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Abstract: Automated classification of corn is important for corn sorting in intelligent agriculture.
This paper presents a reliable corn classification method based on techniques of computer vision
and machine learning. To discriminate different damaged types of corns, a line profile segmentation
method is firstly used to segment and separate a group of touching corns. Then, twelve color
features and five shape features are extracted for each individual corn object. Finally, a maximum
likelihood estimator is trained to classify normal and damaged corns. To evaluate the performance
of the proposed method, a private dataset consisting of images of normal corn and six kinds of
damage corns, including heat-damaged, germ-damaged, cob-rot-damaged, blue eye mold-damaged,
insect-damaged, and surface mold-damaged, were collected in this work. The proposed method
achieved an accuracy of 96.67% for the classification between normal corns and the first four common
damaged corns, and an accuracy of 74.76% was achieved for the classification between normal corns
and six kinds of damaged corns. The experimental results demonstrated the effectiveness of the
proposed corn classification system.
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1. Introduction

Corn is one of the most important foods and the most widely produced feed grain in the world.
It also can be processed into a wide range of industrial products. Production of corn in the United States
is 984.37 million metric tons produced in 2014 [1]. Due to the effects of corn quality in the price and end
usage of the corn, grain-grading standards were developed by the U.S. Grain Standards Act of 1916 [2].
The grain-grading standards are updated and managed by the Federal Grain Inspection Service (FGIS)
of the United States Department of Agriculture (USDA). The standards explicitly provided damaged
types of corn. Both sellers and buyers now use the standards as a common and worldwide commercial
language to decide the type and quality of the corn.

According to the grain-grading standards, corn is classified by moisture, weight, color, shape,
odor, and damage [3]. Among these criteria, the moisture, weight, and odor of corn can be evaluated
by special instruments such as an electronic analyzer [4]. For the criteria about color, shape, and
damage, corn grading is generally observed with the naked eye. It is repetitive and tiring, and,
consequently, errors can be made. A plausible way to classify corn is using computer vision to classify
corn automatically.

Previous studies have demonstrated that computer vision could be a significant way to analyze
grains. Zayas et al. used image processing and pattern recognition to identify whole and broken
corn kernels [5]. Ni et al. developed a prototype system to classify whole and broken kernels [6],
corn kernels based on their crown shape [7], and grade corn based on their size [8]. Luo et al. used
computer vision technology to separate six types of wheat kernels based on their color features [9].
Steenhoek et al. devised a computer vision system to classify corn based on their damage type [10].
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Dana and Ivo used image processing to categorize flax cultivar based on seed shape and color [11].
Chen et al combined machine vision and pattern recognition to classify five types of corn based on
their shape, color, and geometric features [12]. Arribas et al. presented an automatic leaf image
classification system for sunflower crops using neural networks [13]. Gao et al. designed a rapid
corn sorting algorithm based on machine vision. The proposed corn classification had a speed of
30 ears/min with a 1280 × 1024 pixel CCD camera [14]. Valiente-Gonzalez et al. devised a computer
vision system to automatically evaluate the quality of corn lots by identifying damaged kernels that
combined algorithm-based computer vision techniques and principal component analysis (PCA) [15].
Liu et al. proposed an efficient image processing algorithm to detect parameters such as the length,
the number of ear rows, and the quantity of kernels in an ear of corn based on a machine vision [16].
Mohammad et al. designed an expert system with ant colony optimization (ACO) to automatically
recognize different plant species through their leaf images [17]. Gao et al. designed an automatic
detection and classification algorithm for corn product quality and equipment [18]. The algorithm
firstly calculated texture features of fresh corn images through wavelet analysis and then measured the
separation degree of texture features by the maximum visual entropy function. Finally, according to
the texture features and entropy criterion, the fresh corn products were classified. Sun et al. identified
and classified damaged corn kernels including undamaged, insect-damaged, and mildew-damaged
by using impact acoustic multi-domain patterns [19]. Zhang et al. classified three different degrees
of freeze-damage in corn seeds using a VIS/NIR hyperspectral imaging system [20]. Chouhan et al.
used computer vision and soft computing methods to identify and classify diseases of the leaf for the
plant [21]. Sajad et al. developed a computer vision algorithm that combined color features and a
classifier based on ANN with genetic algorithms for detecting existing fruits in aerial images of an
apple cultivar and estimating their ripeness stage [22]. These proposed systems mainly focused on
algorithms, but the research on classification of damaged corn is less and has paid little attention to
the design of corn image capture platforms. In addition, most of them worked well for a small scale
of corn, however, since touching corn could not be segmented accurately, their performance may be
degraded if the number of corns is increased.

This paper proposed a new corn classification method to classify normal and damaged corn.
The main contributions of this work are: (a) a set of images of normal corn and six kinds of different
damage corns were collected; (b) color and shape features of corn were fused to train a corn classification
model; (c) the performances of corn classification conducted on different test sets were evaluated.

The rest of this paper is organized as follows. The experiment data is described in Section 2,
while the proposed classification scheme is present in Section 3. Experimental results are reported and
analyzed in Section 4. Finally, this paper is concluded in Section 5.

2. Experimental Data

The corn used in this work were collected at the experimental farm of Southern Illinois
University Carbondale (SIUC). Seven kinds of corns were considered in this paper, including normal,
heat-damaged, germ-damaged, cob rot-damaged, blue eye mold-damaged, insect-damaged, and
surface mold-damaged. As shown in Figure 1, the image of corn was acquired using an optical image
collection system that consisted of an imaging table, a color camera, a two-way lighting system, and a
computer. The imaging table contained an aluminum frame and a transparent, plastic plate. Corns
were arranged on the plastic plate and the plate slides in the aluminum frame. The camera was setup
vertically to take top-view images of the corn. The lighting system consisted of upper fluorescent
lamps and lower fluorescent lamps. The corn images captured by this platform with a different lighting
system are shown in Figure 2. In this work, the corn image captured using upper fluorescent lamps
was used in our experiments. The upper fluorescent lamps provided uniform lighting, and the images
captured with these lamps were used to extracted color features of the corn. The lower fluorescent
lamps placed under the transparent plastic plate provided an overexposure of the image, which was
used to extract shape features of the corn. Experimental images were acquired by a DFK 72BUC02
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color camera (2592 × 1944) with a M12VM412 lens and saved into a computer (including an Intel Core
5i 3.10GHz, 4GB RAM) connected to the camera.
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Figure 2. Illustrations of images captured with different lighting systems. (a) corn image captured
using lower fluorescent lamps, and (b) corn image captured using upper fluorescent lamps.

During image collection, each time there were about 150 corns selected and arranged on the plate.
Images collected by this collection system had a resolution ratio of 2592 × 1944 and were saved in BMP
format. After collection, normal corns and damaged corns in the image were manually labeled by
agronomy experts from Southern Illinois University.

3. Methodology for Corn Classification

The process of corn classification is described in Figure 3 in detail.

Symmetry 2019, 11, x FOR PEER REVIEW 3 of 12 

 

72BUC02 color camera (2592 × 1944) with a M12VM412 lens and saved into a computer (including an 

Intel Core 5i 3.10GHz, 4GB RAM) connected to the camera. 

 

Figure 1. Corn image collection system. 

During image collection, each time there were about 150 corns selected and arranged on the 

plate. Images collected by this collection system had a resolution ratio of 2592 × 1944 and were saved 

in BMP format. After collection, normal corns and damaged corns in the image were manually 

labeled by agronomy experts from Southern Illinois University.  

 
(a) 

 
(b) 

Figure 2. Illustrations of images captured with different lighting systems. (a) corn image captured 

using lower fluorescent lamps, and (b) corn image captured using upper fluorescent lamps. 

3. Methodology for Corn Classification 

The process of corn classification is described in Figure 3 in detail. 

 

Figure 3. Flowchart of the proposed corn classification method.



Symmetry 2019, 11, 591 4 of 12

3.1. Image Segmentation

To address the problem of touching corn in corn classification, individual corns in the captured
image should be accurately segmented first. This paper employed a line profile-based segmentation
algorithm (denoted as LPSA) proposed in the work of [23]. Figure 4 describes the segmentation
algorithm in detail. The LPSA is usually used to separate touching corn kernels. First, the input
corn image was binarized by Otsu’s [24] method to separate corn from the background. Then, LPSA
determined the coordinates of the centroid in the object image and created an axis line through
the centroid, then it equidistantly created perpendicular lines in the axis line. Pixels that fell on a
perpendicular line were summed, and a single value for every perpendicular line was obtained; the
resulting vector was called a profile. The axis line rotated, and profiles were generated from other
angles. The angle increment was constant. A corn kernel was represented as one nodule in the profile.
Two touching corn kernels were presented as two nodules in the profile. The minimum point between
the nodules was the touching between the corns. Profiles of a corn object were generated from various
angles to find the ultimate angle to draw the split line that separated the touching corn. A result of corn
segmentation with LPSA is shown in Figure 5, in which touching corns have been separated effectively.
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3.2. Feature Extraction

To distinguish different grades of the corn segmented by LPSA, features about color and shape
are extracted in this section, as shown in Figure 6. Particularly, shape features were extracted from
the segmented corn area, while color features were extracted from the corresponding corn area in the
upper image, in which corns had a uniform illumination. The details of the features are described
as follows.

Symmetry 2019, 11, x FOR PEER REVIEW 5 of 12 

 

Figure 5. Corn segmentation results with the line profile-based segmentation algorithm. 

3.2. Feature Extraction 

To distinguish different grades of the corn segmented by LPSA, features about color and shape 

are extracted in this section, as shown in Figure 6. Particularly, shape features were extracted from 

the segmented corn area, while color features were extracted from the corresponding corn area in the 

upper image, in which corns had a uniform illumination. The details of the features are described as 

follows. 

 

Figure 6. The feature extraction tree for each corn kernel. 

Corn is predominantly white, yellow, and mixed. Most corns are white or yellow. In the market, 

white corn is more expensive than yellow corn [25]. Therefore, color is an important feature. Corn 

has two faces, they are: face up and face down. As shown in Figure 7, face up is the side of the corn 

that contains the germ area, and face down is the side of the corn that does not have a germ area. The 

germ area is usually white. We used a well-designed method to separate the germ area from corn 

[26]. As shown in Figure 8, a polygon is used to estimate the germ area. The mean intensity of the 

germ area calculated from each channel of RGB and HIS color space are then used as the color feature. 

 
(a) 

 
(b) 

Figure 7. Illustration of two faces of corn. (a) the face up of corn and (b) the face down of corn. 

Figure 6. The feature extraction tree for each corn kernel.

Corn is predominantly white, yellow, and mixed. Most corns are white or yellow. In the market,
white corn is more expensive than yellow corn [25]. Therefore, color is an important feature. Corn has
two faces, they are: face up and face down. As shown in Figure 7, face up is the side of the corn that
contains the germ area, and face down is the side of the corn that does not have a germ area. The germ
area is usually white. We used a well-designed method to separate the germ area from corn [26].
As shown in Figure 8, a polygon is used to estimate the germ area. The mean intensity of the germ area
calculated from each channel of RGB and HIS color space are then used as the color feature.
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For shape features, we extracted five dimensional measurements of segmented corn, i.e., perimeter,
area, circularity, rectangularity, and elongation, which were adjusted from the work of Zheng (2008)
used for categorizing maize seed [27].

Perimeter was calculated by the method of eight connected chain codes:

P = sqrt(2) ×ND + NX + NY (1)

where P represents the perimeter of the corn kernel, ND is the number of odd chain codes, NX is the
number of pixels in the horizontal direction, and NY is the number of pixels in the vertical direction.
NX + NY is the number of even chain codes.

Area was calculated by counting the number of pixels in the corn image contour:

A =
∑

(x,y)∈S

1 (2)

where A represents the area of the corn kernel, S is the corn kernel region of image, (x, y) is the
coordinate of a pixel inside S, and a pixel value of 1 was assumed in this study.

Circularity was defined as:
C = 4πA/P2 (3)

where C represents the circularity of the corn kernel, P is the perimeter of the corn kernel, and A is the
area of the corn kernel.

Rectangularity was defined as:
R = A/(H×W) (4)

where R represents the rectangularity of the corn kernel, A is the area of the corn kernel, H is the long
axis of the corn kernel, and W is the short axis of the corn kernel.

Elongation was defined as:

E = min(H, W)/max(H, W) (5)

where E represents elongation of the corn kernel, H is the height of the corn kernel, and W is the width
of corn kernel.

Examples of five shape features extracted from three samples of normal and damaged corn kernels
are listed in Table 1. The unit of perimeter and area was pixel (px), and in coordinates of the plane
where corn images were captured, the width/length of each pixel was equal to about 0.09 mm.
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Table 1. Examples of five shape features for three samples of normal and six kinds of damaged corns.

Category
Name

Perimeter (px) Area (px) Circularity Rectangularity Elongation

Blue eye mold
306.1493 6239 0.8365 0.7294 0.9681
273.0782 4556 0.7677 0.6537 0.9647
338.6346 7320 0.8022 0.7253 0.7500

Cob Rot
335.8061 7691 0.8571 0.76987 0.8108
366.9605 8193 0.7646 0.6417 0.9825
318.6346 6684 0.8273 0.7193 0.9109

Germ damage
289.3919 5002 0.7506 0.7061 0.8366
300.6518 5918 0.82273 0.8189 0.7374
284.3503 5868 0.9120 0.8162 0.8681

Heat damage
323.5219 7131 0.8562 0.8178 0.7339
358.9777 8389 0.8181 0.7688 0.7097
335.7645 6619 0.7378 0.7580 0.6271

Insect damage
358.4924 8148 0.7967 0.7760 0.6720
359.4335 6171 0.6002 0.6128 0.8962
337.7645 7300 0.8041 0.7865 0.6555

Surface mold
312.4924 6240 0.8030 0.7212 0.8155
310.7939 6244 0.8123 0.8030 0.6667
322.0071 7061 0.8557 0.7930 0.7925

Normal
349.0193 7759 0.8004 0.7070 0.7881
350.3330 8058 0.8250 0.704 0.8220
332.5219 7459 0.8477 0.8222 0.7232

3.3. Classification

After extracting color and shape features for each corn, we next used a maximum likelihood
classifier to classify the grades of corn. Specially, classification of the corn consisted of two steps:
training and testing. In the training step, every class of corn and image were captured, and features
were extracted for every corn kernel in that class. Mean value and covariance of all corn in the image
were obtained for every feature. In the testing step, a maximum likelihood estimator was implemented
to classify corn [28]. Images of random classes of corn were captured, segmented, and features
were extracted. Li and Yan developed a Bayesian decision rule to minimize misclassifications [29].
The classification formula used in this study is as follows:

di(x) = ln P(ωi) −
n
2

ln(2π) −
1
2

ln|Ci| −
1
2

[
(x−mi)

TCi
−1(x−mi)

]
(6)

where P(ωi) is the probability of the class to occur, Ci is the covariance matrix of the training feature,
mi is the mean value of the training feature, x is the ith feature of every corn kernel, and d is the
decision rule.

4. Experiments and Results

4.1. Experiment Settings

In our experiments there were seven kinds of corn, including normal corn and six kinds of
damaged corn. For each group, 100 corns were selected to evaluate the proposed method. The ratio
between training and testing was generally set to 7 to 3. The sample numbers of training sets and
testing sets are shown in Table 2. Considering that heat damage, germ damage, and cob rot damage
are three relative common damages of corn, a subset of normal corn and these three kinds of damaged
corn was specially selected. The proposed method was firstly conducted on this subset, and then it
was conducted on the whole set.
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Table 2. Sample numbers of training sets and testing sets in validation experiments.

No. Category Numbers of Training Sets Numbers of Testing Sets

1 Blue eye mold 70 30
2 Cob rot 70 30
3 Germ damage 70 30
4 Heat damage 70 30
5 Insect damage 70 30
6 Surface mold 70 30
7 Normal 70 30

4.2. Results for Three Damaged and Normal Corns

This section demonstrates the classification results for four different corn types (i.e., three types of
common damaged corn and normal corn). To evaluate the performance of our method, five different
groups of training and testing sets were randomly selected from the whole dataset, and in each group
there were 280 samples for training and 120 samples for testing. The proposed method achieved an
average classification accuracy of 90.67% with a standard deviation of 4.35%. Table 3 shows the best
classification results accompanied by the confusion matrix.

Table 3. Confusion matrix for four kinds of classification results. Classes: 1. Normal; 2. Heat-damaged;
3. Germ-damaged; and 4. Cob-rot.

Predicted/Real
Class 1 2 3 4 All Data Classification Error

by Class (%)
Classification
Accuracy (%)

1 29 0 1 0 30 3.33

96.67
2 0 30 0 0 30 0.00
3 0 0 30 0 30 0.00
4 3 0 0 27 30 10.00

The system correctly classified 29 out of the 30 samples belonging to class 1 (96.67% accuracy),
meanwhile, the classification error rate of class 2 and class 3 was 0.00, and this was a perfect state.
On the other hand, the highest misclassification rate was in the cob rot class with a 10% error. Analyzing
these errors, three samples of class 4 were misclassified in class 1. This meant that samples in class 4
had similar properties with samples in class 1.

Figure 9 depicts the ROC curves of the developed corn classification system for the four defined
classes. On the other hand, Table 4 shows the performance results of the classification method using
sensitivity, accuracy, and specificity and the area under the ROC curve (AUC) for each class.

Table 4. Performance results using different criteria: sensitivity, accuracy, and specificity, and area
under the ROC curve (AUC). Classes: 1. Normal; 2. Heat-damaged; 3. Germ-damaged; and 4. Cob-rot.

Class Sensitivity (%) Accuracy (%) Specificity (%) AUC

1 96.67 96.67 98.86 0.9884
2 100.00 100.00 98.85 0.9945
3 100.00 99.17 100.00 0.9915
4 90.00 97.50 96.74 0.9833
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Figure 9. ROC curves for classification results of three types of damaged corns and normal corn.

The maximum value of sensitivity (100%) was reached in the heat-damaged and germ-damaged
classes. Table 3 proved this fact, since classification error of the two classes was 0. The maximum value
of specificity (100%) was given in class 3. Maximum accuracy was given in the heat-damaged class at
100%, and it had the highest sensitivity. In general, all the classes obtained very similar results, so the
system would be able to work for corn sorting in intelligent agriculture. For each type, the proposed
method achieved an AUC value greater than 0.98. This proved that the proposed classification method
was not only accurate but also robust in relation to its parameters. Only class 4 presented a lower AUC
value, indicating slight confusion with class 1.

Figure 10 shows a representative image of the classification results from the developed corn
classification system. The red, green, white, and blue regions were used to indicate different types of
classified corns, including normal corn, cob-rot and heat-damaged, and germ-damaged corn.
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Figure 10. Classification results for a group of corns.

Figure 10a is the image before recognition and classification. There were 126 corns including
4 germ-damaged corns and 122 normal corns. Figure 10b is the result from the developed corn
classification system. A normal corn was misidentified as cob-rot corn. Its accuracy was 99.2%.
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4.3. Results and Discussion for Six Damaged and Normal Corns

On the basis of the above-mentioned classification of four types of corns, the classification
experiments of seven types of corns, i.e., six damaged corns and normal corn, were further carried
out. Similarly, five different groups of training and testing sets were randomly selected and formed,
and in each group there were 490 samples for training and 210 samples for testing. The proposed
method achieved an average classification accuracy of 67.48% with a standard deviation of 7.79%.
Table 5 shows the best classification results for six different types of damaged corns and normal corn
accompanied by the confusion matrix.

Table 5. Confusion matrix of seven kinds of classification results. Classes: 1. Normal; 2. Heat-damaged;
3. Germ-damaged; 4. Cob-rot; 5. Blue eye mold; 6. Insect-damaged; and 7. Surface mold.

Predicted/Real
Class 1 2 3 4 5 6 7 All Data Classification Error

by Class (%)
Classification
Accuracy (%)

1 27 0 0 0 2 1 0 30 10.00

74.76

2 0 27 0 0 0 2 1 30 10.00
3 0 2 26 1 0 0 1 30 13.33
4 0 1 1 27 0 1 0 30 10.00
5 0 2 6 5 16 1 0 30 46.67
6 1 6 4 1 0 16 2 30 46.67
7 0 4 1 1 1 5 18 30 40.00

Notably, the results of the seven classifications using the above-mentioned classification method
were unsatisfactory. Table 5 shows that the maximum misclassification rate was in classes 5 and 6 with
a 46.67% error, and the misclassification rate of class 7 was 40%. Analyzing these errors, it was found
that these errors mainly came from the three newly added categories: blue eye mold (class 5), insect
damage (class 6), and surface mold (class 7). Class 5 was mainly misclassified in class 3 and class 4.
Class 6 was mainly misclassified in class 2 and class 3. Class 7 was mainly misclassified in class 2 and
class 6. This meant that samples in class 5 had very similar properties with samples in class 3 and class
4, and samples in class 6 had very similar properties with samples in class 2 and class 3, and samples
in class 7 had very similar properties with samples in class 2 and class 6.

According to this case, some aspects should be improved in further research work. For example,
classification methods should be improved using deep-learning, and feature selection should be
optimized through adding texture features. In addition, the image collection system can be optimized,
where the lighting system can become more uniform to ensure preserving true color of the corn and a
more accurate feature calculation. Fresh corn can be harvested from the field to perform the official
classification test using computer vision technology. Since these were preliminary results, more damage
samples could be studied, including sprout-damaged samples. The repeatability of the system can
be tested. For example, two damaged sample groups can be selected with 140 normal corns and 20
damaged corns in each group. This can be repeated to capture 10 images of each group to evaluate the
repeatability of the system.

5. Conclusions

A corn classification system based on computer vision was developed to provide an alternative
solution to the traditional classification test. Images were acquired using an image collection system,
which consisted of an imaging table, two-way lighting system, a camera, and a computer. A line
profile segmentation algorithm was adopted to segment groups of touching corns to individual
corn images. Twelve color features and five shape features were extracted from the segmented
individual corn images. A maximum likelihood estimator was used to classify corns to normal, cob-rot,
germ-damaged, heat-damaged, and other damage types. To validate the corn classification system,
four and seven groups of corns were tested including normal samples and different types of damaged
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samples. This classification method achieved better performances in four classifications for corn
images. The results showed that the corn classification system provided accurate classification of the
corns into four classifications. In general, a corn classification system based on computer vision can be
used to offer considerable advantages for the detection of small touching objects.
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