Article

Sampling Associated with a Unitary Representation of a Semi-Direct Product of Groups: A Filter Bank Approach

Antonio G. García ${ }^{1, *(\mathbb{D}}$, Miguel Angel Hernández-Medina ${ }^{2(D)}$ and Gerardo Pérez-Villalón ${ }^{3}$
1 Departamento de Matemáticas, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganés-Madrid, Spain
2 Information Processing and Telecommunications Center and Departamento de Matemática Aplicada a las Tecnologías de la Información y las Comunicaciones, Universidad Politécnica de Madrid, Avda. Complutense 30, 28040 Madrid, Spain; miguelangel.hernandez.medina@upm.es
3 Departamento de Matemática Aplicada a las Tecnologías de la Información y las Comunicaciones, Universidad Politécnica de Madrid, Nicola Tesla s/n, 28031 Madrid, Spain; gperez@euitt.upm.es
* Correspondence: agarcia@math.uc3m.es

Received: 18 March 2019; Accepted: 9 April 2019; Published: 12 April 2019

Abstract

An abstract sampling theory associated with a unitary representation of a countable discrete non abelian group G, which is a semi-direct product of groups, on a separable Hilbert space is studied. A suitable expression of the data samples, the use of a filter bank formalism and the corresponding frame analysis allow for fixing the mathematical problem to be solved: the search of appropriate dual frames for $\ell^{2}(G)$. An example involving crystallographic groups illustrates the obtained results by using either average or pointwise samples.

Keywords: semi-direct product of groups; unitary representation of a group; LCA groups; dual frames; sampling expansions

1. Statement of the Problem

In this paper, an abstract sampling theory associated with non abelian groups is derived for the specific case of a unitary representation of a semi-direct product of groups on a separable Hilbert space. Semi-direct product of groups provide important examples of non abelian groups such as dihedral groups, infinite dihedral group, Euclidean motion groups or crystallographic groups. Concretely, let $(n, h) \mapsto U(n, h)$ be a unitary representation on a separable Hilbert space \mathcal{H} of a semi-direct product $G=N \rtimes_{\phi} H$, where N is a countable discrete LCA (locally compact abelian) group, H is a finite group, and ϕ denotes the action of the group H on the group N (see Section 2 infra for the details); for a fixed $a \in \mathcal{H}$ we consider the U-invariant subspace in \mathcal{H}

$$
\mathcal{A}_{a}=\left\{\sum_{(n, h) \in G} \alpha(n, h) U(n, h) a:\{\alpha(n, h)\}_{(n, h) \in G} \in \ell^{2}(G)\right\}
$$

where we assume that $\{U(n, h) a\}$ is a Riesz sequence for \mathcal{H}, i.e., a Riesz basis for \mathcal{A}_{a} (see Ref. [1] for a necessary and sufficient condition). Given K elements b_{k} in \mathcal{H}, which do not belong necessarily to \mathcal{A}_{a}, the main goal in this paper is the stable recovery of any $x \in \mathcal{A}_{a}$ from the given data (generalized samples)

$$
\mathcal{L}_{k} x(n):=\left\langle x, U\left(n, 1_{H}\right) b_{k}\right\rangle_{\mathcal{H}}, \quad n \in N \text { and } k=1,2, \ldots, K
$$

where 1_{H} denotes the identity element in H. These samples are nothing but a generalization of average sampling in shift-invariant subspaces of $L^{2}\left(\mathbb{R}^{d}\right)$; see, among others, Refs. [2-9]. The case where G is a discrete LCA group and the samples are taken at a uniform lattice of G has been solved in Ref. [10]; this work relies on the use of the Fourier analysis in the LCA group G (see also Ref. [11]). In the case involved here, a classical Fourier analysis is not available and, consequently, we need to overcome this drawback.

Having in mind the filter bank formalism in discrete LCA groups (see, for instance, Refs. [12-14]), the given data $\left\{\mathcal{L}_{k} x(n)\right\}_{n \in N ; k=1,2, \ldots, K}$ can be expressed as the output of a suitable K-channel analysis filter bank corresponding to the input $\alpha=\{\alpha(n, h)\}_{(n, h) \in G}$ in $\ell^{2}(G)$. As a consequence, the problem consists of finding a synthesis part of the former filter bank allowing perfect reconstruction; in addition, only Fourier analysis on the LCA group N is needed. Then, roughly speaking, substituting the output of the synthesis part in $x=\sum_{(n, h) \in G} \alpha(n, h) U(n, h) a$, we will obtain the corresponding sampling formula in \mathcal{A}_{a}.

This said, as it could be expected, the problem can be mathematically formulated as the search of dual frames for $\ell^{2}(G)$ having the form

$$
\left\{T_{n} \mathrm{~h}_{k}\right\}_{n \in N ; k=1,2, \ldots, K} \text { and }\left\{T_{n} \mathrm{~g}_{k}\right\}_{n \in N ; k=1,2, \ldots, K}
$$

Here, $\mathrm{h}_{k}, \mathrm{~g}_{k} \in \ell^{2}(G), T_{n} \mathrm{~h}_{k}(m, h)=\mathrm{h}_{k}(m-n, h)$ and $T_{n} \mathrm{~g}_{k}(m, h)=\mathrm{g}_{k}(m-n, h),(m, h) \in G$, where $n \in N$ and $k=1,2, \ldots, K$. In addition, for any $x \in \mathcal{A}_{a}$, we have the expression for its samples

$$
\mathcal{L}_{k} x(n)=\left\langle\boldsymbol{\alpha}, T_{n} \mathrm{~h}_{k}\right\rangle_{\ell^{2}(G)}, \quad n \in N \text { and } k=1,2, \ldots, K .
$$

Needless to say, frame theory plays a central role in what follows; the necessary background on Riesz bases or frame theory in a separable Hilbert space can be found, for instance, in Ref. [15]. Finally, sampling formulas in \mathcal{A}_{a} having the form

$$
x=\sum_{k=1}^{K} \sum_{n \in N} \mathcal{L}_{k} x(n) U\left(n, 1_{H}\right) c_{k} \quad \text { in } \mathcal{H}
$$

for some $c_{k} \in \mathcal{A}_{a}, k=1,2, \ldots, K$, will come out by using, for $g \in \ell^{2}(G)$ and $n \in N$, the shifting property $\mathcal{T}_{U, a}\left(T_{n} \mathrm{~g}\right)=U\left(n, 1_{H}\right)\left(\mathcal{T}_{U, a} \mathrm{~g}\right)$ that satisfies the natural isomorphism $\mathcal{T}_{U, a}: \ell^{2}(G) \rightarrow \mathcal{A}_{a}$ which maps the usual orthonormal basis $\left\{\delta_{(n, h)}\right\}_{(n, h) \in G}$ for $\ell^{2}(G)$ onto the Riesz basis $\{U(n, h) a\}_{(n, h) \in G}$ for \mathcal{A}_{a}. All these steps will be carried out throughout the remaining sections. For the sake of completeness, Section 2 includes some basic preliminaries on semi-direct product of groups and Fourier analysis on LCA groups. The paper ends with an illustrative example involving the quasi regular representation of a crystallographic group on $L^{2}\left(\mathbb{R}^{d}\right)$; sampling formulas involving average or pointwise samples are obtained for the corresponding U-invariant subspaces in $L^{2}\left(\mathbb{R}^{d}\right)$.

2. Some Mathematical Preliminaries

In this section, we introduce the basic tools in semi-direct product of groups and in harmonic analysis in a discrete LCA group that will be used in the sequel.

2.1. Preliminaries on Semi-Direct Product of Groups

Given groups (N, \cdot) and (H, \cdot), and a homomorphism $\phi: H \rightarrow A u t(N)$, their semi-direct product $G:=N \rtimes_{\phi} H$ is defined as follows: The underlying set of G is the set of pairs (n, h) with $n \in N$ and $h \in H$, along with the multiplication rule

$$
\left(n_{1}, h_{1}\right) \cdot\left(n_{2}, h_{2}\right):=\left(n_{1} \phi_{h_{1}}\left(n_{2}\right), h_{1} h_{2}\right), \quad\left(n_{1}, h_{1}\right),\left(n_{2}, h_{2}\right) \in G,
$$

where we denote $\phi(h):=\phi_{h}$; usually, the homomorphism ϕ is referred to as the action of the group H on the group N. Thus, we obtain a new group with identity element $\left(1_{N}, 1_{H}\right)$, and inverse $(n, h)^{-1}=\left(\phi_{h^{-1}}\left(n^{-1}\right), h^{-1}\right)$.

In addition, we have the isomorphisms $N \simeq N \times\left\{1_{H}\right\}$ and $H \simeq\left\{1_{N}\right\} \times H$. Unless ϕ_{h} equals the identity for all $h \in H$, the group $G=N \rtimes_{\phi} H$ is not abelian, even for abelian N and H groups. The subgroup N is a normal subgroup in G. Some examples of semi-direct product of groups:

1. The dihedral group $D_{2 N}$ is the group of symmetries of a regular N-sided polygon; it is the semi-direct product $D_{2 N}=\mathbb{Z}_{N} \rtimes_{\phi} \mathbb{Z}_{2}$ where $\phi_{\overline{0}} \equiv I d_{\mathbb{Z}_{N}}$ and $\phi_{\overline{1}}(\bar{n})=-\bar{n}$ for each $\bar{n} \in \mathbb{Z}_{N}$. The infinite dihedral group D_{∞} defined as $\mathbb{Z} \rtimes_{\phi} \mathbb{Z}_{2}$ for the similar homomorphism ϕ is the group of isometries of \mathbb{Z}.
2. The Euclidean motion group $E(d)$ is the semi-direct product $\mathbb{R}^{d} \rtimes_{\phi} O(d)$, where $O(d)$ is the orthogonal group of order d and $\phi_{A}(x)=A x$ for $A \in O(d)$ and $x \in \mathbb{R}^{d}$. It contains as a subgroup any crystallographic group $M \mathbb{Z}^{d} \rtimes_{\phi} \Gamma$, where $M \mathbb{Z}^{d}$ denotes a full rank lattice of \mathbb{R}^{d} and Γ is any finite subgroup of $O(d)$ such that $\phi_{\gamma}\left(M \mathbb{Z}^{d}\right)=M \mathbb{Z}^{d}$ for each $\gamma \in \Gamma$.
3. The orthogonal group $O(d)$ of all orthogonal real $d \times d$ matrices is isomorphic to the semi-direct product $S O(d) \rtimes_{\phi} C_{2}$, where $S O(d)$ consists of all orthogonal matrices with determinant 1 and $C_{2}=\{I, R\}$ a cyclic group of order $2 ; \phi$ is the homomorphism given by $\phi_{I}(A)=A$ and $\phi_{R}(A)=$ $R A R^{-1}$ for $A \in S O(d)$.

Suppose that N is an LCA group with Haar measure μ_{N} and H is a locally compact group with Haar measure μ_{H}. Then, the semi-direct product $G=N \rtimes_{\phi} H$ endowed with the product topology becomes also a topological group. For the left Haar measure on G, see Ref. [1].

2.2. Some Preliminaries on Harmonic Analysis on Discrete LCA Groups

The results about harmonic analysis on locally compact abelian (LCA) groups are borrowed from Ref. [16]. Notice that, in particular, a countable discrete abelian group is a second countable Hausdorff LCA group.

For a countable discrete group (N, \cdot), not necessarily abelian, the convolution of $x, y: N \rightarrow \mathbb{C}$ is formally defined as $(x * y)(m):=\sum_{n \in N} x(n) y\left(n^{-1} m\right), m \in N$. If, in addition, the group is abelian, therefore denoted by $(N,+)$, the convolution reads as

$$
(x * y)(m):=\sum_{n \in N} x(n) y(m-n), \quad m \in N
$$

Let $\mathbb{T}=\{z \in \mathbb{C}:|z|=1\}$ be the unidimensional torus. We said that $\xi: N \mapsto \mathbb{T}$ is a character of N if $\xi(n+m)=\xi(n) \xi(m)$ for all $n, m \in N$. We denote $\xi(n)=\langle n, \xi\rangle$. Defining $(\xi+\gamma)(n)=\xi(n) \gamma(n)$, the set of characters \widehat{N} with the operation + is a group, called the dual group of N; since N is discrete \widehat{N} is compact ([16], Prop. 4.4). For $x \in \ell^{1}(N)$, we define its Fourier transform as

$$
X(\xi)=\widehat{x}(\xi):=\sum_{n \in N} x(n) \overline{\langle n, \xi\rangle}=\sum_{n \in N} x(n)\langle-n, \xi\rangle, \quad \xi \in \widehat{N}
$$

It is known ([16], Theorem 4.5) that $\widehat{\mathbb{Z}} \cong \mathbb{T}$, with $\langle n, z\rangle=z^{n}$, and $\widehat{\mathbb{Z}}_{s} \cong \mathbb{Z}_{s}:=\mathbb{Z} / s \mathbb{Z}$, with $\langle n, m\rangle=W_{s}^{n m}$, where $W_{s}=e^{2 \pi i / s}$.

There exists a unique measure, the Haar measure μ on \widehat{N} satisfying $\mu(\xi+E)=\mu(E)$, for every Borel set $E \subset \widehat{N}\left([16]\right.$, Section 2.2), and $\mu(\widehat{N})=1$. We denote $\int_{\widehat{N}} X(\xi) d \xi=\int_{\widehat{N}} X(\xi) d \mu(\xi)$. If $N=\mathbb{Z}$,

$$
\int_{\widehat{N}} X(\xi) d \xi=\int_{\mathbb{T}} X(z) d z=\frac{1}{2 \pi} \int_{0}^{2 \pi} X\left(e^{i w}\right) d w
$$

and, if $N=\mathbb{Z}_{s}$,

$$
\int_{\widehat{N}} X(\xi) d \xi=\int_{\mathbb{Z}_{s}} X(n) d n=\frac{1}{s} \sum_{n \in \mathbb{Z}_{s}} X(n)
$$

If $N_{1}, N_{2}, \ldots N_{d}$ are abelian discrete groups, then the dual group of the product group is $\left(N_{1} \times\right.$ $\left.N_{2} \times \ldots \times N_{d}\right)^{\wedge} \cong \widehat{N}_{1} \times \widehat{N}_{2} \times \ldots \times \widehat{N}_{d}$ (see ([16], Prop. 4.6)) with

$$
\left\langle\left(n_{1}, n_{2}, \ldots, n_{d}\right),\left(\xi_{1}, \xi_{2} \ldots, \xi_{d}\right)\right\rangle=\left\langle n_{1}, \xi_{1}\right\rangle\left\langle n_{2}, \xi_{2}\right\rangle \cdots\left\langle n_{d}, \xi_{d}\right\rangle
$$

The Fourier transform on $\ell^{1}(N) \cap \ell^{2}(N)$ is an isometry on a dense subspace of $L^{2}(\widehat{N})$; Plancherel theorem extends it in a unique manner to a unitary operator of $\ell^{2}(N)$ onto $L^{2}(\widehat{N})$ ([16], p. 99). The following lemma, giving a relationship between Fourier transform and convolution, will be used later (see Ref. [17]):

Lemma 1. Assume that $a, b \in \ell^{2}(N)$ and $\widehat{a}(\xi) \widehat{b}(\xi) \in L^{2}(\widehat{N})$. Then, the convolution $a * b$ belongs to $\ell^{2}(N)$ and $\widehat{a * b}(\xi)=\widehat{a}(\xi) \widehat{b}(\xi)$, a.e. $\xi \in \widehat{N}$.

3. Filter Bank Formalism on Semi-Direct Product of Groups

In what follows, we will assume that $G=N \rtimes_{\phi} H$ where $(N,+)$ is a countable discrete abelian group and (H, \cdot) is a finite group. Having in mind the operational calculus $(n, h) \cdot(m, l)=\left(n+\phi_{h}(m), h l\right)$, $(n, h)^{-1}=\left(\phi_{h^{-1}}(-n), h^{-1}\right)$ and $(n, h)^{-1} \cdot(m, l)=\left(\phi_{h^{-1}}(m-n), h^{-1} l\right)$, the convolution $\boldsymbol{\alpha} * \mathrm{~h}$ of $\alpha, \mathrm{h} \in \ell^{2}(G)$ can be expressed as

$$
\begin{align*}
(\boldsymbol{\alpha} * \mathrm{~h})(m, l) & =\sum_{(n, h) \in G} \alpha(n, h) \mathrm{h}\left[(n, h)^{-1} \cdot(m, l)\right] \\
& =\sum_{(n, h) \in G} \alpha(n, h) \mathrm{h}\left(\phi_{h^{-1}}(m-n), h^{-1} l\right), \quad(m, l) \in G \tag{1}
\end{align*}
$$

For a function $\boldsymbol{\alpha}: G \rightarrow \mathbb{C}$, its H-decimation $\downarrow_{H} \boldsymbol{\alpha}: N \rightarrow \mathbb{C}$ is defined as $\left(\downarrow_{H} \boldsymbol{\alpha}\right)(n):=\alpha\left(n, 1_{H}\right)$ for any $n \in N$. Thus, we have

$$
\begin{align*}
\downarrow_{H}(\boldsymbol{\alpha} * \mathrm{~h})(m) & =(\boldsymbol{\alpha} * \mathrm{~h})\left(m, 1_{H}\right)=\sum_{(n, h) \in G} \alpha(n, h) \mathrm{h}\left(\phi_{h^{-1}}(m-n), h^{-1}\right) \\
& =\sum_{(n, h) \in G} \alpha(n, h) \mathrm{h}\left[(n-m, h)^{-1}\right], \quad m \in N . \tag{2}
\end{align*}
$$

Defining the polyphase components of $\boldsymbol{\alpha}$ and h as $\boldsymbol{\alpha}_{h}(n):=\alpha(n, h)$ and $\mathrm{h}_{h}(n):=\mathrm{h}\left[(-n, h)^{-1}\right]$ respectively, we write

$$
\downarrow_{H}(\boldsymbol{\alpha} * \mathrm{~h})(m)=\sum_{h \in H} \sum_{n \in N} \boldsymbol{\alpha}_{h}(n) \mathrm{h}_{h}(m-n)=\sum_{h \in H}\left(\boldsymbol{\alpha}_{h} *_{N} \mathbf{h}_{h}\right)(m), \quad m \in N
$$

For a function $c: N \rightarrow \mathbb{C}$, its H-expander $\uparrow_{H} c: G \rightarrow \mathbb{C}$ is defined as

$$
\left(\uparrow_{H} c\right)(n, h)= \begin{cases}c(n) & \text { if } h=1_{H} \\ 0 & \text { if } h \neq 1_{H}\end{cases}
$$

In case $\uparrow_{H} c$ and g belong to $\ell^{2}(G)$, we have

$$
\begin{aligned}
\left(\uparrow_{H} c * \mathrm{~g}\right)(m, l) & =\sum_{(n, h) \in G}\left(\uparrow_{H} c\right)(n, h) \mathrm{g}\left[(n, h)^{-1} \cdot(m, l)\right] \\
& =\sum_{(n, h) \in G}\left(\uparrow_{H} c\right)(n, h) \mathrm{g}\left(\phi_{h^{-1}}(m-n), h^{-1} l\right) \\
& =\sum_{n \in N} c(n) \mathrm{g}(m-n, l)=\left(c *_{N} \mathrm{~g}_{l}\right)(m), \quad m \in N, l \in H
\end{aligned}
$$

where $g_{l}(n):=\mathrm{g}(n, l)$ is the polyphase component of g .

From now on, we will refer to a K-channel filter bank with analysis filters h_{k} and synthesis filters g_{k}, $k=1,2, \ldots, K$ as the one given by (see Figure 1)

$$
\begin{equation*}
\mathbf{c}_{k}:=\downarrow_{H}\left(\boldsymbol{\alpha} * \mathrm{~h}_{k}\right), k=1,2, \ldots, K, \text { and } \quad \boldsymbol{\beta}=\sum_{k=1}^{K}\left(\uparrow_{H} c_{k}\right) * \mathrm{~g}_{k} \tag{3}
\end{equation*}
$$

where α and β denote, respectively, the input and the output of the filter bank. In polyphase notation,

$$
\begin{align*}
& \mathbf{c}_{k}(m)=\sum_{h \in H}\left(\boldsymbol{\alpha}_{h} *_{N} \mathrm{~h}_{k, h}\right)(m), \quad m \in N, \quad k=1,2, \ldots, K \\
& \boldsymbol{\beta}_{l}(m)=\sum_{k=1}^{K}\left(\mathbf{c}_{k} *_{N} \mathrm{~g}_{l, k}\right)(m), \quad m \in N, \quad l \in H \tag{4}
\end{align*}
$$

where $\boldsymbol{\alpha}_{h}(n):=\alpha(n, h), \beta_{l}(n):=\beta(n, l), h_{k, h}(n):=h_{k}\left[(-n, h)^{-1}\right]$ and $g_{l, k}(n):=\mathrm{g}_{k}(n, l)$ are the polyphase components of $\boldsymbol{\alpha}, \boldsymbol{\beta}, \mathrm{h}_{k}$ and $\mathrm{g}_{k}, k=1,2, \ldots, K$, respectively. We also assume that $\mathrm{h}_{k}, \mathrm{~g}_{k} \in \ell^{2}(G)$ with $\widehat{\mathrm{h}}_{k, h}, \widehat{\mathrm{~g}}_{h, k} \in L^{\infty}(\widehat{N})$ for $k=1,2, \ldots, K$ and $h \in H$; from Lemma 1, the filter bank (3) is well defined in $\ell^{2}(G)$.

Figure 1. The K-channel filter bank scheme.
The above K-channel filter bank (3) is said to be a perfect reconstruction filter bank if and only if it satisfies $\boldsymbol{\alpha}=\sum_{k=1}^{K}\left(\uparrow_{H} c_{k}\right) * g_{k}$ for each $\boldsymbol{\alpha} \in \ell^{2}(G)$, or equivalently, $\boldsymbol{\alpha}_{h}=\sum_{k=1}^{K}\left(c_{k} *_{N} g_{h, k}\right)$ for each $h \in H$.

Since N is an LCA group where a Fourier transform is available, the polyphase expression (4) of the filter bank (3) allows us to carry out its polyphase analysis.

Polyphase Analysis: Perfect Reconstruction Condition

For notational ease, we denote $L:=|H|$, the order of the group H, and its elements as $H=\left\{h_{1}, h_{2}, \ldots, h_{L}\right\}$. Having in mind Lemma 1, the N-Fourier transform in $\mathbf{c}_{k}(m)=\sum_{h \in H}\left(\boldsymbol{\alpha}_{h} *_{N}\right.$ $\left.\mathrm{h}_{k, h}\right)(m)$ gives $\widehat{\mathbf{c}}_{k}(\gamma)=\sum_{h \in H} \widehat{\mathrm{~h}}_{k, h}(\gamma) \widehat{\boldsymbol{\alpha}}_{h}(\gamma)$ a.e. $\gamma \in \widehat{N}$ for each $k=1,2, \ldots, K$. In matrix notation,

$$
\mathbf{C}(\gamma)=\mathbf{H}(\gamma) \mathbf{A}(\gamma) \text { a.e. } \gamma \in \widehat{N}
$$

where $\mathbf{C}(\gamma)=\left(\widehat{\mathbf{c}}_{1}(\gamma), \widehat{\mathbf{c}}_{2}(\gamma), \ldots, \widehat{\mathbf{c}}_{K}(\gamma)\right)^{\top}, \mathbf{A}(\gamma)=\left(\widehat{\boldsymbol{\alpha}}_{h_{1}}(\gamma), \widehat{\boldsymbol{\alpha}}_{h_{2}}(\gamma), \ldots, \widehat{\boldsymbol{\alpha}}_{h_{L}}(\gamma)\right)^{\top}$, and $\mathbf{H}(\gamma)$ is the $K \times L$ matrix

$$
\mathbf{H}(\gamma)=\left(\begin{array}{cccc}
\widehat{h}_{1, h_{1}}(\gamma) & \widehat{h}_{1, h_{2}}(\gamma) & \cdots & \widehat{h}_{1, h_{L}}(\gamma) \tag{5}\\
\widehat{\mathrm{h}}_{2, h_{1}}(\gamma) & \widehat{\mathrm{h}}_{2, h_{2}}(\gamma) & \cdots & \widehat{\mathrm{h}}_{2, h_{L}}(\gamma) \\
\cdots & \cdots & \cdots & \cdots \\
\widehat{h}_{K, h_{1}}(\gamma) & \widehat{\mathrm{h}}_{K, h_{2}}(\gamma) & \cdots & \widehat{\mathrm{h}}_{K, h_{L}}(\gamma)
\end{array}\right)
$$

where $\widehat{\mathrm{h}}_{k, h_{i}} \in L^{2}(\widehat{N})$ is the Fourier transform of $\mathrm{h}_{k, h_{i}}(n):=\mathrm{h}_{k}\left[\left(-n, h_{i}\right)^{-1}\right] \in \ell^{2}(N)$.

The same procedure for $\boldsymbol{\beta}_{l}(m)=\sum_{k=1}^{K}\left(\mathbf{c}_{k} *_{N} \mathrm{~g}_{l, k}\right)(m)$ gives $\widehat{\boldsymbol{\beta}}_{l}(\gamma)=\sum_{k=1}^{K} \widehat{\mathrm{~g}}_{l, k}(\gamma) \widehat{\mathbf{c}}_{k}(\gamma)$ a.e. $\gamma \in \widehat{N}$. In matrix notation,

$$
\mathbf{B}(\gamma)=\mathbf{G}(\gamma) \mathbf{C}(\gamma) \text { a.e. } \gamma \in \widehat{N}
$$

where $\mathbf{B}(\gamma)=\left(\widehat{\boldsymbol{\beta}}_{h_{1}}(\gamma), \widehat{\boldsymbol{\beta}}_{h_{2}}(\gamma), \ldots, \widehat{\boldsymbol{\beta}}_{h_{L}}(\gamma)\right)^{\top}, \mathbf{C}(\gamma)=\left(\widehat{\mathbf{c}}_{1}(\gamma), \widehat{\mathbf{c}}_{2}(\gamma), \ldots, \widehat{\mathbf{c}}_{K}(\gamma)\right)^{\top}$ and $\mathbf{G}(\gamma)$ is the $L \times K$ matrix

$$
\mathbf{G}(\gamma)=\left(\begin{array}{cccc}
\widehat{\mathrm{g}}_{h_{1}, 1}(\gamma) & \widehat{\mathrm{g}}_{h_{1}, 2}(\gamma) & \cdots & \widehat{\mathrm{g}}_{h_{1}, K}(\gamma) \tag{6}\\
\widehat{\mathrm{g}}_{h_{2}, 1}(\gamma) & \widehat{\mathrm{g}}_{h_{2}, 2}(\gamma) & \cdots & \widehat{\mathrm{g}}_{h_{2}, K}(\gamma) \\
\ldots & \cdots & \cdots & \cdots \\
\widehat{\mathrm{g}}_{h_{L}, 1}(\gamma) & \widehat{\mathrm{g}}_{h_{L}, 2}(\gamma) & \cdots & \widehat{\mathrm{g}}_{h_{L}, K}(\gamma)
\end{array}\right)
$$

where $\widehat{\mathrm{g}}_{h_{i}, k} \in L^{2}(\widehat{N})$ is the Fourier transform of $\mathrm{g}_{h_{i}, k}(n):=\mathrm{g}_{k}\left(n, h_{i}\right) \in \ell^{2}(N)$.
Thus, in terms of the polyphase matrices $\mathbf{G}(\gamma)$ and $\mathbf{H}(\gamma)$, the filter bank (3) can be expressed as

$$
\begin{equation*}
\mathbf{B}(\gamma)=\mathbf{G}(\gamma) \mathbf{H}(\gamma) \mathbf{A}(\gamma) \quad \text { a.e. } \gamma \in \widehat{N} \tag{7}
\end{equation*}
$$

As a consequence of Equation (7), we have:
Theorem 1. The K-channel filter bank given in Equation (3), where h_{k}, g_{k} belong to $\ell^{2}(G)$ and $\widehat{\mathrm{h}}_{k, h_{i}}, \widehat{\mathrm{~g}}_{h_{i}, k}$ belong to $L^{\infty}(\widehat{N})$ for $k=1,2, \ldots, K$ and $i=1,2, \ldots, L$, satisfies the perfect reconstruction property if and only if $\mathbf{G}(\gamma) \mathbf{H}(\gamma)=\mathbf{I}_{L}$ a.e. $\gamma \in \widehat{N}$, where \mathbf{I}_{L} denotes the identity matrix of order L.

Proof. First of all, note that the mapping $\alpha \in \ell^{2}(G) \mapsto \mathbf{A} \in L_{L}^{2}(\widehat{N})$ is a unitary operator. Indeed, for each $\alpha, \beta \in \ell^{2}(G)$, we have the isometry property

$$
\begin{aligned}
\langle\boldsymbol{\alpha}, \boldsymbol{\beta}\rangle_{\ell^{2}(G)} & =\sum_{(m, h) \in G} \alpha(m, h) \overline{\beta(m, h)}=\sum_{h \in H}\left\langle\boldsymbol{\alpha}_{h}, \boldsymbol{\beta}_{h}\right\rangle_{\ell^{2}(N)} \\
& =\sum_{h \in H}\left\langle\widehat{\boldsymbol{\alpha}}_{h}, \widehat{\boldsymbol{\beta}}_{h}\right\rangle_{L^{2}(\widehat{N})}=\langle\mathbf{A}, \mathbf{B}\rangle_{L_{L}^{2}(\widehat{N})}
\end{aligned}
$$

It is also surjective since the N-Fourier transform is a surjective isometry between $\ell^{2}(N)$ and $L^{2}(\widehat{N})$. Having in mind this property, Equation (7) tells us that the filter bank satisfies the perfect reconstruction property if and only if $\mathbf{G}(\gamma) \mathbf{H}(\gamma)=\mathbf{I}_{L}$ a.e. $\gamma \in \widehat{N}$.

Notice that, in the perfect reconstruction setting, the number of channels K must be necessarily bigger or equal that the order L of the group H, i.e., $K \geq L$.

4. Frame Analysis

For $m \in N$, the translation operator $T_{m}: \ell^{2}(G) \rightarrow \ell^{2}(G)$ is defined as

$$
\begin{equation*}
T_{m} \boldsymbol{\alpha}(n, h):=\alpha\left(\left(m, 1_{H}\right)^{-1} \cdot(n, h)\right)=\alpha(n-m, h),(n, h) \in G \tag{8}
\end{equation*}
$$

The involution operator $\alpha \in \ell^{2}(G) \mapsto \widetilde{\boldsymbol{\alpha}} \in \ell^{2}(G)$ is defined as $\widetilde{\alpha}(n, h):=\overline{\alpha\left((n, h)^{-1}\right)},(n, h) \in G$. As expected, the classical relationship between convolution and translation operators holds. Thus, for the K-channel filter bank (3), we have (see (2)):

$$
\mathbf{c}_{k}(m)=\downarrow_{H}\left(\boldsymbol{\alpha} * \mathrm{~h}_{k}\right)(m)=\left\langle\boldsymbol{\alpha}, T_{m} \widetilde{\mathrm{~h}}_{k}\right\rangle_{\ell^{2}(G)}, \quad m \in N, k=1,2, \ldots, K
$$

In addition,

$$
\left(\uparrow_{H} \mathbf{c}_{k} * \mathrm{~g}_{k}\right)(m, h)=\sum_{n \in N} \mathbf{c}_{k}(n) \mathrm{g}_{k}(m-n, h)=\sum_{n \in N}\left\langle\boldsymbol{\alpha}, T_{n} \widetilde{\mathrm{~h}}_{k}\right\rangle_{\ell^{2}(G)} T_{n} \mathrm{~g}_{k}(m, h)
$$

In the perfect reconstruction setting, for any $\alpha \in \ell^{2}(G)$, we have

$$
\begin{equation*}
\boldsymbol{\alpha}=\sum_{k=1}^{K} \sum_{n \in N}\left\langle\boldsymbol{\alpha}, T_{n} \widetilde{\mathrm{~h}}_{k}\right\rangle_{\ell^{2}(G)} T_{n} \mathrm{~g}_{k} \quad \text { in } \ell^{2}(G) \tag{9}
\end{equation*}
$$

Given K sequences $f_{k} \in \ell^{2}(G), k=1,2, \ldots, K$, our main tasks now are: (i) to characterize the sequence $\left\{T_{n} f_{k}\right\}_{n \in N ; k=1,2, \ldots, K}$ as a frame for $\ell^{2}(G)$, and (ii) to find its dual frames having the form $\left\{T_{n} \mathrm{~g}_{k}\right\}_{n \in N ; k=1,2, \ldots, K}$.

To the first end, we consider a K-channel analysis filter bank with analysis filters $\mathrm{h}_{k}:=\widetilde{\mathrm{f}}_{k}$, i.e., the involution of $\mathrm{f}_{k}, k=1,2, \ldots, K$; let $\mathbf{H}(\gamma)$ be its associated $K \times L$ polyphase matrix (5). First, we check that Equation (5) is:

$$
\begin{equation*}
\mathbf{H}(\gamma)=\left(\overline{\widehat{f}_{k, h_{i}}(\gamma)}\right)_{\substack{k=1,2, \ldots, K \\ i=1,2, \ldots, L}} \tag{10}
\end{equation*}
$$

where $\widehat{\mathrm{f}}_{k, h_{i}}(\gamma)$ denotes the Fourier transform in $L^{2}(\widehat{N})$ of $\mathrm{f}_{k, h_{i}}(n)=\mathrm{f}_{k}\left(n, h_{i}\right)$ in $\ell^{2}(N)$. Indeed, for $k=1,2, \ldots, K$ and $i=1,2, \ldots, L$, having in mind that $h_{k, h_{i}}(n)=h_{k}\left[\left(-n, h_{i}\right)^{-1}\right]$ for analysis filters, we have

$$
\begin{aligned}
\widehat{\mathrm{h}}_{k, h_{i}}(\gamma) & =\sum_{n \in N} \mathrm{~h}_{k, h_{i}}(n)\langle-n, \gamma\rangle=\sum_{n \in N} \mathrm{~h}_{k}\left[\left(-n, h_{i}\right)^{-1}\right]\langle-n, \gamma\rangle=\sum_{n \in N} \tilde{\mathrm{f}}_{k}\left[\left(-n, h_{i}\right)^{-1}\right]\langle-n, \gamma\rangle \\
& =\sum_{n \in N} \overline{\mathrm{f}_{k}\left(-n, h_{i}\right)}\langle-n, \gamma\rangle=\overline{\sum_{n \in N} \mathrm{f}_{k}\left(n, h_{i}\right)\langle-n, \gamma\rangle}=\widehat{\mathrm{f}}_{k, h_{i}}(\gamma), \quad \gamma \in \widehat{N}
\end{aligned}
$$

Next, we consider its associated constants

$$
A_{\mathbf{H}}:=\underset{\gamma \in \widehat{N}}{\operatorname{ess} \inf } \lambda_{\min }\left[\mathbf{H}^{*}(\gamma) \mathbf{H}(\gamma)\right] \quad \text { and } \quad B_{\mathbf{H}}:=\underset{\gamma \in \widehat{N}}{\operatorname{ess} \sup } \lambda_{\max }\left[\mathbf{H}^{*}(\gamma) \mathbf{H}(\gamma)\right] .
$$

Theorem 2. For f_{k} in $\ell^{2}(G), k=1,2, \ldots, K$, consider the associated matrix $\mathbf{H}(\gamma)$ given in Equation (10). Then,

1. The sequence $\left\{T_{n} \mathrm{f}_{k}\right\}_{n \in N ; k=1,2, \ldots, K}$ is a Bessel sequence for $\ell^{2}(G)$ if and only if $B_{\mathbf{H}}<\infty$.
2. The sequence $\left\{T_{n} \mathrm{f}_{k}\right\}_{n \in N ; k=1,2, \ldots, K}$ is a frame for $\ell^{2}(G)$ if and only if the inequalities $0<A_{\mathbf{H}} \leq B_{\mathbf{H}}<\infty$ hold.

Proof. Using Plancherel theorem ([16], Theorem 4.25), for each $\alpha \in \ell^{2}(G)$, we get

$$
\begin{aligned}
\left\langle\boldsymbol{\alpha}, T_{n} \mathrm{f}_{k}\right\rangle_{\ell^{2}(G)} & =\sum_{h \in H}\left\langle\boldsymbol{\alpha}_{h}, \mathrm{f}_{k, h}(\cdot-n)\right\rangle_{\ell^{2}(N)}=\sum_{h \in H} \int_{\widehat{N}} \widehat{\boldsymbol{\alpha}}_{h}(\gamma) \overline{\widehat{\mathrm{f}}_{k, h}(\gamma)\langle-n, \gamma\rangle} d \gamma \\
& =\int_{\widehat{N}} \sum_{h \in H} \widehat{\boldsymbol{\alpha}}_{h}(\gamma) \overline{\mathrm{f}_{k, h}(\gamma)} \overline{\langle-n, \gamma\rangle} d \gamma=\int_{\widehat{N}} \mathbf{H}_{k}(\gamma) \mathbf{A}(\gamma) \overline{\langle-n, \gamma\rangle} d \gamma
\end{aligned}
$$

where $\mathbf{A}(\gamma)=\left(\widehat{\boldsymbol{\alpha}}_{h_{1}}(\gamma), \widehat{\boldsymbol{\alpha}}_{h_{2}}(\gamma), \ldots, \widehat{\boldsymbol{\alpha}}_{h_{L}}(\gamma)\right)^{\top}$ and $\mathbf{H}_{k}(\gamma)$ denotes the k-th row of $\mathbf{H}(\gamma)$.
Since $\{\langle-n, \gamma\rangle\}_{n \in N}$ is an orthonormal basis for $L^{2}(\widehat{N})$, in case that $\mathbf{H}(\gamma) \mathbf{A}(\gamma) \in L_{K}^{2}(\widehat{N})$, we have

$$
\sum_{k=1}^{K} \sum_{n \in N}\left|\left\langle\boldsymbol{\alpha}, T_{n} f_{k}\right\rangle\right|^{2}=\sum_{k=1}^{K} \int_{\widehat{N}}\left|\mathbf{H}_{k}(\gamma) \mathbf{A}(\gamma)\right|^{2} d \gamma=\int_{\widehat{N}}\|\mathbf{H}(\gamma) \mathbf{A}(\gamma)\|^{2} d \gamma
$$

If $B_{\mathbf{H}}<\infty$, having in mind that $\|\boldsymbol{\alpha}\|_{\ell^{2}(G)}^{2}=\|\mathbf{A}\|_{L_{L}^{2}(\widehat{N})}^{2}=\int_{\widehat{N}}\|\mathbf{A}(\gamma)\|^{2} d \gamma$, the above equality and the Rayleigh-Ritz theorem ([18], Theorem 4.2.2) prove that $\left\{T_{n} f_{k}\right\}_{n \in N ; k=1,2, \ldots, K}$ is a Bessel sequence for $\ell^{2}(G)$ with Bessel bound less or equal than $B_{\mathbf{H}}$.

On the other hand, if $K<B_{\mathbf{H}}$, then there exists a set $\Omega \subset \widehat{N}$ having a strictly positive measure such that $\lambda_{\max }\left[\mathbf{H}^{*}(\gamma) \mathbf{H}(\gamma)\right]>K$ for $\gamma \in \Omega$. Consider $\boldsymbol{\alpha}$ such that its associated $\mathbf{A}(\gamma)$ is 0 if $\gamma \notin \Omega$, and $\mathbf{A}(\gamma)$ is a unitary eigenvector corresponding to the largest eigenvalue of $\mathbf{H}^{*}(\gamma) \mathbf{H}(\gamma)$ if $\gamma \in \Omega$. Thus, we have that

$$
\sum_{k=1}^{K} \sum_{n \in N}\left|\left\langle\boldsymbol{\alpha}, T_{n} f_{k}\right\rangle\right|^{2}=\int_{\widehat{N}}\|\mathbf{H}(\gamma) \mathbf{A}(\gamma)\|^{2} d \gamma>K \int_{\widehat{N}}\|\mathbf{A}(\gamma)\|^{2} d \gamma=K\|\boldsymbol{\alpha}\|_{\ell^{2}(G)}^{2}
$$

As a consequence, if $B_{\mathbf{H}}=\infty$, the sequence is not Bessel, and, if $B_{\mathbf{H}}<\infty$, the optimal bound is precisely $B_{\mathbf{H}}$.

Similarly, by using inequality $\|\mathbf{H}(\gamma) \mathbf{A}(\gamma)\|^{2} \geq \lambda_{\min }\left[\mathbf{H}^{*}(\gamma) \mathbf{H}(\gamma)\right]\|\mathbf{A}(\gamma)\|^{2}$, and that equality holds whenever $\mathbf{A}(\gamma)$ is a unitary eigenvector corresponding to the smallest eigenvalue of $\mathbf{H}^{*}(\gamma) \mathbf{H}(\gamma)$; one proves the other inequality in part 2.

Corollary 1. The sequence $\left\{T_{n} \mathrm{f}_{k}\right\}_{n \in N ; k=1,2, \ldots, K}$ is a Bessel sequence for $\ell^{2}(G)$ if and only if for each $k=1,2, \ldots, K$ and $i=1,2, \ldots, L$ the function $\widehat{\mathrm{f}}_{k, h_{i}}$ belongs to $L^{\infty}(\widehat{N})$.

Proof. It is a direct consequence of the equivalence between the spectral and Frobenius norms for matrices [18].

It is worth mentioning that f_{k} in $\ell^{1}(G), k=1,2, \ldots, K$, implies that the sequence $\left\{T_{n} \mathrm{f}_{k}\right\}_{n \in N ; k=1,2, \ldots, K}$ is always a Bessel sequence for $\ell^{2}(G)$ since each function $\widehat{\mathrm{f}}_{k, h_{i}}$ is continuous and \widehat{N} is compact. In this case, the frame condition for $\left\{T_{n} f_{k}\right\}_{n \in N ; k=1,2, \ldots, K}$ reduces to $\operatorname{rank} \mathbf{H}(\gamma)=L$ for all $\gamma \in \widehat{N}$ or, equivalently,

$$
\min _{\gamma \in \widehat{N}}\left(\operatorname{det}\left[\mathbf{H}^{*}(\gamma) \mathbf{H}(\gamma)\right]\right)>0
$$

To the second end, a K-channel filter bank formalism allows, in a similar manner, to obtain properties in $\ell^{2}(G)$ of the sequences $\left\{T_{n} f_{k}\right\}_{n \in N ; k=1,2, \ldots, K}$ and $\left\{T_{n} \mathrm{~g}_{k}\right\}_{n \in N ; k=1,2, \ldots, K}$. In case they are Bessel sequences for $\ell^{2}(G)$, the idea is to consider a K-channel filter bank (3) where the analysis filters are $h_{k}:=\widetilde{f}_{k}$ and the synthesis filters are $g_{k}, k=1,2, \ldots, K$. As a consequence, the corresponding polyphase matrices $\mathbf{H}(\gamma)$ and $\mathbf{G}(\gamma)$, given in Equations (5) and (6), are

$$
\begin{equation*}
\mathbf{H}(\gamma)=\left(\overline{\widehat{\mathrm{f}}_{k, h_{i}}(\gamma)}\right)_{\substack{k=1,2, \ldots, K \\ i=1,2, \ldots, L}} \quad \text { and } \quad \mathbf{G}(\gamma)=\left(\widehat{\mathrm{g}}_{h_{i}, k}(\gamma)\right)_{\substack{i=1,2, \ldots, L \\ k=1,2, \ldots, K}} \quad \gamma \in \widehat{N} . \tag{11}
\end{equation*}
$$

Theorem 3. Let $\left\{T_{n} f_{k}\right\}_{n \in N ; k=1,2, \ldots, K}$ and $\left\{T_{n} \mathrm{~g}_{k}\right\}_{n \in N ; k=1,2, \ldots, K}$ be two Bessel sequences for $\ell^{2}(G)$, and $\mathbf{H}(\gamma)$ and $\mathbf{G}(\gamma)$ their associated matrices (11). Under the above circumstances, we have:
(a) The sequences $\left\{T_{n} \mathrm{f}_{k}\right\}_{n \in N ; k=1,2, \ldots, K}$ and $\left\{T_{n} \mathrm{~g}_{k}\right\}_{n \in N ; k=1,2, \ldots, K}$ are dual frames for $\ell^{2}(G)$ if and only if condition $\mathbf{G}(\gamma) \mathbf{H}(\gamma)=\mathbf{I}_{L}$ a.e. $\gamma \in \widehat{N}$ holds.
(b) The sequences $\left\{T_{n} f_{k}\right\}_{n \in N ; k=1,2, \ldots, K}$ and $\left\{T_{n} g_{k}\right\}_{n \in N ; k=1,2, \ldots, K}$ are biorthogonal sequences in $\ell^{2}(G)$ if and only if condition $\mathbf{H}(\gamma) \mathbf{G}(\gamma)=\mathbf{I}_{K}$ a.e. $\gamma \in \widehat{N}$ holds.
(c) The sequences $\left\{T_{n} \mathrm{f}_{k}\right\}_{n \in N ; k=1,2, \ldots, K}$ and $\left\{T_{n} \mathrm{~g}_{k}\right\}_{n \in N ; k=1,2, \ldots, K}$ are dual Riesz bases for $\ell^{2}(G)$ if and only if $K=L$ and $\mathbf{G}(\gamma)=\mathbf{H}(\gamma)^{-1}$ a.e. $\gamma \in \widehat{N}$.
(d) The sequence $\left\{T_{n} \mathrm{f}_{k}\right\}_{n \in N ; k=1,2, \ldots, K}$ is an A-tight frame for $\ell^{2}(G)$ if and only if condition $\mathbf{H}^{*}(\gamma) \mathbf{H}(\gamma)=$ AI \mathbf{I}_{L} a.e. $\gamma \in \widehat{N}$ holds.
(e) The sequence $\left\{T_{n} \mathrm{f}_{k}\right\}_{n \in N ; k=1,2, \ldots, K}$ is an orthonormal basis for $\ell^{2}(G)$ if and only if $K=L$ and $\mathbf{H}^{*}(\gamma)=$ $\mathbf{H}(\gamma)^{-1}$ a.e. $\gamma \in \widehat{N}$.

Proof. Having in mind Equation (9) and Corollary 1, part (a) is nothing but Theorem 1.

The output of the analysis filter bank (3) corresponding to the input $\mathrm{g}_{k^{\prime}}$ is a K-vector whose k-entry is

$$
c_{k, k^{\prime}}(m)=\downarrow_{H}\left(\mathrm{~g}_{k^{\prime}} * \mathrm{~h}_{k}\right)(m)=\left\langle\mathrm{g}_{k^{\prime}}, T_{m} \widetilde{\mathrm{~h}}_{k}\right\rangle_{\ell^{2}(G)}=\left\langle\mathrm{g}_{k^{\prime}}, T_{m} \mathrm{f}_{k}\right\rangle_{\ell^{2}(G)},
$$

and whose N-Fourier transform is $\mathbf{C}_{k^{\prime}}(\gamma)=\mathbf{H}(\gamma) \mathbf{G}_{k^{\prime}}(\gamma)$ a.e. $\gamma \in \widehat{N}$, where $\mathbf{G}_{k^{\prime}}$ is the k^{\prime}-column of the matrix $\mathbf{G}(\gamma)$. Note that $\left\{T_{n} f_{k}\right\}_{n \in N ; k=1,2, \ldots, K}$ and $\left\{T_{n} \mathrm{~g}_{k}\right\}_{n \in N ; k=1,2, \ldots, K}$ are biorthogonal if and only if $\left\langle\mathrm{g}_{k^{\prime}}, T_{m} \mathrm{f}_{k}\right\rangle_{\ell^{2}(G)}=\delta\left(k-k^{\prime}\right) \delta(m)$. Therefore, the sequences $\left\{T_{n} \mathrm{f}_{k}\right\}_{n \in N ; k=1,2, \ldots, K}$ and $\left\{T_{n} \mathrm{~g}_{k}\right\}_{n \in N ; k=1,2, \ldots, K}$ are biorthogonal if and only if $\mathbf{H}(\gamma) \mathbf{G}(\gamma)=\mathbf{I}_{K}$. Thus, we have proved (b).

Having in mind ([15], Theorem 7.1.1), from (a) and (b), we obtain (c).
We can read the frame operator corresponding to the sequence $\left\{T_{n} f_{k}\right\}_{n \in N ; k=1,2, \ldots, K}$, i.e.,

$$
\mathcal{S}(\boldsymbol{\alpha})=\sum_{k=1}^{K} \sum_{n \in N}\left\langle\boldsymbol{\alpha}, T_{n} \mathrm{f}_{k}\right\rangle_{\ell^{2}(G)} T_{n} \mathrm{f}_{k}, \quad \boldsymbol{\alpha} \in \ell^{2}(G)
$$

as the output of the filter bank (3), whenever $h_{k}=\widetilde{f}_{k}$ and $g_{k}=\frac{f_{k}}{}$, for the input α. For this filter bank, the $\left(k, h_{l}\right)$-entry of the analysis polyphase matrix $\mathbf{H}(\gamma)$ is $\overline{\mathrm{f}}_{k, h_{l}}(\gamma)$ and the $\left(h_{l}, k\right)$-entry of the synthesis polyphase matrix $\mathbf{G}(\gamma)$ is $\widehat{\mathrm{f}}_{k, h_{l}}(\gamma)$; in other words, $\mathbf{G}(\gamma)=\mathbf{H}^{*}(\gamma)$. Hence, the sequence $\left\{T_{n} \mathrm{f}_{k}\right\}_{n \in N ; k=1,2, \ldots, K}$ is an A-tight frame for $\ell^{2}(G)$, i.e.,

$$
\boldsymbol{\alpha}=\frac{1}{A} \sum_{k=1}^{K} \sum_{n \in N}\left\langle\boldsymbol{\alpha}, T_{n} \mathrm{f}_{k}\right\rangle_{\ell^{2}(G)} T_{n} \mathrm{f}_{k}, \quad \boldsymbol{\alpha} \in \ell^{2}(G)
$$

if and only if $\mathbf{H}^{*}(\gamma) \mathbf{H}(\gamma)=A \mathbf{I}_{L}$ for all $\gamma \in \widehat{N}$. Thus, we have proved (d).
Finally, from (c) and (d), the sequence $\left\{T_{n} f_{k}\right\}_{n \in N ; k=1,2, \ldots, K}$ is an orthonormal system if and only if $\mathbf{H}^{*}(\gamma)=\mathbf{H}(\gamma)^{-1}$ a.e. $\gamma \in \widehat{N}$.

5. Getting on with Sampling

Suppose that $\{U(n, h)\}_{(n, h) \in G}$ is a unitary representation of the group $G=N \rtimes_{\phi} H$ on a separable Hilbert space \mathcal{H}, and assume that for a fixed $a \in \mathcal{H}$ the sequence $\{U(n, h) a\}_{(n, h) \in G}$ is a Riesz sequence for \mathcal{H} (see Ref. ([1], Theorem A)). Thus, we consider the U-invariant subspace in \mathcal{H}

$$
\mathcal{A}_{a}=\left\{\sum_{(n, h) \in G} \alpha(n, h) U(n, h) a:\{\alpha(n, h)\}_{(n, h) \in G} \in \ell^{2}(G)\right\} .
$$

For K fixed elements $b_{k} \in \mathcal{H}, k=1,2, \ldots, K$, not necessarily in \mathcal{A}_{a}, we consider for each $x \in \mathcal{A}_{a}$ its generalized samples defined as

$$
\begin{equation*}
\mathcal{L}_{k} x(m):=\left\langle x, U\left(m, 1_{H}\right) b_{k}\right\rangle_{\mathcal{H}}, \quad m \in N \text { and } k=1,2, \ldots, K . \tag{12}
\end{equation*}
$$

The task is the stable recovery of any $x \in \mathcal{A}_{a}$ from the data $\left\{\mathcal{L}_{k} x(m)\right\}_{m \in N ; k=1,2, \ldots, K}$.
In what follows, we propose a solution involving a perfect reconstruction K-channel filter bank. First, we express the samples in a more suitable manner. Namely, for each $x=\sum_{(n, h) \in G} \alpha(n, h) U(n, h) a$ in \mathcal{A}_{a}, we have

$$
\begin{aligned}
\mathcal{L}_{k} x(m) & =\sum_{(n, h) \in G} \alpha(n, h)\left\langle U(n, h) a, U\left(m, 1_{H}\right) b_{k}\right\rangle \\
& =\sum_{(n, h) \in G} \alpha(n, h)\left\langle a, U\left[(n, h)^{-1} \cdot\left(m, 1_{H}\right)\right] b_{k}\right\rangle=\downarrow_{H}\left(\boldsymbol{\alpha} * \mathrm{~h}_{k}\right)(m), \quad m \in N,
\end{aligned}
$$

where $\boldsymbol{\alpha}=\{\alpha(n, h)\}_{(n, h) \in G} \in \ell^{2}(G)$, and $h_{k}(n, h):=\left\langle a, U(n, h) b_{k}\right\rangle_{\mathcal{H}}$ also belongs to $\ell^{2}(G)$ for each $k=1,2, \ldots, K$.

Suppose also that there exists a perfect reconstruction K-channel filter-bank with analysis filters the above h_{k} and synthesis filters $g_{k}, k=1,2, \ldots, K$, such that the sequences $\left\{T_{n} \widetilde{h}_{k}\right\}_{n \in N ; k=1,2, \ldots K}$ and $\left\{T_{n} \mathrm{~g}_{k}\right\}_{n \in N ; k=1,2, \ldots K}$ are Bessel sequences for $\ell^{2}(G)$. Having in mind Equation (9), for each $\boldsymbol{\alpha}=\{\alpha(n, h)\}_{(n, h) \in G}$ in $\ell^{2}(G)$, we have

$$
\begin{equation*}
\boldsymbol{\alpha}=\sum_{k=1}^{K} \sum_{n \in N} \downarrow_{H}\left(\boldsymbol{\alpha} * \mathrm{~h}_{k}\right)(n) T_{n} \mathrm{~g}_{k}=\sum_{k=1}^{K} \sum_{n \in N} \mathcal{L}_{k} x(n) T_{n} \mathrm{~g}_{k} \quad \text { in } \ell^{2}(G) \tag{13}
\end{equation*}
$$

In order to derive a sampling formula in \mathcal{A}_{a}, we consider the natural isomorphism $\mathcal{T}_{u, a}$: $\ell^{2}(G) \rightarrow \mathcal{A}_{a}$ which maps the usual orthonormal basis $\left\{\delta_{(n, h)}\right\}_{(n, h) \in G}$ for $\ell^{2}(G)$ onto the Riesz basis $\{U(n, h) a\}_{(n, h) \in G}$ for \mathcal{A}_{a}, i.e.,

$$
\mathcal{T}_{U, a}: \delta_{(n, h)} \longmapsto U(n, h) a \text { for each }(n, h) \in G .
$$

This isomorphism $\mathcal{T}_{U, a}$ possesses the following shifting property:
Lemma 2. For each $m \in N$, consider the translation operator T_{m} operator defined in Equation (8). For each $m \in N$, the following shifting property holds

$$
\begin{equation*}
\mathcal{T}_{U, a}\left(T_{m} \mathrm{f}\right)=U\left(m, 1_{H}\right)\left(\mathcal{T}_{U, a} \mathrm{f}\right), \quad \mathrm{f} \in \ell^{2}(G) \tag{14}
\end{equation*}
$$

Proof. For each $\delta_{(n, h)}$, it is easy to check that $T_{m} \delta_{(n, h)}=\delta_{(m+n, h)}$. Hence,

$$
\mathcal{T}_{U, a}\left(T_{m} \boldsymbol{\delta}_{(n, h)}\right)=U(m+n, h) a=U\left(m, 1_{H}\right) U(n, h) a=U\left(m, 1_{H}\right)\left(\mathcal{T}_{U, a} \boldsymbol{\delta}_{(n, h)}\right) .
$$

A continuity argument proves the result for all f in $\ell^{2}(G)$.
Now, for each $x=\mathcal{T}_{U, a} \alpha \in \mathcal{A}_{a}$, applying the isomorphism $\mathcal{T}_{U, a}$ and the shifting property (14) in Equation (13), we get for each $x \in \mathcal{A}_{a}$ the expansion

$$
\begin{align*}
x & =\sum_{k=1}^{K} \sum_{n \in N} \mathcal{L}_{k} x(n) \mathcal{T}_{U, a}\left(T_{n} \mathrm{~g}_{k}\right)=\sum_{k=1}^{K} \sum_{n \in N} \mathcal{L}_{k} x(n) U\left(n, 1_{H}\right)\left(\mathcal{T}_{U, a} \mathrm{~g}_{k}\right) \\
& =\sum_{k=1}^{K} \sum_{n \in N} \mathcal{L}_{k} x(n) U\left(n, 1_{H}\right) c_{k, \mathrm{~g}} \quad \text { in } \mathcal{H}, \tag{15}
\end{align*}
$$

where $c_{k, \mathrm{~g}}=\mathcal{T}_{U, a} \mathrm{~g}_{k}, k=1,2, \ldots, K$. In fact, the following sampling theorem in the subspace \mathcal{A}_{a} holds:
Theorem 4. For K fixed $b_{k} \in \mathcal{H}$, let $\mathcal{L}_{k}: \mathcal{A}_{a} \rightarrow \mathbb{C}^{N}$ be its associated U-system defined in Equation (12) with corresponding $h_{k} \in \ell^{2}(G), k=1,2, \ldots, K$. Assume that its polyphase matrix $\mathbf{H}(\gamma)$ given in Equation (5) has all its entries in $L^{\infty}(\widehat{N})$. The following statements are equivalent:

1. The constant $A_{\mathbf{H}}=\underset{\gamma \in \hat{N}}{\operatorname{ess} \inf } \lambda_{\min }\left[\mathbf{H}^{*}(\gamma) \mathbf{H}(\gamma)\right]>0$.
2. There exist g_{k} in $\ell^{2}(G), k=1,2, \ldots, K$, such that the associated polyphase matrix $\mathbf{G}(\gamma)$ given in (6) has all its entries in $L^{\infty}(\widehat{N})$, and it satisfies $\mathbf{G}(\gamma) \mathbf{H}(\gamma)=\mathbf{I}_{L}$ a.e. $\gamma \in \widehat{N}$.
3. There exist K elements $c_{k} \in \mathcal{A}_{a}$ such that the sequence $\left\{U\left(n, 1_{H}\right) c_{k}\right\}_{n \in N ; k=1,2, \ldots, K}$ is a frame for \mathcal{A}_{a} and, for each $x \in \mathcal{A}_{a}$, the sampling formula

$$
\begin{equation*}
x=\sum_{k=1}^{K} \sum_{n \in N} \mathcal{L}_{k} x(n) U\left(n, 1_{H}\right) c_{k} \quad \text { in } \mathcal{H} \tag{16}
\end{equation*}
$$

holds.
4. There exists a frame $\left\{C_{k, n}\right\}_{n \in N ; k=1,2, \ldots, K}$ for \mathcal{A}_{a} such that for each $x \in \mathcal{A}_{a}$ the expansion

$$
x=\sum_{k=1}^{K} \sum_{n \in N} \mathcal{L}_{k} x(n) C_{k, n} \quad \text { in } \mathcal{H}
$$

holds.
Proof. (1) implies (2). The $L \times K$ Moore-Penrose pseudo-inverse $\mathbf{H}^{\dagger}(\gamma)$ of $\mathbf{H}(\gamma)$ is given by $\mathbf{H}^{\dagger}(\gamma)=\left[\mathbf{H}^{*}(\gamma) \mathbf{H}(\gamma)\right]^{-1} \mathbf{H}^{*}(\gamma)$. Its entries are essentially bounded in \widehat{N} since the entries of $\mathbf{H}(\gamma)$ belong to $L^{\infty}(\widehat{N})$ and $\operatorname{det}^{-1}\left[\mathbf{H}^{*}(\gamma) \mathbf{H}(\gamma)\right]$ is essentially bounded \widehat{N} since $0<A_{\mathbf{H}}$. In addition, $\mathbf{H}^{\dagger}(\gamma) \mathbf{H}(\gamma)=\mathbf{I}_{L}$ a.e. $\gamma \in \widehat{N}$. The inverse N-Fourier transform in $L^{2}(\widehat{N})$ of the k-th column of $\mathbf{H}^{\dagger}(\gamma)$ gives $\mathrm{g}_{k}, k=1,2, \ldots, K$.
(2) implies (3). According to Theorems 2 and 3, the sequences $\left\{T_{n} \widetilde{\mathrm{~h}}_{k}\right\}_{n \in N ; k=1,2, \ldots K}$ and $\left\{T_{n} g_{k}\right\}_{n \in N ; k=1,2, \ldots K}$ form a pair of dual frames for $\ell^{2}(G)$. We deduce the sampling expansion as in Formula (15). In addition, the sequence $\left\{U\left(n, 1_{H}\right) c_{k, \mathrm{~g}}\right\}_{n \in N ; k=1,2, \ldots, K}$ is a frame for \mathcal{A}_{a}.

Obviously, (3) implies (4). Finally, (4) implies (1). Applying $\mathcal{T}_{U, a}^{-1}$, we get that the sequences $\left\{T_{n} \widetilde{\mathrm{~h}}_{k}\right\}_{n \in N ; k=1,2, \ldots K}$ and $\left\{\mathcal{T}_{U, a}^{-1}\left(C_{k, n}\right)\right\}_{n \in N ; k=1,2, \ldots, K}$ form a pair of dual frames for $\ell^{2}(G)$; in particular, by using Theorem 2, we obtain that $0<A_{\mathbf{H}}$.

All the possible solutions of $\mathbf{G}(\gamma) \mathbf{H}(\gamma)=\mathbf{I}_{L}$ a.e. $\gamma \in \widehat{N}$ with entries in $L^{\infty}(\widehat{N})$ are given in terms of the Moore-Penrose pseudo inverse by the $L \times K$ matrices $\mathbf{G}(\gamma):=\mathbf{H}^{\dagger}(\gamma)+\mathbf{U}(\gamma)\left[\mathbf{I}_{K}-\mathbf{H}(\gamma) \mathbf{H}^{\dagger}(\gamma)\right]$, where $\mathbf{U}(\gamma)$ denotes any $L \times K$ matrix with entries in $L^{\infty}(\widehat{N})$.

Notice that $K \geq L$ where L is the order of the group H. In case $K=L$, we obtain:
Corollary 2. In the case $K=L$, assume that its polyphase matrix $\mathbf{H}(\gamma)$ given in Equation (5) has all entries in $L^{\infty}(\widehat{N})$. The following statements are equivalent:

1. The constant $A_{\mathbf{H}}=\underset{\gamma \in \widehat{N}}{\operatorname{ess} \inf } \lambda_{\min }\left[\mathbf{H}^{*}(\gamma) \mathbf{H}(\gamma)\right]>0$.
2. There exist L unique elements $c_{k}, k=1,2, \ldots, L$, in \mathcal{A}_{a} such that the associated sequence $\left\{U\left(n, 1_{H}\right) c_{k}\right\}_{n \in N ; k=1,2, \ldots, L}$ is a Riesz basis for \mathcal{A}_{a} and the sampling formula

$$
x=\sum_{k=1}^{L} \sum_{n \in N} \mathcal{L}_{k} x(n) U\left(n, 1_{H}\right) c_{k} \quad \text { in } \mathcal{H}
$$

holds for each $x \in \mathcal{A}_{a}$.
Moreover, the interpolation property $\mathcal{L}_{k} c_{k^{\prime}}(n)=\delta_{k, k^{\prime}} \delta_{n, 0_{N}}$ where $n \in N$ and $k, k^{\prime}=1,2, \ldots, L$, holds.
Proof. In this case, the square matrix $\mathbf{H}(\gamma)$ is invertible and the result comes out from Theorem 3. From the uniqueness of the coefficients in a Riesz basis expansion, we get the interpolation property.

Denote $H=\left\{h_{1}, h_{2}, \ldots, h_{L}\right\}$; for a fixed $b \in \mathcal{H}$, we consider the samples

$$
\mathcal{L}_{k} x(m):=\left\langle x, U\left(m, h_{k}\right) b\right\rangle, \quad m \in N \text { and } k=1,2, \ldots, L,
$$

of any $x \in \mathcal{A}_{a}$. Since $U\left(m, h_{k}\right) b=U\left(m, 1_{H}\right) U\left(0_{N}, h_{k}\right) b=U\left(m, 1_{H}\right) b_{k}$, where $b_{k}:=U\left(0_{N}, h_{k}\right) b$, $k=1,2, \ldots, L$, we are in a particular case of Equation (12) with $K=L$.

Notice also that the subspace \mathcal{A}_{a} can be viewed as the multiple generated U-invariant subspace of \mathcal{H}

$$
\overline{\operatorname{span}}\left\{U\left(n, 1_{H}\right) a_{h}: n \in N, h \in H\right\}
$$

with L generators $a_{h}:=U\left(0_{N}, h\right) a \in \mathcal{H}, h \in H$, obtained from $a \in \mathcal{H}$ by the action of the group H.

5.1. An Example Involving Crystallographic Groups

The Euclidean motion group $E(d)$ is the semi-direct product $\mathbb{R}^{d} \rtimes_{\phi} O(d)$ corresponding to the homomorphism $\phi: O(d) \rightarrow A u t\left(\mathbb{R}^{d}\right)$ given by $\phi_{A}(x)=A x$, where $A \in O(d)$ and $x \in \mathbb{R}^{d}$. The composition law on $E(d)=\mathbb{R}^{d} \rtimes_{\phi} O(d)$ reads $(x, A) \cdot\left(x^{\prime}, A^{\prime}\right)=\left(x+A x^{\prime}, A A^{\prime}\right)$.

Let M be a non-singular $d \times d$ matrix and Γ a finite subgroup of $O(d)$ of order L such that $A\left(M \mathbb{Z}^{d}\right)=M \mathbb{Z}^{d}$ for each $A \in \Gamma$. We consider the crystallographic group $\mathcal{C}_{M, \Gamma}:=M \mathbb{Z}^{d} \rtimes_{\phi} \Gamma$ and its quasi regular representation (see Ref. [1]) on $L^{2}\left(\mathbb{R}^{d}\right)$

$$
U(n, A) f(t)=f\left[A^{\top}(t-n)\right], \quad n \in M \mathbb{Z}^{d}, A \in \Gamma \text { and } f \in L^{2}\left(\mathbb{R}^{d}\right)
$$

For a fixed $\varphi \in L^{2}\left(\mathbb{R}^{d}\right)$ such that the sequence $\{U(n, A) \varphi\}_{(n, A) \in \mathcal{C}_{M, \Gamma}}$ is a Riesz sequence for $L^{2}\left(\mathbb{R}^{d}\right)$ (see, for instance, Refs. $\left.[19,20]\right)$ we consider the U-invariant subspace in $L^{2}\left(\mathbb{R}^{d}\right)$

$$
\begin{aligned}
\mathcal{A}_{\varphi} & =\left\{\sum_{(n, A) \in \mathcal{C}_{M, \Gamma}} \alpha(n, A) \varphi\left[A^{\top}(t-n)\right]:\{\alpha(n, A)\} \in \ell^{2}\left(\mathcal{C}_{M, \Gamma}\right)\right\} \\
& =\left\{\sum_{(n, A) \in \mathcal{C}_{M, \Gamma}} \alpha(n, A) \varphi(A t-n):\{\alpha(n, A)\} \in \ell^{2}\left(\mathcal{C}_{M, \Gamma}\right)\right\} .
\end{aligned}
$$

Choosing K functions $b_{k} \in L^{2}\left(\mathbb{R}^{d}\right), k=1,2, \ldots, K$, we consider the average samples of $f \in \mathcal{A}_{\varphi}$

$$
\mathcal{L}_{k} f(n)=\left\langle f, U(n, I) b_{k}\right\rangle=\left\langle f, b_{k}(\cdot-n)\right\rangle, \quad n \in M \mathbb{Z}^{d} .
$$

Under the hypotheses in Theorem 4, there exist $K \geq L$ sampling functions $\psi_{k} \in \mathcal{A}_{\varphi}$ for $k=1,2, \ldots, K$, such that the sequence $\left\{\psi_{k}(\cdot-n)\right\}_{n \in M \mathbb{Z}^{d} ; k=1,2, \ldots, K}$ is a frame for \mathcal{A}_{φ}, and the sampling expansion

$$
\begin{equation*}
f(t)=\sum_{k=1}^{K} \sum_{n \in M \mathbb{Z}^{d}}\left\langle f, b_{k}(\cdot-n)\right\rangle_{L^{2}\left(\mathbb{R}^{d}\right)} \psi_{k}(t-n) \quad \text { in } L^{2}\left(\mathbb{R}^{d}\right) \tag{17}
\end{equation*}
$$

holds.
If the generator $\varphi \in C\left(\mathbb{R}^{d}\right)$ and the function $t \mapsto \sum_{n}|\varphi(t-n)|^{2}$ is bounded on \mathbb{R}^{d}, a standard argument shows that \mathcal{A}_{φ} is a reproducing kernel Hilbert space (RKHS) of bounded continuous functions in $L^{2}\left(\mathbb{R}^{d}\right)$. As a consequence, convergence in $L^{2}\left(\mathbb{R}^{d}\right)$-norm implies pointwise convergence which is absolute and uniform on \mathbb{R}^{d}.

Notice that the infinite dihedral group $D_{\infty}=\mathbb{Z} \rtimes_{\phi} \mathbb{Z}_{2}$ is a particular crystallographic group with lattice \mathbb{Z} and $\Gamma=\mathbb{Z}_{2}$. Its quasi regular representation on $L^{2}(\mathbb{R})$ reads

$$
U(n, 0) f(t)=f(t-n) \quad \text { and } \quad U(n, 1) f(t)=f(-t+n), \quad n \in \mathbb{Z} \text { and } f \in L^{2}(\mathbb{R})
$$

Thus, we could obtain sampling formulas as (17) for $K \geq 2$ average functions b_{k}.
The quasi regular unitary representation of a crystallographic group $\mathcal{C}_{M, \Gamma}$ on $L^{2}\left(\mathbb{R}^{d}\right)$ motivates the next section:

5.2. The Case of Pointwise Samples

Let $\{U(n, h)\}_{(n, h) \in G}$ be a unitary representation of the group $G=N \rtimes_{\phi} H$ on the Hilbert space $\mathcal{H}=L^{2}\left(\mathbb{R}^{d}\right)$. If the generator $\varphi \in L^{2}\left(\mathbb{R}^{d}\right)$ satisfies that, for each $(n, h) \in G$, the function $U(n, h) \varphi$ is continuous on \mathbb{R}^{d}, and the condition

$$
\sup _{t \in \mathbb{R}^{d}} \sum_{(n, h) \in G}|[U(n, h) \varphi](t)|^{2}<\infty
$$

then the subspace \mathcal{A}_{φ} is an RKHS of bounded continuous functions in $L^{2}\left(\mathbb{R}^{d}\right)$; proceeding as in [21], one can prove that the above conditions are also necessary.

For K fixed points $t_{k} \in \mathbb{R}^{d}, k=1,2, \ldots, K$, we consider for each $f \in \mathcal{A}_{\varphi}$ the new samples given by

$$
\begin{equation*}
\mathcal{L}_{k} f(n):=\left[U\left(-n, 1_{H}\right) f\right]\left(t_{k}\right), \quad n \in N \text { and } k=1,2, \cdots, K \tag{18}
\end{equation*}
$$

For each $f=\sum_{(m, h) \in G} \alpha(m, h) U(m, h) \varphi$ in \mathcal{A}_{φ} and $k=1,2, \ldots, K$, we have

$$
\begin{aligned}
\mathcal{L}_{k} f(n) & =\left[\sum_{(m, h) \in G} \alpha(m, h) U\left[\left(-n, 1_{H}\right) \cdot(m, h)\right] \varphi\right]\left(t_{k}\right) \\
& =\sum_{(m, h) \in G} \alpha(m, h)[U(m-n, h) \varphi]\left(t_{k}\right)=\left\langle\boldsymbol{\alpha}, T_{n} f_{k}\right\rangle_{\ell^{2}(G)}, \quad n \in N
\end{aligned}
$$

where $\boldsymbol{\alpha}=\{\alpha(m, h)\}_{(m, h) \in G}$ and $\mathrm{f}_{k}(m, h):=\overline{[U(m, h) \varphi]\left(t_{k}\right)},(m, h) \in G$. Notice that f_{k} belongs to $\ell^{2}(G), k=1,2, \cdots, K$. As a consequence, under the hypotheses in Theorem 4 (on these new $h_{k}:=\widetilde{f}_{k}$, $k=1,2, \ldots, K)$, a sampling formula such as (16) holds for the data sequence $\left\{\mathcal{L}_{k} f(n)\right\}_{n \in N ; k=1,2, \ldots, K}$ defined in Equation (18).

In the particular case of the quasi regular representation of a crystallographic group $\mathcal{C}_{M, \Gamma}=M \mathbb{Z}^{d} \rtimes_{\phi} \Gamma$, for each $f \in \mathcal{A}_{\varphi}$, the samples (18) read

$$
\mathcal{L}_{k} f(n)=[U(-n, I) f]\left(t_{k}\right)=f\left(t_{k}+n\right), \quad n \in M \mathbb{Z}^{d} \text { and } k=1,2, \ldots, K
$$

Thus (under hypotheses in Theorem 4), there exist K functions $\psi_{k} \in \mathcal{A}_{\varphi}, k=1,2, \ldots, K$, such that for each $f \in \mathcal{A}_{\varphi}$ the sampling formula

$$
f(t)=\sum_{k=1}^{K} \sum_{n \in M \mathbb{Z}^{d}} f\left(t_{k}+n\right) \psi_{k}(t-n), \quad t \in \mathbb{R}^{d}
$$

holds. The convergence of the series in the $L^{2}\left(\mathbb{R}^{d}\right)$-norm sense implies pointwise convergence which is absolute and uniform on \mathbb{R}^{d}.

6. Conclusions

In this paper, we have derived an abstract regular sampling theory associated with a unitary representation $(n, h) \mapsto U(n, h)$ of a group G which is a semi-direct product of two groups, N countable discrete abelian group and H finite, on a separable Hilbert space \mathcal{H}; here, regular sampling means that we are taken the samples at the group N. Concretely, the sampling theory is obtained in the U-invariant subspace of \mathcal{H} generated by $a \in \mathcal{H}$ that is

$$
\mathcal{A}_{a}=\left\{\sum_{(n, h) \in G} \alpha(n, h) U(n, h) a:\{\alpha(n, h)\}_{(n, h) \in G} \in \ell^{2}(G)\right\}
$$

and the samples of $x \in \mathcal{A}_{a}$ are given by $\mathcal{L}_{k} x(n):=\left\langle x, U\left(n, 1_{H}\right) b_{k}\right\rangle_{\mathcal{H}^{\prime}}, n \in N$, where $b_{k}, k=1,2, \ldots, K$, denote K fixed elements in \mathcal{H} which do not belong necessarily to \mathcal{A}_{a}. We look for K elements $c_{k} \in \mathcal{A}_{a}$ such that the sequence $\left\{U\left(n, 1_{H}\right) c_{k}\right\}_{n \in N ; k=1,2, \ldots, K}$ is a frame for \mathcal{A}_{a} and, for each $x \in \mathcal{A}_{a}$, the sampling formula $x=\sum_{k=1}^{K} \sum_{n \in N} \mathcal{L}_{k} x(n) U\left(n, 1_{H}\right) c_{k}$ holds.

A similar problem was solved when the group G is a discrete LCA group and the samples are taken at a uniform lattice of G (see Ref. [10]). In the case of an abelian group, we have the Fourier transform, a basic tool in this previous work. In the present work, a classical Fourier analysis on G is not available, but if G is a semi-direct product of the form $G=N \rtimes_{\phi} H$, where N is a countable discrete abelian group and H is a finite group, the Fourier transform on the abelian group N allows us to solve the problem by means of a filter bank formalism. Recalling the filter bank formalism in discrete LCA
groups, the defined samples are expressed as the output of a suitable K-channel analysis filter bank corresponding to the input $x \in \mathcal{A}_{a}$. The frame analysis of this filter bank along with the synthesis one giving perfect reconstruction allows us to obtain a pair of suitable dual frames for obtaining the desired sampling result, which is written as a list of equivalent statements (see Theorem 4).

Although the semi-direct product of groups represents, so to speak, the simplest case of non-abelian groups, this paper can be a good starting point for finding sampling theorems associated with unitary representations of non abelian groups that are not isomorphic to a semi-direct product of groups.

Author Contributions: The authors contributed equally in the aspects concerning this work: conceptualization, methodology, writing-original draft preparation, writing-review and editing and funding acquisition.
Funding: This research was funded by the grant MTM2017-84098-P from the Spanish Ministerio de Economía y Competitividad (MINECO).
Acknowledgments: The authors wish to thank the referees for their valuable and constructive comments.
Conflicts of Interest: The authors declare no conflict of interest.

References

1. Barbieri, D.; Hernández, E.; Parcet, J. Riesz and frame systems generated by unitary actions of discrete groups. Appl. Comput. Harmon. Anal. 2015, 39, 369-399. [CrossRef]
2. Aldroubi, A.; Sun, Q.; Tang, W.S. Convolution, average sampling, and a Calderon resolution of the identity for shift-invariant spaces. J. Fourier Anal. Appl. 2005, 11, 215-244. [CrossRef]
3. Fernández-Morales, H.R.; García, A.G.; Hernández-Medina, M.A.; Muñoz-Bouzo, M.J. Generalized sampling: From shift-invariant to U-invariant spaces. Anal. Appl. 2015, 13, 303-329. [CrossRef]
4. García, A.G.; Pérez-Villalón, G. Dual frames in $L^{2}(0,1)$ connected with generalized sampling in shift-invariant spaces. Appl. Comput. Harmon. Anal. 2006, 20, 422-433. [CrossRef]
5. García, A.G.; Pérez-Villalón, G. Multivariate generalized sampling in shift-invariant spaces and its approximation properties. J. Math. Anal. Appl. 2009, 355, 397-413. [CrossRef]
6. Kang, S.; Kwon, K.H. Generalized average sampling in shift-invariant spaces. J. Math. Anal. Appl. 2011, 377, 70-78. [CrossRef]
7. Michaeli, T.; Pohl, V.; Eldar Y.C. U-invariant sampling: Extrapolation and causal interpolation from generalized samples. IEEE Trans. Signal Process. 2011, 59, 2085-2100. [CrossRef]
8. Pohl, V.; Boche, H. U-invariant sampling and reconstruction in atomic spaces with multiple generators. IEEE Trans. Signal Process. 2012, 60, 3506-3519. [CrossRef]
9. Sun, W.; Zhou, X. Average sampling in shift-invariant subspaces with symmetric averaging functions. J. Math. Anal. Appl. 2003, 287, 279-295. [CrossRef]
10. García, A.G.; Hernández-Medina, M.A.; Pérez-Villalón, G. Sampling in unitary invariant subspaces associated with LCA groups. Results Math. 2017, 72, 1725-1745. [CrossRef]
11. Faridani, A. A generalized sampling theorem for locally compact abelian groups. Math. Comp. 1994, 63, 307-327. [CrossRef]
12. Bölcskei, H.; Hlawatsch, F.; Feichtinger, H.G. Frame-theoretic analysis of oversampled filter banks. IEEE Trans. Signal Process. 1998, 46, 3256-3268. [CrossRef]
13. Cvetković, Z.; Vetterli, M. Oversampled filter banks. IEEE Trans. Signal Process. 1998, 46, 1245-1255. [CrossRef]
14. García, A.G.; Hernández-Medina, M.A.; Pérez-Villalón, G. Filter Banks on Discrete Abelian Groups. Internat. J. Wavelets Multiresolut. Inf. Process. 2018, 16, 1850029. [CrossRef]
15. Christensen, O. An Introduction to Frames and Riesz Bases, 2nd ed.; Birkhäuser: Boston, MA, USA, 2016.
16. Folland, G.B. A Course in Abstract Harmonic Analysis; CRC Press: Boca Raton, FL, USA, 1995.
17. Führ, H. Abstract Harmonic Analysis of Continuous Wavelet Transforms; Springer: Berlin, Germany, 2005.
18. Horn, R.A.; Johnson, C.R. Matrix Analysis; Cambridge University Press: Cambridge, UK, 1999.
19. De Boor, C.; DeVore, R.A.; Ron A. On the construction of multivariate pre-wavelets. Constr. Approx. 1993, 9, 123-166. [CrossRef]
20. Jia, R.Q.; Micchelli, C.A. Using the refinement equations for the construction of pre-waveles II: Powers of two. In Curves and Surfaces; Laurent, P.J., Le Méhauté, L., Schumaker, L., Eds.; Academic Press: Boston, MA, USA, 1991; pp. 209-246.
21. Zhou, X.; Sun, W. On the sampling theoren for wavelet subspaces. J. Fourier Anal. Appl. 1999, 5, 347-354. [CrossRef]
(c) 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access (CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).
