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Abstract: In this paper we have established the sufficient conditions for asymptotic convergence of
all solutions of nonlinear dynamical system (with potentially unknown and unbounded external
disturbances) to zero with time t → ∞. We showed here that the symmetric part of linear part of
nonlinear nominal system, or, to be more precise, its time-dependent eigenvalues, play important
role in assessment of the robustness of systems.
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1. Notations, Motivation and Introduction

Our purpose here is to prove a new result regarding the convergence of all solutions to the origin
x = 0 as t→ ∞ for a nonlinear dynamical system subject to external disturbances,

ẋ = f (x, t) + δ(x, t), x ∈ Rn, t ≥ t0, (1)

given that 0 is a solution for the nominal system ẋ = f (x, t) and that f and δ satisfy certain conditions.

1.1. Notations

Let Rn denote n-dimensional vector space endowed by the Euclidean norm ‖·‖2 , and ‖·‖ be an
induced norm for matrices, ‖A‖ = max{‖Ax‖2 ; ‖x‖2 = 1}. We always assume that the function f is
continuously differentiable, f (0, t) = 0 for all t ≥ t0, that perturbation δ is at least continuous both
from Rn × [t0, ∞) to Rn, and it is not assumed that the zero function is a solution of (1). The nonlinear
term δ(x, t) aggregates all external disturbances which affect the state variable x ∈ Rn of the nominal
system ẋ = f (x, t). Let us denote by A(t) the linear part of nominal vector field f (x, t) at x = 0, that is,
A(t) , Jx f (0, t), where Jx f denotes the Jacobian matrix of f with respect to variable x and let us
assume that f (x, t) = A(t)x + R1(x, t) for all x ∈ Rn and all t ≥ t0, where R1 is the Taylor remainder.
We also assume that the solutions of (1) are uniquely determined by x(t0) for all t ≥ t0. Throughout
the whole paper, the superscript “ T ” indicates the transpose operator.

1.2. Motivation and Introduction

For a motivation, let us consider the case when linear part ẋ = A(t)x of the nominal system
ẋ = f (x, t) is asymptotically stable. What can we say about the asymptotic behavior (as t → ∞)
of solutions of perturbed system (1)? This question represents one of the fundamental problems in
the area of robust stability and robustness of the systems in general and so the effect of (known or
unknown) perturbations on the solutions of nominal system as a potential source of instability attracts
the attention and interest of scientific community for a long time in the various contexts, recently for
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example [1–16]. A comprehensive overview of the most significant results on robust control theory as
a stand-alone subfield of control theory and its history is presented in [17,18].

On the other side, the analysis of the robustness of uncontrolled systems often merges with the
mathematical theory of dynamical systems. As is traditional in perturbation theory of linear and
nonlinear dynamical systems, the behavior of solutions of a perturbed system is determined in terms
of the behavior of solutions of an unperturbed system [19–23]. In principle, to answer the question
regarding behavior of the solutions of perturbed systems as t → ∞, it usually makes a difference
whether the origin remains an equilibrium for the perturbed system or not. If δ(0, t) = 0, then the
origin is an equilibrium point of (1). In this case, we can analyze the stability property of the origin as
an equilibrium point of the perturbed system. It is worth mentioning in this context the well-known
Demidovich condition [24] on asymptotic stability of all solutions of a nonlinear system ẋ = F(x, t)
stating that if for some positive definite matrix P = PT > 0, the matrix

J(x, t) =
1
2

[
PJxF(x, t) + JT

x F(x, t)P
]

(2)

is negative definite uniformly in (x, t) ∈ Rn × R then for any two solutions x1(t) and x2(t) is
‖x1(t)− x2(t)‖2 ≤ K exp[−α(t− t0)] ‖x1(t0)− x2(t0)‖2 for all t ≥ t0 and some independent on x1 and
x2 constants K, α > 0, but this condition is not-very-well suited for reasoning about the convergence
of all solutions to zero as t → ∞ if F(0, t) 6= 0 and so we can not set x2(t) ≡ 0. In this case, that is,
if δ(0, t) 6= 0, the origin is no longer an equilibrium point of (1), and we usually analyze the ultimate
boundedness of solutions of perturbed system. As have been shown in ([25] Chapter 9), if the point
x = 0 is an exponentially stable equilibrium point of the nominal system and perturbation term
δ satisfies

‖δ(x, t)‖2 ≤ γ(t) ‖x‖2 + η(t), ‖x‖2 < r, t ≥ t0 (3)

where γ, η : [t0, ∞) → [0, ∞) are continuous,
∫ ∞

t0
γ(τ)dτ < ∞ and η is bounded, then for η ≡ 0,

the origin is an exponentially stable equilibrium point of the perturbed system and the solutions
of the perturbed system are ultimately bounded in the opposite case (if η is not identically zero).
These analyses are close and compatible with the concept input-to-state stability which has been
introduced by E. Sontag [26,27]. In contrast to the case of exponential stability, the unperturbed
system with uniformly asymptotically stable (but not exponentially stable) zero solution is not
robust even for continuous perturbations with arbitrarily small linear bounds ‖δ(x, t)‖2 ≤ γ ‖x‖2 ,
‖x‖2 < r, t ≥ t0 and γ > 0, see [25] for more details. The definitions of various types of stability for
non-autonomous systems mentioned here can be found, for example, in ([25] Chapter 4). There are
two useful and principally different methods for studying the qualitative behavior of the solutions of
the perturbed nonlinear system: the second method of Lyapunov [25,28–30], and the use of a variation
of constants formula [19–21,31]. The present paper is based on the second approach in combination
with the eigenvalue techniques to prove, in Theorem 1 with the help of Lemma 1, the new sufficient
conditions for global robustness of nonlinear (uncontrolled) systems, whose linear part ẋ = A(t)x is
asymptotically stable and in general time-varying; the notion “global robustness” is meant in the sense
of convergence of all solutions of system (1) to the origin x = 0 as t → ∞ provided the perturbing
term satisfies some growth constraints. At this point, we would also like to emphasize that we achieve
our results without a priori assumption on the boundedness of perturbation δ(x, t). More specifically,
η(t) in (3) may not be bounded for γ(t) ≡ 0, and so our ambition here is to partially complement the
mosaic of asymptotic behavior of the solutions of dynamical systems. The theory is illustrated by two
nontrivial examples, Example 1 and Example 2.

2. Results

In this section, we formulate the main result on the asymptotic behavior of solutions for (1) as
t→ ∞.
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2.1. Auxiliary Lemma

The purpose of this subsection is to present the lemma upon which subsequent result will be
based. The core part of the proof of the later result is contained in the proof of this lemma.

Lemma 1. Let X(t) be a fundamental matrix of ẋ = A(t)x. Denote the largest and smallest pointwise
eigenvalues of 1

2 [A(t) + AT(t)] by λmax(t) and λmin(t). Then

exp
[ t∫

τ

λmin(s)ds
]
≤
∥∥∥X(t)X−1(τ)

∥∥∥ ≤ exp
[ t∫

τ

λmax(s)ds
]

, t ≥ τ ≥ t0. (4)

Proof. First note that the integrals in (4) are well defined since the eigenvalues of a matrix are
continuous functions of the entries of the matrix, and because the entries of 1

2 [A(t) + AT(t)] are
continuous functions of time, the frozen-time eigenvalues λmax(t) and λmin(t) are also continuous
functions of t. Suppose x(t) is a solution of ẋ = A(t)x corresponding to a given t0 and nonzero
x(t0). Using

d
dt
‖x(t)‖2

2 =
d
dt
[xT(t)x(t)] = xT(t)[AT(t) + A(t)]x(t)

the Rayleigh–Ritz inequality [32] gives

2 ‖x(t)‖2
2 λmin(t) ≤

d
dt
‖x(t)‖2

2 ≤ 2 ‖x(t)‖2
2 λmax(t), t ≥ t0.

Dividing through by ‖x(t)‖2
2 which is positive at each t, and integrating from τ to any

t ≥ τ ≥ t0 yields

2
t∫

τ

λmin(s)ds ≤ ln ‖x(t)‖2
2 − ln ‖x(τ)‖2

2 ≤ 2
t∫

τ

λmax(s)ds, t ≥ τ ≥ t0.

Exponentiation followed by taking the nonnegative square root gives

‖x(τ)‖2 exp
[ t∫

τ

λmin(s)ds
]
≤ ‖x(t)‖2 ≤ ‖x(τ)‖2 exp

[ t∫
τ

λmax(s)ds
]

, t ≥ τ ≥ t0. (5)

Now, given any τ ≥ t0 and τ∗ ≥ τ let x∗ be such that

‖x∗‖2 = 1,
∥∥∥X(τ∗)X−1(τ)x∗

∥∥∥
2
=
∥∥∥X(τ∗)X−1(τ)

∥∥∥ .

Note that such x∗ exists from the definition of induced norm for matrices. Then the initial state
x(τ) = x∗ yields a solution of ẋ = A(t)x that at time τ∗ satisfies

‖x(τ∗)‖2 =
∥∥∥X(τ∗)X−1(τ)x∗

∥∥∥
2
=
∥∥∥X(τ∗)X−1(τ)

∥∥∥ ≤ ‖x(τ)‖2 exp
[ τ∗∫

τ

λmax(s)ds
]

.

In the last inequality, we used the right inequality from (5) for t = τ∗ and the fact that
x(τ∗) = X(τ∗)X−1(τ)x∗. Since x(τ) = x∗ and ‖x∗‖2 = 1, the last inequality gives that

∥∥∥X(τ∗)X−1(τ)
∥∥∥ ≤ exp

[ τ∗∫
τ

λmax(s)ds
]

.
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Because such x∗ can be selected for any τ ≥ t0 and τ∗ ≥ τ, the proof of the right inequality in (4)
is complete. The other half of the theorem follows by analogous arguments.

Taking into consideration the fact that linear system ẋ = A(t)x is uniformly asymptotically stable
if and only if

∥∥X(t)X−1(τ)
∥∥ ≤ K exp[−α(t− τ)], t0 ≤ τ ≤ t < ∞ for some positive constants K and

α [33], we have the following

Corollary 1. If λmax(t) ≤ λ0 < 0 for all t ≥ t0, then the linear system ẋ = A(t)x, t ≥ t0 is uniformly
asymptotically stable (⇔ uniformly exponentially stable).

2.2. Main Result

Theorem 1. Let us consider the system (1), ẋ = f (x, t) + δ(x, t), x ∈ Rn, t ≥ t0. Assume that

(A1) λmax(t) ≤ λ0 < 0 in some left neighborhood of +∞, where λmax(t) is the largest pointwise eigenvalue of
1
2 [A(t) + AT(t)], A(t) = Jx f (0, t);

(A2) for all (x, t) ∈ Rn × [t0, ∞) is ‖δ(x, t)‖2 ≤
∥∥∆̃(t)

∥∥
2 − ‖ f (x, t)− [Jx f (0, t)]x‖2 , where function ∆̃(t)

is continuous on [t0, ∞) and satisfies
(A3) lim

t→∞

(∥∥∆̃(t)
∥∥

2/λmax(t)
)
= 0.

Then all solutions of (1) converge to 0 as t→ ∞.

Proof. The effect of the perturbation on the solutions of a system of nonlinear differential equations
can be studied using the variation of constants formula identifying the Taylor remainder of f together
with δ as an inhomogeneous term ∆(x, t). Thus we can rewrite the system (1) as

ẋ(t) = A(t)x(t) + ∆(x, t),

where A(t) , Jx f (0, t) and ∆(x, t) , R1(x, t) + δ(x, t). Then for all t ≥ t0,

x(t) = X(t)X−1(t0)x(t0) +

t∫
t0

X(t)X−1(τ)∆(x(τ), τ)dτ, (6)

where X(t), t ≥ t0 is a fundamental matrix of ẋ = A(t)x representing the linear part of nominal system
ẋ = f (x, t). Thus

‖x(t)‖2 ≤
∥∥∥X(t)X−1(t0)

∥∥∥ ‖x(t0)‖2 +

t∫
t0

∥∥∥X(t)X−1(τ)
∥∥∥ ‖∆(x(τ), τ)‖2 dτ.

Since by Assumption A2 is ‖∆(x, t)‖2 ≤
∥∥∆̃(t)

∥∥
2 for all (x, t) ∈ Rn × [t0, ∞), Lemma 1 yields

the inequality

‖x(t)‖2 ≤ ‖x(t0)‖2 exp
[ t∫

t0

λmax(s)ds
]
+

t∫
t0

exp
[ t∫

τ

λmax(s)ds
] ∥∥∆̃(τ)

∥∥
2 dτ

≤ ‖x(t0)‖2 exp
[

λ0(t− t0)

]
+

t∫
t0

exp
[ t∫

τ

λmax(s)ds
] ∥∥∆̃(τ)

∥∥
2 dτ.

Due to Assumption A1, the first term on the right-hand side, namely the linear homogeneous
response to the initial states, decays exponentially fast to zero as t → ∞. It remains to analyze the
second term on the right-hand side of the last inequality, the estimate of response to nonlinear term
∆(x, t). We get
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t∫
t0

exp
[ t∫

τ

λmax(s)ds
] ∥∥∆̃(τ)

∥∥
2 dτ = exp

[ t∫
t0

λmax(s)ds
] t∫

t0

exp
[
−

τ∫
t0

λmax(s)ds
] ∥∥∆̃(τ)

∥∥
2 dτ

=

t∫
t0

exp
[
−

τ∫
t0

λmax(s)ds
] ∥∥∆̃(τ)

∥∥
2 dτ

exp
[
−

t∫
t0

λmax(s)ds
] ,

and the L’Hospital rule yields

lim
t→∞

d
dt

t∫
t0

exp
[
−

τ∫
t0

λmax(s)ds
] ∥∥∆̃(τ)

∥∥
2 dτ

d
dt exp

[
−

t∫
t0

λmax(s)ds
]

= lim
t→∞

exp
[
−

t∫
t0

λmax(s)ds
] ∥∥∆̃(t)

∥∥
2

(−λmax(t)) exp
[
−

t∫
t0

λmax(s)ds
] = − lim

t→∞

∥∥∆̃(t)
∥∥

2
λmax(t)

.

This result together with Assumption A3 gives the claim of Theorem 1 regarding the robustness
of the system under consideration.

Remark 1. Recall that for unperturbed linear time-varying system ẋ = A(t)x, Assumption A1 of Theorem 1
extended on t ∈ R implies Demidovich condition (2) with P equal to the unit matrix, JxF(x, t) = A(t) and
taking into account that the eigenvalues of the symmetric matrix J(x, t) = 1

2 [A(t) + AT(t)] are uniformly
negative; however, for the perturbed linear time-varying systems, the uniform negative definiteness of the matrix
J(x, t) is difficult to verify, unlike Assumption A3, taking into account that Assumption A2 is reduced to
‖δ(x, t)‖2 ≤

∥∥∆̃(t)
∥∥

2 .

Remark 2. Let A(t) = A, a constant matrix.

(i) When A is negative definite, then Assumption A1 of Theorem 1 is automatically satisfied because 1
2 [A+ AT ]

is also negative definite ([34] Corollary 14.2.7), and
(ii) in connection with Assumption A3, it is worth noting that Assumption A3 reduces to

∥∥∆̃(t)
∥∥

2 → 0 as
t → ∞, ensuring the vanishing at infinity of all solutions of perturbed system ẋ = f (x, t) + δ(x, t), cf.
Example 2 below, where non-constant λmax(t) allows convergence to zero of all solutions of perturbed
system for a wider class of perturbations, where even unbounded perturbations are admissible.

3. Simulation Experiments in MATLAB R©

Example 1. To illustrate Theorem 1 with an example, let us consider the system

ẋ(t) =

(
−λ exp[t]

− exp[t] −λ

)
x(t)︸ ︷︷ ︸

f (x(t),t)≡A(t)x(t)

+δ(x, t), t ≥ t0, (7)

with yet unspecified δ and parameter λ ∈ R. Obviously, in this specific example, λmax(t) = λmin(t) = −λ

and Assumptions A1–A3 are satisfied if λ > 0 and if
∥∥∆̃(t)

∥∥
2 = o(1), that is,

∥∥∆̃(t)
∥∥

2 → 0 as t→ ∞.
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Simulation results for arbitrarily chosen λ, one representative δ(x, t) having these properties, and initial
state x(t0) ∈ Rn are shown in Figure 1 (the source code Listing 1).
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-5

0

5

x
2

Figure 1. Solution x(t) = (x1(t), x2(t))
T of (7) for λ = 2, δ(x, t) =

(
arctan(x1+x2)

(t+1) , exp[−t]
(x2

1+1)

)T
and initial

state x(0) = (50, −20)T . Obviously,
∥∥∆̃(t)

∥∥
2 =

√(
π/2
t+1
)2

+ exp[−2t] = o(1) as t→ ∞.

Listing 1. MATLAB R© code for Figure 1 (The MathWorks, Inc., 3 Apple Hill Drive, Natick,
Massachusetts 01760 USA).

f = @(t,x) [(-2)*x(1)+(exp(t))*x(2)+(atan(x(1)+x(2))/(t+1));
(-exp(t))*x(1)+(-2)*x(2)+(exp(-t)/(x(1)^2+1))]
[t,xa] = ode45(f,[0 4],[50 -20]);
hold~on

pbaspect([2 1 1])
plot(t,xa(:,1), ’k’, ’LineWidth’,1.5) % 1 or 2
grid on
xlabel(’t’)
ylabel(’x_1’) % 1 or 2
print(’example_first_x_1’,’-deps’) % 1 or 2

Remark 3. The condition
∥∥∆̃(t)

∥∥
2 → 0 in Example 1 is only sufficient condition for convergence to zero of all

solutions. Thus, the solutions can theoretically converge to zero also for the perturbations that do not satisfy that
constraint. In fact, the fundamental matrix of ẋ = A(t)x satisfies

X(t) = exp[−λ t]

(
sin (exp[t]) − cos (exp[t])
cos (exp[t]) sin (exp[t])

)
,

X−1(t) = exp[λ t]

(
sin (exp[t]) cos (exp[t])

− cos (exp[t]) sin (exp[t])

)
and the solutions for some specific perturbations δ depending only on t can be calculated explicitly by using (6).
For example, if δ(x, t) = (c, 0)T , c ∈ R is constant, the solution of (7) with λ = 2 and the initial state
x(t0) = 0,

x(t) =

 c exp[−2 t]
[

exp[t0] sin (exp[t]− exp[t0])− cos (exp[t]− exp[t0]) + 1
]

c exp[−2 t]
[

sin (exp[t]− exp[t0])− exp[t] + exp[t0] cos (exp[t]− exp[t0])

]
→ 0
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as t→ ∞. On the other side, for another bounded perturbation

δ(x, t) =

(
sin (exp[t])
cos (exp[t])

)

the explicit solution for λ = 1,

x(t) =
[

1− exp[t0 − t]
](

sin (exp[t])
cos (exp[t])

)
6→ 0 as t→ ∞

because

‖x(t)‖2 =

[
1− exp[t0 − t]

]
→ 1 as t→ ∞.

This example showed that the coupled conditions on the system and perturbation in Theorem 1 cannot be
weakened too much. Note, that the sine and cosine functions contained in the fundamental matrix are responsible
for the "wavy" shape of the solutions of (7).

The following example illustrates the possibility that the system with time-varying linear part of
nominal system can be robust also in the case of unbounded external disturbances affecting the system.

Example 2. Let us consider the linear time-varying system

ẋ(t) =

(
−t2 + sin (t) b

0 1− t2 + sin (t)

)
x(t) + δ(x, t), t ≥ t0, (8)

where b is a real parameter. Stability analysis for time-varying linear systems and their robustness is of
growing interest in the control community. One of the reasons for both researchers and practitioners is the
growing importance of adaptive controllers for which underlying feedback closed-loop adaptive control system is
time-varying and linear [35,36].

The eigenvalues of 1
2 [A(t) + AT(t)] are

λ1(t) = sin (t) +

√
b2 + 1

2
− t2 +

1
2

, λ2(t) = sin (t)−
√

b2 + 1
2

− t2 +
1
2

and so Asumption A1 of Theorem 1 is satisfied for any fixed value of b.
By Theorem 1, all solutions of (8) tends to zero as t→ ∞ if perturbing term tends to infinity slower than

t2, more precisely, if the upper bound of ‖δ(x, t)‖2 ,
∥∥∆̃(t)

∥∥
2 = o(t2); see Figure 2 for results of simulation

experiment in the MATLAB R© environment (the source code Listing 2).
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Figure 2. Solution x(t) = (x1(t), x2(t))
T of (8) for b = 5, δ(x, t) =

(
t3/2, 3 cos (tx1 − x2)

)T
and initial

state x(0) = (10, −5)T . Obviously,
∥∥∆̃(t)

∥∥
2 =
√

t3 + 9 = o(t2) as t→ ∞.
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Listing 2. MATLAB R© code for Figure 2.

syms b
b=5;
f = @(t,x) [(-t^2+sin(t))*x(1)+(b)*x(2)+t^(1.5);
(0)*x(1)+(1-t^2+sin(t))*x(2)+3*cos(t*x(1)-x(2))]
[t,xa] = ode45(f,[0 4],[10 -5]);
hold~on

pbaspect([2 1 1])
plot(t,xa(:,1), ’k’, ’LineWidth’,1.5) % 1 or 2
grid on
xlabel(’t’)
ylabel(’x_1’) % 1 or 2
print(’example_second_x_1’,’-deps’) % 1 or 2

In Figure 3, we can notice the changes in the slope of the first component x1(t) of solutions
for (8) with δ(x, t) =

(
50t1.95, δ2(x, t)

)T (the top left sub-figure), δ(x, t) =
(
50t2.05, δ2(x, t)

)T (the top

right sub-figure) and the borderline case δ(x, t) =
(
50t2.00, δ2(x, t)

)T , δ2(x, t) = tx1/(x2
1 + x2

2 + 1) (the
bottom sub-figure) in computer simulations of long time dynamics near the border

∥∥∆̃(t)
∥∥

2 = o(t2) as
t→ ∞.
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∥∥ .2 = o(t2) as t→ ∞

0 20 40 60 80 100 120 140 160

t

0

10

20

30

40

50

60

70

x
1

(b)
∥∥∆̃(t)

∥∥
2 /t2 → ∞ as t→ ∞
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Figure 3. The solution component x1(t) of (8) for b = 5, initial state x(0) = 0 and with (a) δ(x, t) =(
50t1.95, δ2(x, t)

)T satisfying Assumption 3 of Theorem 1, (b) δ(x, t) =
(
50t2.05, δ2(x, t)

)T that does

not satisfy Assumption 3 of Theorem 1 and (c) the borderline case, δ(x, t) =
(
50t2.00, δ2(x, t)

)T ,
δ2(x, t) = tx1/(x2

1 + x2
2 + 1).

4. Conclusions

In this paper we have established in terms of eigenvalues of symmetric part of linear part of the
nominal vector field f (x, t) the sufficient conditions to maintain the origin x = 0 ∈ Rn “attractive”
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for a wide class of perturbed nonlinear systems ẋ = f (x, t) + δ(x, t), where the term δ aggregates all
external disturbances affecting the system. As a result, we proved a new criterion for assessment of
global robustness of nonlinear systems in the sense that all solutions of the perturbed system converge
to zero as t→ ∞ as long as the perturbing term δ satisfies certain constraints given in Theorem 1.
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