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Abstract: Stereo matching has been under development for decades and is an important process
for many applications. Difficulties in stereo matching include textureless regions, occlusion,
illumination variation, the fattening effect, and discontinuity. These challenges are effectively
solved in recently developed stereo matching algorithms. A new imperfect rectification problem
has recently been encountered in stereo matching, and the problem results from the high resolution
of stereo images. State-of-the-art stereo matching algorithms fail to exactly reconstruct the depth
information using stereo images with imperfect rectification, as the imperfectly rectified image
problems are not explicitly taken into account. In this paper, we solve the imperfect rectification
problems, and propose matching stereo matching methods that based on absolute differences, square
differences, normalized cross correlation, zero-mean normalized cross correlation, and rank and
census transforms. Finally, we conduct experiments to evaluate these stereo matching methods using
the Middlebury datasets. The experimental results show the proposed stereo matching methods can
reduce error rate significantly for stereo images with imperfect rectification.
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1. Introduction

Stereo matching is an important process in the field of computer vision, the goal of which is to
reconstruct three-dimensional (3D) information from a scene with left and right stereo images [1].
Stereo matching algorithms have been commonly applied in medical imaging and 3D imaging systems,
such as satellite-based earth and space exploration, autonomous robots, and vehicle and security
systems [2]. Stereo matching is a challenging task due to difficulties such as textureless regions,
occlusion, illumination variation, the fattening effect, discontinuity, flying snow, sun flare, and rain
blur [3,4].

Sparse stereo matching methods typically use feature descriptors, such as scale-invariant feature
transform [5] and speeded-up robust features [6], to compute sparse disparity map, where not all
pixels have disparity values [7–9]. Sarkis and Diepold [10] introduced an approach to convert sparse
disparity map to dense maps. The efficient large-scale stereo matching method (ELAS) [11] operates
on rectified input images, such that correspondences are restricted to the same line in both images.

In our work, we solve the different problem, which input stereo images have been rectified,
but the rectification operates imperfectly. Unlike ELAS, our proposed method does not assume that
correspondences are restricted to the same line in both images. In addition, our proposed method is
a dense stereo matching. There is no interpolation step in our proposed method.

Scharstein et al. [12] classified stereo matching algorithms into local and global algorithms,
which consist of steps for matching cost computation, cost aggregation, depth map computation,
and depth map refinement phases. The matching cost computation step is required for both types
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of stereo matching algorithms and is important to the accuracy of the disparity map. The output of
the matching cost computation step is a disparity space image C [12] in which Cd(p) is the matching
cost value of a pixel p in the reference image, e.g., the left image of a stereo pair, and at a disparity
hypothesis d.

Local stereo matching algorithms use cost aggregation techniques to locally smooth the matching
cost values in C. Let C′ be the result of applying a cost aggregation technique to C. From C′, a disparity
value for p can be obtained by using a winner-takes-all strategy, as follows:

DE (p) = arg min
d

(
C′ (p, d)

)
, (1)

where DE is an estimated disparity map.
Global stereo algorithms can use global optimization methods, such as graph-cut [13] or belief

propagation [14], to minimize the energy function that constrains the smoothness of the disparities
between two neighboring pixels. In global stereo matching, the energy function is first defined and
is then solved as an energy minimization problem. A disparity map with higher energy is more
erroneous, whereas a disparity map with lower energy is more accurate. The typical form of an energy
function in stereo matching is

E(DE) = Edata(DE) + Esmooth(DE), (2)

where Edata is the measurement of the photo consistency which is computed using a matching cost
function. Esmooth is a measurement of the smoothness, which is defined as follows:

Esmooth(DE) = ∑
<p,q>∈Ω

s(dp, dq) (3)

and

s(dp, dq) =

{
0 i f dp = dq

∆ otherwise
(4)

where ∆ is a predefined penalty value that balances the smoothness and data terms, Ω is the set of
neighboring pixels in the reference image, and s() is a smoothness function that gives a penalty if the
disparities of two pixels are different. dp and dq are disparity values of pixels p and q, respectively.

According to Hirschmuller et al. [15], radiometric differences between stereo images are inherent
and inevitable even when the images are produced under controlled lighting and exposure conditions.
However, advanced stereo matching cost functions [16,17] can operate robustly with stereo images
of different intensity transformations. In other words, the radiometric distortion problem in stereo
matching can be solved in the matching cost computation step. Textureless regions, discontinuity,
and occlusion problems can be solved by cost aggregation or depth map computation processes [18].

The assumption of existing dense stereo matching algorithms is that input stereo images are
perfectly rectified such that correspondent pixels between the rectified stereo images have the
same y-coordinate values. This assumption is commonly known as the frontal-parallel assumption.
However, obtaining perfect rectification for a stereo pair, especially for large stereo images, is currently
a challenge [19]. Therefore, when working on stereo images with high resolution, stereo matching
algorithms are required to consider this imperfect rectification problem, as the frontal-parallel
assumption does not hold true anymore.

A stereo pair, before used as input stereo images for stereo matching algorithms, typically
undergoes a rectification process. The rectification process aims for correspondent pixels between
stereo images to be located in the same frontal-parallel lines (or epipolar lines). However, according
to [19], it is difficult to achieve perfect results with current rectification methods when operating on
a stereo pair with high resolution. Correspondent pixels in stereo images with imperfect rectification
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may be located in different epipolar lines [19]. This means that correspondent pixels do not satisfy the
frontal-parallel assumption that all dense stereo matching algorithms require. The imperfect problem
is unavoidable when rectifying high resolution stereo images, even using advanced rectification
methods [19]. At the same time, the need for high resolution stereo images is on the rise [18,19].
However, there is a lack of research on imperfect rectification in stereo matching and most previous
studies [20–28] are not aware of the problem of high resolution images.

Existing stereo matching methods are dense methods that compute disparity values for each
pixel, and most algorithms implicitly or explicitly make an assumption about epipolar geometry that
the corresponding pixels locate in the same epipolar line. Currently, only the Middlebury dataset
provides stereo images with high resolution and imperfect rectification, and these stereo images are
not included in its benchmark. Therefore, existing research only focuses on low and high stereo images
with perfect rectification.

In this paper, we propose several novel matching cost using state-of-the-art matching cost for
high resolution stereo images. We use the Middlebury dataset [19] to evaluate the proposed matching
cost functions in local and global stereo matching frameworks. The testing local stereo matching
algorithms include the absolute different (AD)-based window algorithm, squared difference (SD)-based
window algorithm, Rank-based window algorithm, Census-based window algorithm, normalized
cross correlation (NCC), and zero-mean normalized cross correlation (ZNCC) [29]. According to [15,30],
NCC and ZNCC can be considered a local stereo algorithm, so in our experiments, we do not apply the
cost aggregation (via a window) for NCC and ZNCC. The testing global stereo matching algorithms
include the AD and graph cut (GC) [13], SD and GC, Rank and GC, and Census and GC algorithms.

2. Matching Cost Functions

2.1. Application to Dense Stereo Matching

Existing stereo matching algorithms operate on the perfect rectification assumption that
correspondent pixels are frontal-parallel. Therefore, in the matching cost computation, for a pixel
p in the reference image I, candidate pixels p′ in the target image I′ have the same y-coordinate
values as p and only differ with regard to the x-coordinate values. However, when working with
stereo images with high resolution, the rectification algorithm can operate imperfectly. As a result,
correspondent pixels between stereo images may have different y-coordinate values. This means that
the frontal-parallel assumption does not hold true in these cases. Therefore, existing stereo matching
algorithms tolerate a new problem that is introduced by the imperfect rectification process.

Let p = [xp, yp]T be a pixel in the reference image I and p′ = [xp′ , yp′ ]
T be a pixel in the reference

image I′, and d = [d, r]T be a disparity value. Without explicitly stating so, we implicitly use the left
image as the reference image. The existing stereo matching algorithms work on the frontal-parallel
assumption, so the value r is always set to zero. This fixed value r = 0 is the main reason that existing
stereo matching algorithms work poorly in stereo images with imperfect rectification. The expansion
parameter r can change and is in the interval [−R, R] where R is an expansion range. Let M1 be
a matching cost function in a traditional approach. A matching cost value for the pixel p and a disparity
hypothesis d is computed using the frontal-parallel assumption as follows:

C (p, d) = M1 (p, d) . (5)

Here, the function M1 takes the coordinate of p in the reference image and the value d.
The coordinate of the correspondent pixel p′ in the target image is computed as follows:

p′ = [xp − d, yp]
T . (6)
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The frontal-parallel assumption can be described using Equation (6). The pixel p in the reference
image and correspondent pixel p′ in the target image have the same values yp. This means that for each
pixel in the reference image, the correspondent pixel in the target image has the same epipolar line.

The imperfect rectification problem is that correspondent pixels between the left and right images
can be located in different epipolar lines. Therefore, the setting to look for the correspondent pixel in
Equation (6) fails to correctly recover the disparity information because p′ is constrained to be located
in the same epipolar line as p.

To cope with imperfect rectification, a search space for the correspondent pixel p′ requires to
include pixels from above and below the considered line y = yp in the target image. We redesign the
setting to obtain a matching cost value as follows:

C (p, d) = min
r

M2 (p, d, r) , (7)

where M2 is a matching cost function in the proposed setting, and r ∈ N and r ∈ [−R, R]. The function
M2 takes one more input parameter r that determines how much the search space should be expanded.
Our idea in Equation (7) is that for each disparity hypothesis d, a matching cost function should
consider pixels above and below the pixel p′ = [xp − d, yp]T in the target image, and the most similar
pixel is chosen to compute a matching cost value.

In this paper, we apply this proposed setting for matching cost functions, including AD and
SD (pixel-wise matching cost functions), census and rank (transform-based matching cost functions),
and NCC and ZNCC (window-based matching cost functions).

2.2. Application to Pixel-Wise Matching Cost Functions

In this subsection, two pixel-wise matching cost functions, AD and SD is modified to adapt with
high resolution stereo images. The AD and SD matching cost functions compute a matching cost
value for the pixel p and a hypothesis disparity d using the intensities of p and p′. We denote the new
functions ImpAD and ImpSD, respectively.

2.2.1. ImpAD

The AD matching cost function computes the absolute value of the intensity difference of a pixel
pair. An AD matching cost value measures the similarity between two pixels. Matching cost values of
AD are computed as follows:

AD (p, d) =
∣∣I (xp, yp

)
− I′

(
xp − d, yp

)∣∣ , (8)

where I
(

xp, yp
)
= Ip is the intensity value of p in the reference image, and I′

(
xp − d, yp

)
= I′p′ is the

intensity value of p′ in the target image.
As a traditional matching cost function, the AD function requires only the estimated disparity

information d to determine the correspondent pixel p′ = [xp− d, yp]T in the target image. The resulting
value of AD (p, d) is simply assigned to the disparity space image C as follows:

C (p, d) = AD (p, d) . (9)

The ImpAD matching cost function requires not only the estimated disparity value d, but also
the expansion value r to determine the correspondent pixel p′i = [xp − d, yp + r]T in the target image.
Here, we denote p′i as a correspondent pixel of p in the proposed setting, which uses both pieces of
information d and r. An ImpAD matching cost value is computed as follows:

ImpAD (p, d, r) =
∣∣I (xp, yp

)
− I′

(
xp − d, yp + r

)∣∣ . (10)
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Here, p′i differs p from values d and r where d ∈ [dmin, dmax] and r ∈ [−R, R]. A matching cost
value at pixel p and disparity hypothesis d in C is computed as follows:

C (p, d) = min
r

ImpAD (p, d, r) . (11)

Among different matching cost values for different values r, the minimum matching value is
selected to assign to C as a matching cost value for p and d.

2.2.2. ImpSD

The SD matching cost function computes the square of the absolute value of the intensity difference
between two pixels. A SD matching cost values is computed as follows:

SD (p, d) =
(

I
(
xp, yp

)
− I′

(
xp − d, yp

))2 . (12)

Like AD, the SD matching cost function needs only d to compute the correspondent pixel
p′ = [xp − d, yp]T in the target image. The resulting value of SD (p, d) is set to the disparity space
image C as follows:

C (p, d) = SD (p, d) (13)

The ImpSD matching cost function needs both the estimated disparity value d and the expansion
value r to compute the correspondent pixel p′i = [xp − d, yp + r]T in the target image. An ImpSD
matching cost value is computed as follows:

ImpSD (p, d, r) =
(

I
(

xp, yp
)
− I′

(
xp − d, yp + r

))2 (14)

A matching cost value at the pixel p and a disparity hypothesis d in C is computed as follows:

C (p, d) = min
r

ImpSD (p, d, r) (15)

2.3. Application to Transform-Based Matching Cost Functions

We introduce two transform-based matching cost functions, Rank and Census for high resolution
images. The Rank and Census matching cost functions do not depend directly on pixel intensities to
compute their matching values. The functions first compute the relative order between the anchor
pixel (the pixel at the center of a support window) and its neighbors. Therefore, Rank and Census can
operate robustly on stereo images under radiometric distortion. We denote ImpRank and ImpCensus
for Rank and Census that are modified and are aware of the imperfect rectification problem.

2.3.1. ImpRank

The Rank matching cost function computes the sum of the order relative to the pixel pairs and
results in an integer value that describes the local structure of an image patch. The Rank function is
computed as follows:

Rank (p, d) =

∣∣∣∣∣∣ ∑
q∈Np

δ (p, q)− ∑
q′∈Np′

δ′
(
p′, q′

)∣∣∣∣∣∣ , (16)
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where Np and Np′ are sets of neighboring pixels of the pixels p and p′ in the left I and right I′ images,
respectively. The indicator functions δ() and δ′() are computed as follows:

δ (p, q) =

{
1 i f Ip < Iq

0 otherwise
(17)

and

δ′
(
p′, q′

)
=

{
1 i f I′p′ < I′q′
0 otherwise

(18)

where p′ = p− [d 0]T .
The Rank matching cost function computes correspondent candidate pixels p using only d.

Therefore, the Rank function fails to find the correct correspondent pixels p′ to measure matching cost
values. The ImpRank matching cost function takes into account the imperfect rectification problem and
uses the expansion parameter r to further search for the correspondent pixels p′i in the target image.

An ImpRank matching cost value is computed as follows:

ImpRank (p, d) =

∣∣∣∣∣∣∣ ∑
q∈Np

δ (p, q)− ∑
q′i∈Np′i

δ′
(
p′i, q′i

)∣∣∣∣∣∣∣ , (19)

A matching cost value at the pixel p and a disparity hypothesis d in C is computed as follows:

C (p, d) = min
r

ImpRank (p, d, r) (20)

2.3.2. ImpCensus

The Census matching cost function transforms a local structure of an image patch into a bit string,
and use the Hamming distance to measure the similarity between two bit strings. Bit strings are
encoded as follows:

ξp = ⊗
q∈Np

δ (p, q) (21)

and

ξ ′p′ = ⊗
q′∈Np′

δ′
(
p′, q′

)
(22)

where ξp and ξ ′p′ are two bit strings for p and p′, respectively.
The Census function is computed as follows:

Census (p, d) = H
(

ξp, ξ ′p′
)

(23)

Take into account the imperfect rectification problem, the proposed ImpCensus matching cost
function uses the expansion parameter r in its matching cost computation. An ImpCensus matching
cost value is computed as follows:

ImpCensus (p, d, r) = H
(

ξp, ξ ′p′i

)
(24)

A matching cost value at the pixel p and a disparity hypothesis d in C is computed as follows:

C (p, d) = min
r

ImpCensus (p, d, r) (25)
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2.4. Application to Window-Based Matching Cost Functions

NCC and ZNCC require support windows and use direct intensity values in their matching cost
computation. Like SAD, NCC and ZNCC can be considered local stereo matching methods because
disparity maps from these two methods have local smoothness of disparity values [15]. NCC and
ZNCC can be computed efficiently using box filtering (BF) [31] or integral image (II) [32] techniques.

2.4.1. ImpNCC

NCC can tolerate small brightness changes between stereo images due to locally dividing by the
standard deviation. An NCC matching cost value is computed as follows:

NCC (p, d) =

∑
q∈Np

(
Iq × Iq′

)
√

∑
q∈Np

I2
q × ∑

q′∈Np′
I2
q′

(26)

We denote ImpNCC for NCC that is aware of the imperfect rectification problem. An ImpNCC
matching cost values is computed as follows:

ImpNCC (p, d, r) =

∑
q∈Np

(
Iq × Iq′i

)
√

∑
q∈Np

I2
q × ∑

q′i∈Np′i

I2
q′i

(27)

A matching cost value at the pixel p and a disparity hypothesis d in C is computed as follows:

C (p, d) = min
r

ImpNCC (p, d, r) (28)

2.4.2. ImpZNCC

The brightness of stereo images can vary due to lighting and exposure conditions. The stereo
images can be first locally normalized by subtracting the mean and dividing by the standard deviation.

A ZNCC matching cost value is computed as follows:

ZNCC (p, d) =

∑
q∈Np

(
Iq − Īp

)
×
(

Iq′ − Īp′
)

√
∑

q∈Np

(
Iq − Īp

)2 × ∑
q′∈Np′

(
Iq′ − Īp′

)2
(29)

We denote ImpZNCC for ZNCC that is aware of the imperfect rectification problem. An ImpZNCC
matching cost value is computed as follows:

ImpZNCC (p, d, r) =

∑
q∈Np

(
Iq − Īp

)
×
(

Iq′i
− Īp′i

)
√√√√ ∑

q∈Np

(
Iq − Īp

)2 × ∑
q′i∈Np′i

(
Iq′i
− Īp′i

)2
(30)

A matching cost value at pixel p and a disparity hypothesis d in C is computed as follows:

C (p, d) = min
r

ImpZNCC (p, d, r) (31)
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Like ZNCC, ImpZNCC can be computed efficiently by using the BF and II techniques. Let × and
/ be element-wise multiplication and division of two matrices, respectively. Algorithm 1 shows the
procedure to compute the ImpZNCC matching cost function. Computation of the sum over a support
window in Algorithm 1 is computed fast and efficiently using the BF technique. In Algorithm 1, a value
at position [x, y]T in K′d,r is computed as K′d,r (x, y) = K′ (x− d, y + r).

Algorithm 1 The procedure of ImpZNCC matching cost function to construct C.
Input: Left and right images I and I′, window size W, expansion range R.

1. Ī ← compute average over W for I using BF
2. Ī′ ← compute average over W for I′ using BF
3. K← I − Ī
4. K′ ← I′ − Ī′

5. K2 ← K×K
6. K′2 ← K′ ×K′

7. D← compute sum over W for K2 using BF
8. D′ ← compute sum over W for K′2 using BF
9. For d = dmin to dmax do
10. For r = −R to R do
11. M← K×K′d,r
12. S← compute sum over W from M using BF
13. C (d)← compute S/

√
D×D′

14. end for
15. end for
16. Return C

3. Experimental Results

We used the Middlebury [19,33] dataset to measure the performance of matching cost functions
including AD, SD, NCC, ZNCC, Rank, Census, ImpAD, ImpSD, ImpNCC, ImpZNCC, ImpRank,
and ImpCensus in local and global frameworks. In the present experiments, we do not intend to
compare the performance of the test matching cost functions and stereo matching algorithms. We plan
to compare the performance of stereo matching algorithms before and after applying the modification
to solve the imperfect rectification problem.

For each of the test matching cost functions, we implemented local and global stereo matching
algorithms that use the function in the matching cost computation. For local stereo matching algorithms,
we used a 15 × 15 window to aggregate matching costs using C. For global stereo matching, we use
graph-cut (GC) [34] to smooth C. We used the source code of GC in [35]. We carefully and optimally
choose the parameters of GC for global stereo algorithms, which use AD, SD, Rank, and Census,
by using stereo images with perfect rectification conditions as training examples. The global stereo
matching algorithms, which are based on ImpAD, ImpSD, ImpRank, and ImpCensus, use the same
parameter values as the global algorithms that are based on the AD, SD, Rank, and Census matching
cost functions, respectively.

According to [15,30], NCC and ZNCC can be considered local stereo matching algorithms; hence,
we do not apply cost aggregation techniques and global optimization methods for NCC, ZNCC,
ImpNCC, and ImpZNCC. For the Rank, Census, ImpRank, ImpCensus, NCC, ZNCC, ImpNCC,
and ImpZNCC functions, which require a support window, we used the 9 × 9 window.

For AD, SD, ImpAD, and ImpSD, each pixel of the input stereo images is subtracted by a mean
value which is computed by an image window of the pixel. As a result, these four matching cost
functions can reduce the effect of illumination different between the stereo images, and we can measure
better the effect of the modification that solve the imperfect rectification problem. We used the 9 × 9
window for this mean subtraction.
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The performance of these four matching cost functions is measured by using the winner-takes-all
strategy for C. All of the matching cost algorithms were evaluated using the average percentage of
erroneous pixels in all zones, except occluded areas, and were computed at a 2-pixel error threshold.
This error threshold is a default value in Middlebury benchmark 3 [19]. The error percentage (Err)
was computed as follows:

Err (%) =
100
|Inocc| ∑

p∈Inocc

{
0, i f |DE(p)−DG(p)| ≤ 2
1, otherwise,

(32)

where Inocc is the set of all nonoccluded pixels, |Inocc| is the number of pixels in Inocc, and DG(p) and
DE(p) are the ground truth and estimated disparity at p, respectively.

Middlebury dataset 3 [36] provides the test and training stereo images with different conditions:
varying illumination and exposure, and both perfect and imperfect rectification problems. The training
stereo images are with ground truth, whereas the test datasets are not. The Middlebury benchmark
3 compares submitted stereo matching algorithms using the test dataset with these four conditions.
However, in this paper, we focus on solving the imperfect rectification problem of stereo images.
Therefore, in our experiments, we use the training datasets, which contain stereo images with imperfect
rectification and varying illumination and exposure. Table 1 presents data for the stereo images in
the training datasets. We implemented three versions with R = 0, R = 1, and R = 2, respectively.
The algorithms with R = 0 has no effect on matching cost function. Therefore, for example, ImpZNCC
with R = 0 is simply ZNCC.

Table 1. Stereo images with imperfect rectification in the Middlebury training datasets of version 3.

Dataset Height Width Disparity Dataset Height Width Disparity

Adirondack 1984 2872 290 Playroom 1904 2796 330
Backpack 1988 2948 260 Playtable 1852 2720 290
Bicycle 1968 3052 180 Recycle 1944 2880 260
Cable 1916 2816 460 Shelves 1988 2952 240
Classroom 1896 2996 260 Storage 1988 2792 660
Couch 1992 2296 630 Sword1 2004 2928 260
Flowers 1984 2888 640 Sword2 1956 2884 370
Motorcycle 1988 2964 280 Umbrella 2008 2960 250
Pipes 1940 2940 300

3.1. ImpCensus and ImpRank

We conducted experiments to evaluate the performance of Census, Rank, ImpCensus,
and ImpRank matching cost functions in local and global stereo matching approaches.
Denote ImpCensus/Win/R1 as a local stereo matching algorithm that uses the ImpCensus matching
cost function with R = 1 to construct C and aggregates matching costs using a window. In addition,
denote ImpCensus/GC/R1 as a global stereo matching algorithm that uses ImpCensus with R = 1
and GC to globally optimize the energy function, as described in Equation (2). Similarly, other denoted
stereo matching algorithms can be used by changing the matching cost functions and the R values.

Figure 1 shows the results of the ImpCensus-based stereo matching algorithms using the
Backpack stereo images with different R values. Disparity maps in the second line are the result
of the ImpCensus-based local algorithms, whereas the third line shows the disparity maps of the
ImpCensus-based global algorithms. Census/Win and Census/GC produced the most erroneous
disparity maps because they were un-aware of the imperfect rectification problem. ImpCensus/GC/R1
and ImpCensus/GC/R2 reduced the error rates. The error rate reduction is clearly seen from
Figure 1g,h, especially in textured image regions. These observations agree with those in [19] that the
imperfect rectification problem commonly happens in textured image regions.
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Figure 1. Results of the ImpCensus-based stereo matching algorithms with different R values using
the Backpack stereo images with imperfect rectification. (a) Left image. (b) Right image. (c) Ground
truth. (d) Disparity map of Census/Win (Err = 21.38%). (e) Disparity map of ImpCensus/Win/R1
(Err = 16.77%). (f) Disparity map of ImpCensus/Win/R2 (Err = 17.38%). (g) Disparity map of
Census/GC (Err = 22.59%). (h) Disparity map of ImpCensus/GC/R1 (Err = 14.65%). (i) Disparity map
of ImpCensus/GC/R2 (Err = 14.43%).

Tables 2 and 3 show the quantitative results of local and global stereo matching algorithms
that use Rank and ImpRank, and Census and ImpCensus, respectively. The ImpCensus-based
stereo matching algorithms outperformed the Census-based algorithms for all the test stereo images.
Similarly, the performance of the ImpRank-based stereo matching algorithms were superior to the
Rank-based algorithms. In the Playtable stereo images, for example, the modification allows the
ImpCensus-based local algorithm to reduce the error rate by up to 27.9% (65.28% of Census/Win
and 37.38% of ImpCensus/Win/R2). On the other hand, in a global approach, the error rate of
ImpCensus/GC/R2 was 39% smaller than that of Census/GC (70.29% of Census/Win and 31.20% of
ImpCensus/Win/R2).
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Table 2. Error rates of the Census- and ImpCensus-based stereo matching algorithms using the
imperfectly rectified stereo images of the Middlebury dataset. Bold results represent the lowest error
rates among the testing methods for each sub-dataset.

Local Algorithms Global Algorithms

Dataset Census ImpCensus/R1 ImpCensus/R2 Dataset Census ImpCensus/R1 ImpCensus/R2

Adirondack 45.30 38.45 37.62 Adirondack 52.71 37.67 31.14
Backpack 21.38 16.77 17.38 Backpack 22.59 14.65 14.43

Bicycle 51.21 45.10 42.12 Bicycle 53.69 43.13 35.01
Cable 51.84 45.47 42.46 Cable 63.39 47.07 36.37

Classroom 30.41 26.89 28.45 Classroom 38.47 25.49 18.85
Couch 30.65 29.42 30.50 Couch 33.34 28.05 26.83

Flowers 61.64 56.38 54.37 Flowers 64.70 54.43 49.27
Motorcycle 29.50 21.63 20.62 Motorcycle 37.30 21.25 17.52

Pipes 33.59 28.08 25.64 Pipes 38.46 27.52 22.70
Playroom 45.23 43.14 43.64 Playroom 49.79 42.09 39.13
Playtable 65.28 39.50 37.38 Playtable 70.29 34.92 31.20

Recycle 44.81 40.27 40.39 Recycle 50.74 36.91 31.72
Shelves 54.33 48.27 48.11 Shelves 56.88 47.38 44.78
Storage 54.70 49.74 47.33 Storage 63.41 51.99 44.81
Sword1 16.45 15.61 16.43 Sword1 18.41 14.08 13.99
Sword2 70.24 62.97 57.66 Sword2 71.63 52.73 36.92

Umbrella 66.17 63.64 64.40 Umbrella 70.62 62.23 56.46

Average 45.46 39.49 38.50 Average 50.38 37.74 32.42

Table 3. Error rates of the Rank- and ImpRank-based stereo matching algorithms using the imperfectly
rectified stereo images of the Middlebury dataset. Bold results represent the lowest error rates among
the testing methods for each sub-dataset.

Local Algorithms Global Algorithms

Dataset Rank ImpRank/R1 ImpRank/R2 Dataset Rank ImpRank/R1 ImpRank/R2

Adirondack 59.68 50.66 54.20 Adirondack 48.30 34.06 33.27
Backpack 25.60 20.21 24.27 Backpack 20.18 14.64 16.01

Bicycle 60.81 52.77 51.79 Bicycle 48.57 35.77 31.24
Cable 67.54 60.01 63.09 Cable 51.65 34.82 35.74

Classroom 41.49 38.41 48.13 Classroom 23.91 11.23 10.29
Couch 38.48 35.84 45.36 Couch 30.53 27.18 32.48

Flowers 72.03 62.64 62.66 Flowers 60.68 48.51 46.57
Motorcycle 43.21 29.73 31.26 Motorcycle 30.47 17.86 17.55

Pipes 42.67 34.91 34.13 Pipes 32.96 25.24 23.51
Playroom 55.61 50.74 54.73 Playroom 45.05 38.27 39.77
Playtable 73.64 54.26 52.70 Playtable 69.88 39.36 40.49

Recycle 64.45 53.01 56.38 Recycle 43.92 30.58 29.46
Shelves 58.34 53.21 57.39 Shelves 55.57 46.56 46.75
Storage 69.30 62.34 64.56 Storage 57.90 36.67 35.60
Sword1 20.71 19.07 23.50 Sword1 14.08 11.57 13.80
Sword2 78.81 75.55 77.43 Sword2 63.11 44.13 39.95

Umbrella 71.83 70.07 72.47 Umbrella 64.13 52.05 50.66

Average 55.54 48.44 51.41 Average 44.76 32.26 31.95

For the Census- and ImpCensus-based local and global stereo matching algorithms, average
error rates of ImpCensus/Win/R1 (39.49%) and ImpCensus/Win/R2 (38.50%) were about 6% smaller
than that of Census/Win (45.46%), whereas average error rates of ImpCensus/GC/R1 (37.74%) and
ImpCensus/GC/R2 (32.42%) were more than 12% smaller than that of Census/GC (50.38%). Similarly,
the awareness of high resolution images had the positive effect for the ImpRank-based stereo matching
algorithms such that the ImpRank-based algorithms with R = 1 and R = 2 had smaller average error
rates than the Rank-based algorithms.

3.2. ImpAD and ImpSD

We performed experiments to evaluate the performance of AD, SD, ImpAD, and ImpSD in
local and global stereo matching approaches. Tables 4 and 5 show the quantitative results of local
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and global stereo matching algorithms that use AD and ImpAD, and SD and ImpSD, respectively.
For all of the test stereo images, ImpAD/Win/R1 and ImpAD/Win/R2 outperformed AD/Win,
and ImpAD/GC/R1 and ImpAD/GC/R2 were superior to AD/GC. Similarly, the error rates of
ImpSD/Win/R1 and ImpSD/Win/R2 were smaller than those of SD/Win, and ImpSD/GC/R1 and
ImpSD/GC/R2 performed better than ImpSD/GC/R2 for all the test stereo pairs.

Table 4. Error rates of the AD- and ImpAD-based stereo matching algorithms using the imperfectly
rectified stereo images of the Middlebury dataset. Bold results represent the lowest error rates among
the testing methods for each sub-dataset.

Local Algorithms Global Algorithms

Dataset AD ImpAD/R1 ImpAD/R2 Dataset AD ImpAD/R1 ImpAD/R2

Adirondack 54.17 46.33 47.48 Adirondack 42.09 29.28 31.11
Backpack 28.57 22.54 24.39 Backpack 38.25 21.59 22.28

Bicycle 61.27 55.25 53.39 Bicycle 50.68 38.03 35.97
Cable 65.63 59.14 60.25 Cable 43.09 33.97 33.32

Classroom 40.77 38.37 44.96 Classroom 18.13 12.42 12.96
Couch 37.95 35.09 40.32 Couch 33.86 30.99 33.78

Flowers 69.47 62.56 62.35 Flowers 59.56 52.83 47.05
Motorcycle 41.39 28.82 28.54 Motorcycle 40.81 25.01 22.64

Pipes 43.49 35.38 33.01 Pipes 49.42 30.39 25.62
Playroom 50.55 49.43 51.82 Playroom 43.44 40.26 41.67
Playtable 69.14 50.99 46.05 Playtable 67.20 44.29 35.48

Recycle 56.66 52.55 55.04 Recycle 30.53 25.90 30.18
Shelves 57.14 52.39 54.05 Shelves 55.84 49.21 49.84
Storage 74.25 68.04 70.28 Storage 68.02 49.34 45.84
Sword1 28.13 23.65 26.50 Sword1 34.18 18.98 19.63
Sword2 76.54 73.75 74.28 Sword2 54.70 42.99 36.46

Umbrella 70.67 68.18 69.36 Umbrella 47.41 42.60 43.98

Average 54.46 48.38 49.53 Average 45.72 34.59 33.40

Table 5. Error rates of the SD- and ImpSD-based stereo matching algorithms using the imperfectly
rectified stereo images of the Middlebury dataset. Bold results represent the lowest error rates among
the testing methods for each sub-dataset.

Local Algorithms Global Algorithms

Dataset SD ImpSD/R1 ImpSD/R2 Dataset SD ImpSD/R1 ImpSD/R2

Adirondack 54.19 46.28 48.20 Adirondack 41.67 31.37 37.42
Backpack 29.46 23.01 25.15 Backpack 40.88 23.02 23.36

Bicycle 62.21 56.31 54.57 Bicycle 50.23 44.38 42.52
Cable 65.30 59.24 61.41 Cable 41.96 34.37 35.24

Classroom 40.46 38.15 41.93 Classroom 16.49 12.59 13.18
Couch 38.35 35.92 42.31 Couch 34.86 32.33 36.47

Flowers 70.10 63.60 64.52 Flowers 56.56 44.75 51.13
Motorcycle 42.07 29.45 29.84 Motorcycle 41.33 25.47 25.17

Pipes 44.34 35.90 33.85 Pipes 50.06 30.97 27.12
Playroom 51.04 50.32 52.23 Playroom 42.66 42.39 45.01
Playtable 69.25 51.93 48.25 Playtable 67.74 46.73 37.77

Recycle 56.22 52.67 54.10 Recycle 32.77 30.59 27.42
Shelves 56.72 52.35 54.70 Shelves 53.70 50.51 53.21
Storage 74.35 67.51 70.09 Storage 66.77 46.59 46.97
Sword1 29.97 25.11 27.80 Sword1 36.40 19.40 19.93
Sword2 76.56 73.68 74.99 Sword2 51.32 41.65 38.54

Umbrella 70.34 68.05 69.78 Umbrella 47.54 44.45 42.62

Average 54.76 48.79 50.22 Average 45.47 35.39 35.47

We computed the average performance of each of the test stereo matching algorithms for the test
stereo images. For the AD- and ImpAD-based stereo matching algorithms, AD/Win and AD/GC
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had the largest errors in their corresponding groups, with average error rates of 54.46% and 45.72%,
respectively. In contrast, ImpAD/Win/R1 and ImpAD/GC/R1 had the beter performance in the local
and global approaches, respectively. ImpAD/Win/R1 performed with average error rates of 48.38%,
whereas ImpAD/GC/R1 operated at 34.59% for the test stereo pairs.

For the SD- and ImpSD-based stereo matching algorithms, SD/Win and SD/GC had the largest
errors in their correspondent groups, with the average error rates of 54.76% and 45.47%, respectively.
In contrast, ImpSD/Win/R1 and ImpSD/GC/R1 had the best performance in the local and global
approach, respectively. ImpSD/Win/R1 performed with average error rate of 48.79%, whereas
ImpSD/GC/R1 had an error rate of 35.39% over the test stereo pairs.

3.3. ImpNCC and ImpZNCC

We evaluated the performance of NCC and ZNCC with and without using the modification.
We evaluated the performance of NCC, ImpNCC, ZNCC, and ImpZNCC directly from the
corresponding disparity space image C using a winner-take-all strategy. Denote ImpNCC/R1 as
a matching cost function that uses ImpNCC with R = 1 to construct C.

Figure 2 shows the results of the ImpZNCC matching cost functions with different R values
using the Motorcycle stereo images. Figure 2a,b show the left and right images, whereas the
ground truth of the left image is shown in Figure 2c. Disparity maps of ZNCC, ImpZNCC/R1,
and ImpZNCC/R1 are shown in Figure 2d–f, respectively. ZNCC produced the most erroneous
disparity maps with an average error rate of 49.02% because ZNCC ignores the imperfect rectification
problem. ImpZNCC/R1 and ImpZNCC/R2 reduced the error rates with average error rates of 43.73%
and 43.64%, respectively.

Figure 2. Results of the ImpZNCC-based stereo matching algorithms with different R values using
the Motorcycle stereo images with imperfect rectification. (a) Left image. (b) Right image. (c) Ground
truth. (d) Disparity map of ZNCC (Err = 35.97%). (e) Disparity map of ImpZNCC/R1 (Err = 25.78%).
(f) Disparity map of ImpZNCC/R2 (Err = 26.30%).

Tables 6 and 7 show the quantitative results of the NCC, ImpNCC, ZNCC, and ImpZNCC
matching functions, respectively. Using the modification, NCC had the worst performance
when producing more erroneous disparity maps than ImpNCC/R1 and ImpNCC/R2. Similarly,
the awareness of high resolution images improved the performance of ImpZNCC/R1 and
ImpZNCC/R2, which were superior to ZNCC for all of the test stereo pairs.
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Table 6. Error rates of the NCC and ImpNCC stereo matching algorithms using the imperfectly rectified
stereo images of the Middlebury dataset. Bold results represent the lowest error rates among the testing
methods for each sub-dataset.

Dataset NCC ImpNCC/R1 ImpNCC/R2

Adirondack 49.40 45.22 46.11
Backpack 25.42 21.43 22.11

Bicycle 58.23 54.09 53.12
Cable 54.85 49.64 48.51

Classroom 43.38 41.67 43.37
Couch 35.10 35.34 36.11

Flowers 62.18 59.61 59.31
Motorcycle 36.17 26.90 27.52

Pipes 36.61 30.90 29.05
Playroom 50.22 49.12 48.30
Playtable 66.29 39.50 40.61

Recycle 52.98 52.56 53.83
Shelves 54.60 48.88 49.72
Storage 56.47 53.05 52.93
Sword1 25.85 23.91 24.96
Sword2 74.35 70.78 68.46

Umbrella 72.98 72.26 72.91

Average 50.30 45.58 45.70

Table 7. Error rates of the ZNCC and ImpZNCC stereo matching algorithms using imperfectly rectified
stereo images of the Middlebury dataset. Bold results represent the lowest error rates among the testing
methods for each sub-dataset.

Dataset ZNCC ImpZNCC/R1 ImpZNCC/R2

Adirondack 47.49 42.45 43.36
Backpack 24.92 21.05 21.68

Bicycle 56.77 51.68 49.75
Cable 57.76 51.58 50.26

Classroom 34.68 32.73 34.46
Couch 35.62 35.98 36.71

Flowers 63.47 60.16 59.44
Motorcycle 35.97 25.78 26.30

Pipes 38.39 32.07 30.01
Playroom 50.37 49.34 48.65
Playtable 68.12 40.03 40.98

Recycle 51.04 49.45 49.31
Shelves 55.46 49.05 49.89
Storage 55.96 51.23 50.13
Sword1 22.46 21.23 22.03
Sword2 70.68 63.53 58.44

Umbrella 67.68 65.99 67.05

Average 49.23 43.73 43.44

3.4. Stereo Image with Radiometric Distortion

Stereo matching algorithms need to operate robustly on stereo images with radiometric distortion
such that they can be used for outdoor applications and road-driving images. In this subsection,
we evaluated the performance of stereo matching algorithms that are aware of the high resolution
images for stereo images with radiometric distortion and imperfect rectification problems. We used two
Middlebury sub-datasets in which one sub-dataset had imperfect rectification and varying exposure
and the other sub-dataset had imperfect rectification and varying illumination.

In the present experiments, because Census is one of the most robust matching functions for stereo
images with radiometric distortions [15], we use only the ImpCensus-based global stereo matching
algorithms. Figure 3 shows the results of Census/GC, ImpCensus/GC/R1, and ImpCensus/GC/R2
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using two stereo pairs. The second line shows the disparity maps of the test stereo matching algorithms
using a stereo pair (a) and (b) with varying exposure and imperfect rectification, whereas the third
line shows the disparity maps using a stereo pair (a) and (c) with varying illumination and imperfect
rectification. The error rates of ImpCensus/GC/R1 and ImpCensus/GC/R2 were smaller than those
of Census/GC in the two stereo pairs.

Figure 3. Results of the Census-based stereo matching algorithms using the Sword1 stereo images
of imperfect rectification and radiometric distortion. (a) Left image. (b) Right image with varying
exposure. (c) Right image with varying illumination. (d–f) Disparity maps using the stereo pair (a,b).
(d) Disparity map of Census/GC (Err = 18.87%). (e) Disparity map of ImpCensus/GC/R1 (Err =
14.55%). (f) Disparity map of ImpCensus/GC/R2 (Err = 14.39%). (g–i) Disparity maps using the stereo
pair (a,c). (g) Disparity map of Census/GC (Err = 36.05%). (h) Disparity map of ImpCensus/GC/R1
(Err = 31.30%). (i) Disparity map of ImpCensus/GC/R2 (Err = 31.18%).

Tables 8 and 9 show the quantitative results of the local and global stereo matching algorithms,
which use ImpCensus and the two Middlebury sub-datasets. For all of the cases in the two tables,
the performance of the ImpCensus-based global stereo matching algorithms were improved. Stereo
images with varying illumination are often more challenging for stereo matching algorithms than
stereo images with varying exposure [15]. Overall, the performance of ImpCensus/GC/R1 and
ImpCensus/GC/R2 were superior to Census/GC for all the test stereo images.
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Table 8. Error rates of the Census- and ImpCensus-based stereo matching algorithms using the
imperfectly rectified stereo images of the Middlebury dataset. The stereo images have varying exposure.
Bold results represent the lowest error rates among the testing methods for each sub-dataset.

Local Algorithms Global Algorithms

Dataset Census ImpCensus/R1 ImpCensus/R2 Dataset Census ImpCensus/R1 ImpCensus/R2

Adirondack 43.80 36.95 36.28 Adirondack 51.66 36.33 28.32
Backpack 20.21 17.06 17.68 Backpack 21.19 15.21 14.28

Bicycle 50.25 44.37 41.46 Bicycle 54.02 42.58 34.16
Cable 49.86 43.36 40.83 Cable 63.30 46.01 36.62

Classroom 38.90 35.97 37.80 Classroom 47.51 37.12 31.62
Couch 34.50 33.04 34.40 Couch 39.27 32.39 30.87

Flowers 63.34 58.66 56.90 Flowers 67.66 58.05 52.68
Motorcycle 27.28 22.60 22.76 Motorcycle 32.79 22.39 19.43

Pipes 34.02 28.30 25.90 Pipes 39.63 27.91 23.09
Playroom 45.01 43.02 43.71 Playroom 49.19 42.17 39.71
Playtable 66.23 40.58 39.07 Playtable 70.89 36.36 33.73

Recycle 48.07 43.61 44.49 Recycle 55.71 41.90 36.92
Shelves 54.89 47.91 47.59 Shelves 57.75 47.69 44.95
Storage 54.14 49.07 46.77 Storage 62.68 50.95 44.50
Sword1 17.06 16.27 17.09 Sword1 18.87 14.55 14.39
Sword2 81.65 76.48 71.25 Sword2 83.43 71.80 56.88

Umbrella 65.12 64.45 65.98 Umbrella 68.53 63.52 59.46

Average 46.72 41.28 40.59 Average 52.01 40.41 35.39

Table 9. Error rates of the Census- and ImpCensus-based stereo matching algorithms using the imperfectly
rectified stereo images of the Middlebury dataset. There stereo images have varying illumination. Bold
results represent the lowest error rates among the testing methods for each sub-dataset.

Local Algorithms Global Algorithms

Dataset Census ImpCensus/R1 ImpCensus/R2 Dataset Census ImpCensus/R1 ImpCensus/R2

Adirondack 68.60 64.29 64.45 Adirondack 75.65 66.42 63.04
Backpack 33.48 33.20 32.69 Backpack 36.01 33.10 33.18

Bicycle 72.53 71.13 70.62 Bicycle 74.99 71.79 70.45
Cable 82.68 80.65 80.68 Cable 87.24 82.38 79.88

Classroom 73.69 73.43 75.44 Classroom 79.23 76.70 75.19
Couch 53.99 51.60 51.59 Couch 62.34 53.24 48.40

Flowers 76.94 74.54 74.20 Flowers 79.06 74.36 72.13
Motorcycle 48.51 46.76 47.90 Motorcycle 55.12 48.85 46.40

Pipes 58.23 52.11 50.86 Pipes 70.17 58.28 52.28
Playroom 60.61 59.72 60.51 Playroom 65.69 61.09 59.19
Playtable 80.49 76.55 69.63 Playtable 83.04 76.80 62.73

Recycle 62.50 59.45 60.03 Recycle 69.56 60.18 56.58
Shelves 66.01 63.44 64.48 Shelves 69.55 63.29 62.24
Storage 72.36 70.28 69.48 Storage 78.01 72.96 68.94
Sword1 30.36 30.06 31.84 Sword1 36.05 31.30 31.18
Sword2 79.17 75.41 73.05 Sword2 81.05 71.01 59.94

Umbrella 78.88 78.98 79.64 Umbrella 81.43 79.58 79.01

Average 64.65 62.45 62.18 Average 69.66 63.61 60.04

3.5. Using Normal Stereo Images

In this subsection, we evaluated the performance of the proposed stereo matching methods
using normal stereo images. In other words, we measure the Imperfect-based method using perfectly
rectified Middebury stereo datasets.

We used sub-datasets, including Aloe, Baby1, Baby2, Baby3, Cloth1, Cloth2, Cloth3, Cloth4,
Rocks1, Rocks2, Wood1, and Wood2, to evaluate the Imperfect-based method with different R. Figure 4
shows the quanlitative results of the ImpCensus-based method for the Aloe, Baby1, Rock1, and Wood2
image pairs. The ImpCensus-based method explores correspondences in larger searching spaces in
terms of the expasion parameter r. As a result, the ImpCensus-based method marginally degraded for
perfectly rectified stereo images.
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Figure 4. Results of the ImpCensus-based stereo matching algorithms with different R values using
the perfectly rectified images. The first column is left images, and the second column is disparity
maps for Census/Win. The next two columns are disparity maps for ImpCensus/Win/R1 and
ImpCensus/Win/R2, respectively. The last column is ground truths.

Table 10 shows the error rates for the ImpCensus-based method using perfectly rectified
stereo images. Clearly, the expansion parameter r had no benefit for these images. Looking for
correspondences for larger searching space (with R = 1 and R = 2) made the ImpCensus-based
method more erroneous.
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Table 10. Average error rates of proposed local stereo matching algorithms with different R using the
perfectly rectified stereo images of the Middlebury dataset.

Dataset Census/Win ImpCensus/Win/R1 ImpCensus/Win/R2

Aloe 20.293 21.012 22.103
Baby1 14.658 15.018 15.263
Baby2 20.262 20.879 22.654
Baby3 20.523 20.880 21.835

Bowling1 29.245 30.183 33.428
Bowling2 23.512 24.401 25.628

Cloth1 10.917 11.048 12.553
Cloth2 18.245 18.603 19.083
Cloth3 13.793 14.132 15.834
Cloth4 18.586 18.952 19.463

Flowerpots 26.919 27.802 28.128
Lampshade1 35.201 36.254 38.236
Lampshade2 37.060 37.974 39.137

Midd1 52.165 52.680 53.572
Midd2 49.183 49.800 50.178

Monopoly 35.374 35.967 37.907
Plastic 62.287 62.492 67.283

Rocks1 14.634 14.971 15.248
Rocks2 14.426 14.639 14.817
Wood1 18.174 18.532 19.565
Wood2 17.150 17.499 19.058

Average 26.315 26.844 27.027

3.6. Computation Time

In order to measure the computation times of the matching cost functions, we used the Bicycle
stereo images with a resolution of 1968 × 3052 and a disparity range of 180. We experimentally
investigated the matching cost functions, including ImpCensus, ImpRank, ImpAD, ImpSD, ImpNCC,
and ImpZNCC, with R = 0, R = 1, and R = 2, respectively. The experimental PC platform had
a configuration consisting of an Intel core i7, a 4.00 GHz CPU, and 16.00 GB of memory. Table 11 shows
the computation times that are needed for the test matching cost functions to compute the disparity
space image C. The testing algorithms requires more computation time when the expansion factor
R increases.

Table 11. Computation time (in second) required to compute the disparity space image C.

Function ImpAD ImpSD ImpNCC ImpZNCC ImpRank ImpCensus

R = 0 2 2 10 10 4 163
R = 1 10 9 32 31 14 485
R = 2 14 13 56 55 20 784

As shown in the above tables, methods with the expansion range R = 1 clearly reduce the error
rates of their original versions. However, methods with R = 2 performed comparable or marginally
better than those with R = 1.

In addition, we further evaluated performance of the proposed local stereo matching methods for
R = 3 and R = 4 using the imperfectly rectified stereo images of the Middlebury dataset, as shown in
Table 12. Increasing value for the parameter range R had the negative effects and increase error rates.
Therefore, generally, R = 1 shows to be the best appropriate value.

Let |I| be image size and D be disparity range. AD and SD are pixel-wise method, so their
computational complexities are O (|I| × D). Rank and Census are window-based cost functions that
each matching cost is computed for windows W. For each window pairs, Rank accumulates values
of relative order between center pixel and its neighbors. Therefore, Rank computational complexity
is O (|I| × D× (P− 1)). Census encodes (P− 1) relative orders into a bit string and then compute
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a matching cost by comparing differences between two strings. Therefore, Census computational
complexity is O

(
|I| × D× P2).

The proposed cost functions with the parameter range R requires to process K = R× 2+ 1 pixels in
the right images for each pixel in the left image. Therefore, the computational complexities for ImpAD
and ImpSD are O (|I| × D× K), and for ImpCensus and ImpRank are O (|I| × D× (P− 1)× K).

Table 12. Average error rates of proposed local stereo matching algorithms with different R using the
imperfectly rectified stereo images of the Middlebury dataset.

Dataset R = 0 R = 1 R = 2 R = 3 R = 4

ImpCensus-based 45.46 39.49 38.50 39.27 40.34
ImpRank-based 55.54 48.44 51.41 53.78 56.07
ImpAD-based 54.46 48.38 49.53 49.87 50.62
ImpSD-based 54.76 48.79 50.22 51.13 53.49
ImpNCC-based 50.30 45.58 45.70 45.92 46.53
ImpZNCC-based 49.23 43.73 43.44 44.06 45.33

4. Conclusions

In this paper, we applied the modification to the state-of-the-art stereo matching methods in order
to overcome imperfect rectification. We conducted experiments to evaluate these stereo matching
methods using the Middlebury datasets. The experimental results indicate that the proposed stereo
matching methods largely improved their performance. The proposed stereo matching methods in this
paper increases the computation cost for a stereo matching algorithm. To reduce the computation cost
or to develop a different approach that can solve the imperfect rectification problem without increasing
computation cost is left to our future work.
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