!∑m=0∞rmeλ12(t)−eλ−12(t)m+keλm2(t)=∑m=0∞rm(m+k)!k!1(m+k)!eλ12(t)−eλ−12(t)m+keλm2(t)=∑m=0∞rmm!m+km∑n=m+k∞T2,λ(n,m+k|m2)tnn!=∑n=k∞∑m=0n−krmm!m+kmT2,λ(n,m+k|m2)tnn!.



(25)







Therefore, by (17) and (25), we obtain the theorem. □





One can easily show that the inverse function of eλ(t) is given by


logλ(t)=tλ−1λ,(t>0),








so that eλ(logλ(t))=logλ(eλ(t))=t, limλ→0logλ(t)=log(t).



If g(t)=eλ12(t)−eλ−12(t), then one can see that


g−1(t)=logλt2+1+t242,



(26)




where g∘g−1(t)=g−1∘g(t)=t.



Theorem 4.

For n≥0, we have


(x+r)n,λ=∑k=0nTλ(r)(n+r,k+r)x[k]=∑k=0nT2,λ(n,k|k2+r)(x)k.













Proof. 

By (1) and (4), we get


eλx+r(t)=eλr(t)eλ(t)−1+1x=eλr(t)∑k=0∞(x)k1k!eλ(t)−1k=∑k=0∞(x)k1k!eλk2+r(t)eλ12(t)−eλ−12(t)k=∑k=0∞(x)k∑n=k∞T2,λ(n,k|k2+r)tnn!=∑n=0∞∑k=0n(x)kT2,λ(n,k|k2+r)tnn!.



(27)







Now, from the observations in (26) and (5), we have


eλx+r(t)=eλr(t)eλx(t)=eλr(t)eλlogλg(t)2+1+g(t)242x=eλr(t)g(t)2+1+g(t)242x=∑k=0∞x[k]1k!eλr(t)eλ12(t)−eλ−12(t)k=∑k=0∞x[k]∑n=k∞Tλ(r)(n+r,k+r)tnn!=∑n=0∞∑k=0nx[k]Tλ(r)(n+r,k+r)tnn!.



(28)







From (4), we note also that


eλx+r(t)=∑n=0∞(x+r)n,λtnn!.



(29)







Therefore, by (27), (28), and (29), we have the desired result. □





Note that, taking the limit as λ tends to 0, we have


(x+r)n=∑k=0nT(r)(n+r,k+r)x[k]=∑k=0nT2(n,k|k2+r)(x)k.











Definition 2.

The extended degenerate r-central Bell polynomials Bn,λ(c,r)(x) are defined by


eλr(t)exeλ12(t)−eλ−12(t)=∑n=0∞Bn,λ(c,r)(x)tnn!.



(30)







Specifically, Bn,λ(c,r)(1)=Bn,λ(c,r) are called the extended degenerate r-central Bell numbers.





Theorem 5.

For n≥0, we have


Bn,λ(c,r)(x)=∑k=0nxkTλ(r)(n+r,k+r).













Proof. 

From (30), we note that


eλr(t)exeλ12(t)−e−12(t)=∑k=0∞xk1k!eλ12(t)−e−12(t)keλr(t)=∑k=0∞xk∑n=k∞Tλ(r)(n+r,k+r)tnn!=∑n=0∞∑k=0nxkTλ(r)(n+r,k+r)tnn!.



(31)







Therefore, from (30) and (31), the theorem follows. □





The central difference operator δ for a given function f is given by


δf(x)=f(x+12)−f(x−12),








and by induction we can show


δkf(x)=∑l=0kkl(−1)k−lf(x+l−k2),(k≥0).



(32)







Theorem 6.

Let n,k be nonnegative integers. Then, we have


1k!δk(r)n,λ=0,ifn<k,Tλ(r)(n+r,k+r),ifn≥k.













Proof. 

By the binomial theorem, we have


1k!eλr(t)eλ12(t)−e−12(t)k=1k!eλr−k2(t)∑l=0kkl(−1)k−leλl(t)=1k!∑l=0kkl(−1)k−leλr−k2+l(t)=∑n=0∞1k!∑l=0kkl(−1)k−l(r−k2+l)n,λtnn!.



(33)







If we choose f(x)=(x)n,λ,(n≥0) in (32), then we have


δk(r)n,λ=∑l=0kkl(r+l−k2)n,λ(−1)k−l.



(34)







From (33) and (34), the following equation is obtained.


1k!eλr(t)eλ12(t)−eλ−12(t)k=∑n=0∞1k!δk(r)n,λtnn!.



(35)







Therefore, by (17) and (35), we have the result. □





From Theorem 4 and Theorem 5, we have


Bn,λ(c,r)(x)=∑k=0nTλ(r)(n+r,k+r)xk=∑k=0nxk1k!δk(r)n,λ,(n≥0).



(36)







Theorem 7.

For n≥0, we have


Bn,λ(c,r)(x)=∑m=0nnm(r)n−m,λBm,λ(c)(x).













Proof. 

From (30), we note that


∑n=0∞Bn,λ(c,r)(x)tnn!=eλr(t)exeλ12(t)−eλ−12(t)=∑l=0∞(r)l,λtll!∑m=0∞Bm,λ(c)tmm!=∑n=0∞∑m=0nnm(r)n−m,λBm,λ(c)(x)tnn!.



(37)







Therefore, by comparing the coefficients on both sides of (37), the desired result is achieved. □





Theorem 8.

For m,n,k≥0, with n≥m+k, we have


m+kmTλ(r)(n+r,m+k+r)=∑l=mn−knlTλ(r)(l+r,m+r)T2,λ(n−l,k).













Proof. 

We further observe that


1m!eλr(t)eλ12(t)−eλ−12(t)m1k!eλ12(t)−eλ−12(t)k=(m+k)!m!k!1(m+k)!eλr(t)eλ12(t)−eλ−12(t)m+k=m+km∑n=m+k∞Tλ(r)(n+r,m+k+r)tnn!,



(38)




where m,k are nonnegative integers. Alternatively, the left-hand side of (38) can be expressed by


1m!eλr(t)eλ12(t)−eλ−12(t)m1k!eλ12(t)−eλ−12(t)k=∑l=m∞Tλ(r)(l+r,m+r)tll!∑j=k∞T2,λ(j,k)tjj!=∑n=m+k∞∑l=mn−knlTλ(r)(l+r,m+r)T2,λ(n−l,k)tnn!.



(39)







Therefore, by (38) and (39), the desired identity is obtained. □






3. Conclusions


In recent years, many researchers have studied a lot of old and new special numbers and polynomials by means of generating functions, through combinatorial methods, umbral calculus, differential equations, p-adic integrals, p-adic q-integrals, special functions, complex analyses, and so on.



The study of degenerate versions of special numbers and polynomials began with Carlitz [1]. Kim and his colleagues have been studying degenerate versions of various special numbers and polynomials by making use of the same methods. Studying degenerate versions of known special numbers and polynomials can be very a fruitful research and is highly rewarding. For example, this line of study led even to the introduction of degenerate Laplace transforms and degenerate gamma functions (see [4]).



In this paper, we introduced the extended degenerate r-central factorial numbers of the second kind and the extended degenerate r-central Bell polynomials. We studied various properties and identities relating to those numbers and polynomials and also their connections. This study was done by using generating function techniques.



Central analogues of Stirling numbers of the second kind and Bell polynomials are, respectively, the central factorial numbers of the second kind and the central Bell polynomials. Degenerate versions of the central factorial numbers of the second kind and the central Bell polynomials are, respectively, the degenerate central factorial numbers of the second kind and the degenerate central Bell polynomials. Extended versions of the degenerate central factorial numbers of the second kind and the degenerate central Bell polynomials are, respectively, the extended degenerate r-central factorial numbers of the second kind and the extended degenerate r-central Bell polynomials. The central factorial numbers of the second kind have many applications in diverse areas such as approximation theory [21], finite difference calculus, spline theory, spectral theory of differential operators [24,25], and algebraic geometry [26,27].



For future research projects, we would like to continue to work on some special numbers and polynomials and their degenerate versions, as well as try to explore their applications not only in mathematics but also in the sciences and engineering [29].
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