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Abstract: This paper investigates the asymptotic tracking control problem of the chaotic system.
Firstly, a reference system is presented, the output of which can asymptotically track a given command.
Then, a both physically implementable and simple controller is designed, by which the given
chaotic system synchronizes the reference system, and thus the output of such chaotic systems can
asymptotically track the given command. It should be pointed out that the output of the given
chaotic system can asymptotically track arbitrary desired periodic orbits. Finally, several illustrative
examples are taken as example to show the validity and effectiveness of the obtained results.
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1. Introduction

Since Lorenz firstly found the chaos phenomenon when investigating the atmosphere in 1963,
both chaotic systems and chaotic dynamics have been investigated extensively in many kinds of fields,
e.g., physics, engineering, biology, ecology, economics, and even in some fields of the social sciences.
In 1990, chaos control was firstly proposed by Ott, Grebogi and York, and this method is called the OGY
method [1]. Meanwhile, the PC method [2] for chaos synchronization (i.e., complete synchronization)
was firstly presented by Pecora and Carroll. Up to date, many types of chaos synchronization have
been proposed, see Refs. [2–15]. However, for the chaotic systems, there still are many both interesting
and valuable questions that need to be investigated further.

It is well known that the asymptotic tracking control problem of the chaotic systems is very
important in both theorem and applications. However, for such a problem there exist some important
things which should be considered. On the one hand, in most of the existing results, it should
be pointed out that the asymptotic tracking performance cannot be achieved. In fact, instead of
asymptotic tracking performance, only the so-called bounded-error trajectory tracking was ensured,
see Refs. [16–18]. On the other hand, the aim of most of the tracking control methods is to force the
states of a given arbitrary dimensional chaotic system to its equilibrium point, e.g., origin. In this
case, the given chaotic system is stabilized. Although some approaches can track arbitrary desired
trajectories, most of them only force one state of a given system to an arbitrary desired trajectory [19–21].
As far as we know, there are very few published papers about driving some states of a given chaotic
system to arbitrary desired periodic orbits, and the designed controllers are too complicated to be
utilized in applications. Therefore, driving some states of a chaotic system to arbitrary desired
trajectories has not been fully completed yet, which motivates our present work.

This paper investigates the asymptotic tracking control of the chaotic systems. A reference system
is firstly presented, the output of which can asymptotically track a given command. A physically
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implementable controller is then designed to guarantee the given chaotic system synchronizes
the reference system, and thus the output of such chaotic systems can asymptotically track the
given command.

2. Problem Formation

Consider the following n-dimensional autonomous chaotic system:

ẇ = F(w) (1)

where ẇ stands for the derivative of w about time t, w ∈ Rn is the state and F(w) ∈ Rn is a continuous
vector function.

For the system (1), the corresponding controlled system is given as:

ẇ = F(w) + U
y = Gw

(2)

where U ∈ Rn is the controller to be designed, y ∈ Rp is the output of the system (2) and C ∈ Rp×n,
p ≥ 1.

For the system (2), we can make a non-singular transform: v = Tw which can transfer the
system (2) into the following system:

ẋ = A(z)x + Bu
ż = f (x, z)
y = Cx

(3)

where v = (x, z) ∈ Rn is the state, x ∈ Rm, z ∈ Rn−m, m ≥ 2, A(z) ∈ Rm×m, f (x, z) ∈ Rn−m is
a continuous function vector, B ∈ Rm×q is the control matrix having full column rank, q ≥ 1, (A(z), B)
is a controllable pair, C ∈ Rp×m.

Remark 1. According to the results in [10], for the system (2), the non-singular transform: v = Tw is obtained
if this system can be controlled completely. In addition, we shall give the procedure of obtaining the matrix T
and the vector B to meet the conditions of system (3) in Section 4.

The aim of this paper is to study the asymptotic tracking control problem of the given
system (3), i.e., to design a both physically implementable and simple controller u(t) to meet the
following performance:

lim
t→∞

y = c(t) (4)

where c(t) is given as

c(t) = (c1(t), · · · , cp(t))T ∈ Rp, 1 ≤ p ≤ m (5)

and assumed to be piecewise smooth (or continuous) and uniformly bounded.

3. Main Result

In order to realize the asymptotic tracking control of the given n-dimensional chaotic system (3),
a reference system is firstly proposed to asymptotically track the given command, then a both physically
implementable and simple controller is designed to guarantee the complete synchronization between
the reference system and the given chaotic system. In other words, two steps are provided to solve
such a problem. One step is to present a reference system, the other step is to design a both physically
implementable and simple controller.
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3.1. The Reference Model

The n-dimensional reference chaotic system is designed as follows:

ẋr = [A(z) + BK(z)] xr + Br(z)c(t) + Dr ċ(t)
ż = f (x, z)
yr = Cxr

(6)

where (xr, z) ∈ Rn is the state, xr = (xr1, xr2, · · · , xrm)T ∈ Rm, m ≥ 2, C is given in (3), c(t) is given
in (5), K(z) is a feedback gain matrix with appropriate dimension, which is chosen to make the matrix
A(z)− BK(z) be Hurwitz with two blocks N1(z), N2(z), i.e.,

A(z) + BK(z) = (N1(z), N2(z)), (7)

where N1(z) ∈ Rm×p, N2(z) ∈ Rm×(m−p), Br(z) ∈ Rm×p is a matrix and

Dr =

(
Ip

0

)
∈ Rm×p, (8)

Ip is the p× p identify matrix.

Remark 2. For this reference model (6), the feedback gain matrix K(z) is designed by the zero pole configuration
method in linear system control. In addition, for the system (6), the most general case is Br(z) = −(A(z) +
BK(z)), Dr = Im, where Im is the m×m identify matrix. In this case, xri(t)→ ci(t), i = 1, · · · , m, as t→ ∞.
Moreover, if c(t) is only a constant command, then set Dr = 0.

The following theorem presents the asymptotically convergence of the reference model (6).

Theorem 1. Consider the system (6). The state xr can globally asymptotically track any piecewise smooth
(or continuous) and uniformly bounded command (c(t), 0)T ∈ Rm.

Proof. Let Y = xr − (c(t), 0)T , we obtain that the system Ẏ = (A(z) + BK(z))Y is globally
asymptotically stable with respect to the origin since the matrix A(z) + BK(z) is Hurwitz. Thus,
Y → 0, i.e., xr → (c(t), 0)T , as t→ ∞. About the system Ẏ = (A(z) + BK(z))Y, we can achieve that

ẋr −
(

ċ(t)
0

)
= [A(z) + BK(z)]

[
xr −

(
c(t)

0

)]

i.e.,

ẋr = [A(z) + BK(z)] xr − [A(z) + BK(z)]

(
c(t)

0

)
+

(
ċ(t)

0

)
.

Further, it results in

ẋr = [A(z) + BK(z)] xr − (N1(z), N2(z))

(
c(t)

0

)
+

(
Ip 0
0 Im−p

)(
ċ(t)

0

)
.

After simple computation, it becomes

ẋr = [A(z) + BK(z)] xr − N1(z)c(t) +

(
Ip

0

)
ċ(t)
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that is
ẋr = [A(z) + BK(z)] xr + Br(z)c(t) + Dr ċ(t).

This completes the proof.

3.2. Control Design

In the next, designing a both physically implementable and simple controller u(t) for (3) to
make x asymptotically track the command (c(t), 0)T is equivalent to designing a both physically
implementable and simple controller u(t) to make x asymptotically track the reference trajectory xr,
i.e., the tracking error e(t) = xr − x asymptotically converges to zero. The desired error dynamics
system is specified as

ė = [A(z) + BK(z)] e (9)

where K(z) is designed in the reference model (6).
Combining (3), (6), (9), it results in

[A(z) + BK(z)] xr + Brc(t) + Dr ċ(t)− A(z)x(t)− Bu(t)

= [A(z) + BK(z)] e (10)

Based on (10), then control signal u(t) should satisfy

Bu(t) = BK(z)x(t) + Brc(t) + Dr ċ(t) (11)

The control law is obtained, i.e.,

u(t) = B+ [BK(z)x(t) + B+Brc(t) + Dr ċ(t)]
= K(z)x + B+ [Brc(t) + Dr ċ(t)]

(12)

where B+ = (BT B)−1BT is the pseudo-inverse of B.

Remark 3. About the controller u(t) given in (12), three cases are stated as follows:
Case 1: If B−1 exists, then the controller u(t) given in (12) is an accurate solution of (11). In this case,

the state x of the system (3) asymptotically tracks the state xr of the reference system (6), and xi asymptotically
tracks the command ci(t), i = 1, 2, · · · , p.

Case 2: If B is not invertible, then the controller u(t) given in (12) is an accurate solution of (11) if and
only if the following structural constraint

[I − BB+] [BK(z)x(t) + Brc(t) + Dr ċ(t)] ≡ 0 (13)

is satisfied. In this case, the state x of the system (3) asymptotically tracks the state xr of the reference system (6),
and xi asymptotically tracks the constant command ci(t), i = 1, 2, · · · , p.

Case 3: If both B is not invertible and the structural constraint (13) is not satisfied, then the controller u(t)
given in (12) is only an approximate solution of (11). In this case, the performance of this controller u(t) can be
improved by adjusting the feedback gain matrix K.

4. Numerical Examples

In the next, we take three systems for example to show how to use the proposed results in
Section 3.
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Example 1. Lorenz model [22]:

ẇ1 = 10(w2 − w1)

ẇ2 = 28w1 − w2 − w1w3 (14)

ẇ3 = −8
3

w3 + w1w2

Let x1 = w1, x2 = w2, z = w3, then the controlled Lorenz chaotic system is expressed as follows:

ẋ = A(z)x + Bu(t)
ż = f (x, z)
y = Cx

(15)

where x = (x1, x2)
T ∈ R2, z ∈ R1, u(t) ∈ R1,

A(z) =

(
−10 10

28− z −1

)
, B =

(
1
0

)
, C = (1, 0) (16)

and
f (x, z) = −8

3
z + x1x2. (17)

The objective is to design a controller u(t) which can ensure the following performance:

lim
t→∞

y = c(t), i.e., lim
t→∞

x1 = 5

where c(t) = 5 is the given command.
The first step is to design the reference system. For the matrix A(z) given as (16), one feasible

choice of the feedback gain K(z) is designed as follows:

K(z) = (0, − 10). (18)

Then, the reference system is expressed as follows:

ẋr = [A(z) + BK(z)] xr + Brc(t) (19)

where Br = (10, 0)T .
The second step is to design the controller u(t). According to the Equation (12), the controller is

designed as

u(t) = K(z)x + B+Brc(t) = −10x2 + 10c(t). (20)

Thus, the system (15) and the reference system (19) is synchronized, and thus y = x1

asymptotically tracks the command c(t) = 5.
In the next, with initial conditions: x(0)=(1,−2, 3)T , numerical simulation is made. The simulation

result is shown by the following figure. From Figure 1, we can see that y(t) = x1(t) tends to the given
command c(t) = 5 quickly. Figure 2 shows the state (x2, x3)

T of the system (15) converges to a constant
as t→ ∞.
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Figure 1. Shows that the state x1 of the system (15) converges to c(t) = 5 as t→ ∞.
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Figure 2. Shows the state (x2, x3)
T of the system (15) converges to a constant as t→ ∞.

Example 2. The Chen-Lee chaotic system [23]:

ẇ1 = −w2w3 + 5w1

ẇ2 = w1w3 − 10w2 (21)

ẇ3 =
1
3

w1w2 − 3.8w3

Let x1 = w1, x2 = w2, z = w3, then the controlled Chen-Lee chaotic system is expressed as follows:

ẋ = A(z)x + Bu(t)
ż = f (x, z)
y = Cx

(22)
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where x(t) ∈ R2, z ∈ R1, u(t) ∈ R1,

A(z) =

(
5 −z
z −10

)
, B =

(
1
0

)
, C = (1 0), (23)

and
f (x, z) =

1
3

x1x2 − 3.8z. (24)

The objective is to design a controller u(t) which can ensure the following performance:

lim
t→∞

y = c(t), i.e., lim
t→∞

x1 = sin(3t)

where c(t) = sin(3t) is the given command.
The first step is to design the reference system. For the matrix A(z), one feasible choice of the

feedback gain K(z) is obtained as follows:

K(z) = (−6, 0). (25)

Then, the reference system which is described as follows:

ẋr(t) = [A(z) + BK(z(t))] xr + Brc(t) + Dr ċ(t) (26)

where Br = Dr = (1, 0)T .
The second step is to design the controller u(t). According to the Equation (12), the controller is

designed as follows:

u(t) = K(z)x(t) + B+ [Brc(t) + Dr ċ(t)] = −6x1 + c(t) + ċ(t). (27)

Therefore, the system (22) and the reference system (26) is synchronized, and thus y = x1

asymptotically tracks the command c(t) = sin(3t).
In the next, with initial conditions: x(0)=(1,−2, 3)T , numerical simulation is made. The simulation

result is shown by the following figure. From Figure 3, we can see that y = x1 tends to the given
command c(t) = sin(3t) quickly. Figure 4 shows the state (x2, x3)

T of the system (22) converges to
a constant as t→ ∞.
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Figure 3. Shows the state x1 of the system (22) converges to c(t) = sin(3t) as t→ ∞.
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Figure 4. Shows the state (x2, x3)
T of the system (22) converges to a constant as t→ ∞.

Example 3. Consider the following 4D hyper-chaotic system [24]:

ẇ1 = 35(w2 − w1) + w2w3w4

ẇ2 = 10(w2 + w1)− w1w3w4

ẇ3 = −w3 + w1w2w4 (28)

ẇ4 = −10w4 + w1w2w3

Let x1 = w1, x2 = w2, z1 = w3, z2 = w4, then the controlled system (28) is described as follows:

ẋ = A(z)x(t) + Bu(t)
ż = f (x, z)
y = Cx

(29)

where x ∈ R2, z ∈ R2, u(t) ∈ R2,

A(z) =

(
−35 35 + z1z2

10− z1z2 10

)
, (30)

B = C =

(
1 0
0 1

)
, (31)

and

f (x, z) =

(
f1(x, z)
f2(x, z)

)
=

(
−z1 + x1x2z2

−10z2 + x1x2z1

)
. (32)

The objective is to design a controller u(t) which can ensure the following performance:

lim
t→∞

y(t) = c(t), i.e., lim
t→∞

x1 = 3 cos(3t), lim
t→∞

x2 = 3 sin(3t)

where the given command c(t) is given as

c(t) = (c1(t), c2(t))T = (3 cos(t), 3 sin(t))T .
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The first step is to design the reference system. For the matrix A(z), one feasible choice of the
feedback gain K(z) is designed as

K(z(t)) =

(
0 −35
−10 −20

)
. (33)

Then, the reference system which is described as

ẋr = [A(z) + BK(z)] xr(t) + Brc(t) + Dr ċ(t) (34)

where Dr = B and

Br =

(
35 0
0 10

)
. (35)

The second step is to design the controller u(t). According to the Equation (12), the control law is
obtained as

u(t) = K(z)x + B+ [Brc(t) + Dr ċ(t)]

=

(
−35x2

−10x1 − 20x2

)
+

(
35c1(t)
10c2(t)

)
+

(
ċ1(t)
ċ2(t)

)
.

(36)

Thus, the system (29) and the reference system (34) is synchronized, and thus y = (x1, x2)
T

asymptotically tracks the command c(t) = (c1(t), c2(t))T .
In the next, with initial conditions: x(0)=(−1.5,−2, 3,−2)T , numerical simulation is carried out.

The simulation result is shown by the following two figures. From Figure 3, we can see that the
states (x1, x2)

T of the system (22) converges to the given command c(t) = (3 cos(t), 3 sin(t))T quickly.
From Figure 5, it can be seen that phase portrait of the states x1, x2 of the system (29) converges to
a circle with radius 3 quickly. Figure 6 shows phase portrait of the states (x1, x2)

T of the system (29)
converges to a circle with radius 3 as t→ ∞. Figure 7 shows phase portrait of the states (x3, x4)

T of
the system (29).
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Figure 5. Shows the states (x1, x2)
T of the system (22) converges to c(t) = (3 cos(t), 3 sin(t))T as t→ ∞.
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Figure 6. Shows phase portrait of the states (x1, x2)
T of the system (29) converges to a circle with

radius 3 as t→ ∞.
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Figure 7. Shows phase portrait of the states (x3, x4)
T of the system (29).

5. Conclusions

The asymptotic tracking control problem of the arbitrary dimensional chaotic system has been
studied in this paper. Firstly, a reference system has been presented, the output of which can
asymptotically track a given command. Secondly, a both physically implementable and simple
controller has been designed to ensure that the given chaotic system synchronizes the reference system,
and thus the output of the given chaotic system can asymptotically track the given command. It is
noted that the output of the given chaotic system can asymptotically track the arbitrary desired periodic
orbit. Finally, three numerical examples have been used to show how to apply and demonstrate the
validity and effectiveness of the obtained results.
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