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Abstract: Here, I discuss some implications of the time-reversal invariance of lossless radiating
systems. I highlight that time-reversal symmetry provides a rather intuitive explanation for the
conditions of polarization and impedance matching of a receiving antenna. Furthermore, I describe a
solution to generate the time-reversed electromagnetic field through the illumination of a matched
receiving antenna with a Herglotz wave.
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1. Introduction

Time reversal is the operation that flips the arrow of time such that t→ −t [1,2]. Remarkably,
the laws that rule the microscopic dynamics of most physical systems are invariant under a
time-reversal transformation (the exceptions occur in some nuclear interactions and are irrelevant
in the context of this study). This property implies that under suitable initial conditions, the time
reversed dynamics may be generated and observed in a real physical setting, similar to a movie played
backwards. Ultimately, the invariance under time reversal implies that at a microscopic level the
physical phenomena are intrinsically reversible: if a particular time evolution is compatible with the
physical laws, then the time-reversed dynamics also is.

A consequence of “time-reversal invariance” is that the propagation of light in standard
waveguides is inherently bi-directional, even if the system does not have any particular spatial
symmetry. For example, if an electromagnetic wave can go through, a metallic pipe with no
back-reflections, then the time-reversed wave also can, but propagating in the opposite direction.
This rather remarkable property is usually explained with the help of the Lorentz reciprocity
theorem [3,4], but it is ultimately a consequence of microscopic reversibility and time reversal
invariance [2,5,6].

In this article, I reexamine the consequences of time-reversal invariance in antenna theory. I show
that time-reversal invariance provides a rather intuitive explanation for the conditions of impedance
and polarization matching in the theory of the receiving antenna. In addition, I prove that in a
time-harmonic regime the time-reversed wave can be generated through the illumination of the
receiving antenna with a superposition of plane waves generated in the far-field.

2. Time-Reversal Symmetry

It is well known that the equations of macroscopic electrodynamics are not time reversal invariant
when the system has dissipative elements. This is so because the description provided by macroscopic
electrodynamics is incomplete, as it only models the time evolution of the electromagnetic degrees of
freedom. In contrast, in a microscopic formalism –with all the light and matter degrees of freedom
included in the analysis– the system dynamics is time-reversal symmetric. Thus, in some sense,
macroscopic dissipative systems (e.g., lossy dielectrics) have a hidden time-reversal symmetry [6].
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To circumvent this complication, here I will focus on systems with negligible material absorption,
so that the dynamics determined by the macroscopic Maxwell equations are time-reversal symmetric.

2.1. General Case

Consider the propagation of light in some lossless, dispersion-free, dielectric system described by
the Maxwell equations:

∇× E = −µ0
∂H
∂t ,

∇×H = j + ε ∂E
∂t

(1)

with ε = ε(r). The time-reversal operation T transforms the electromagnetic fields E, H and the current

density j as E T→ ETR, H T→ HTR, and j T→ jTR with [2]:

ETR(r, t) = E(r,−t),
HTR(r, t) = −H(r,−t),
jTR(r, t) = −j(r,−t).

(2)

The transformed fields satisfy the same equations as the original fields. Under a time-reversal
transformation the magnetic field and the current density flip sign, whereas the electric field does
not. Thus, the former are said to be odd under a time-reversal transformation, whereas the latter is
even. As a consequence, the Poynting vector S = E×H also flips sign under a time reversal operation,
so that the wave dynamics and direction of propagation are effectively reversed. The time reversal
symmetry is rather general and applies to waves with an arbitrary variation in time.

For example, consider the scenario illustrated in Figure 1a, which represents a scattering problem
with two waveguides connected by some arbitrary junction (two-port microwave network). The two
incoming waves E+

1 and E+
2 can have arbitrary time variations and their scattering originates two

outgoing waves, E−1 and E−2 . As illustrated in Figure 1b, the time-reversal operation swaps the
roles of the incoming and outgoing waves, because it flips the direction of propagation. Hence,
the time-reversed signals are given by ETR,±

i (r, t) = E∓i (r,−t). In particular, suppose that some wave
incident in port 1 is fully transmitted to port 2. Then, if port 2 is illuminated with the time-reversed
transmitted signal it will reproduce the original signal in port 1, but reversed in time. Thereby,
time-reversal invariant systems are intrinsically bi-directional, independent of any spatial asymmetry.
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Figure 1. Illustration of the effect of the time-reversal operation in a time-domain scattering problem:
(a) The incoming waves E+

1 and E+
2 are scattered by the junction and originate two outgoing waves E−1

and E−2 . (b) Time-reversed scenario where the roles of the incoming and outgoing waves are exchanged.

The enunciated results can be generalized in a straightforward way to dispersive lossless
dielectrics, e.g., to material structures characterized by some real-valued scalar permittivity ε = ε(ω, r)
(e.g., a Lorentz dispersive model with no dissipation). The reason is that the electrodynamics of lossless
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dispersive systems can be formulated as a Schrödinger-type time evolution problem [7–9], which in
the case of reciprocal media (e.g., standard dielectrics) is time-reversal invariant.

Furthermore, as discussed in Reference [10], most lossless nonlinear systems are time-reversal
symmetric and hence are also bi-directional (see also Reference [11] for the acoustic case). For example,
for an instantaneous Kerr-type nonlinear response with ε = ε0(χ

(1) + χ(3)E · E), the Maxwell equations
(1) remain time-reversal invariant. Interestingly, the time-harmonic response of a two-port microwave
network with nonlinear components is generically asymmetric [12–14]. Indeed, if the ports are
individually excited by the same time-harmonic signal the level of the transmitted signal depends
on which port is excited; in this sense, nonlinear systems are nonreciprocal as the transmissivity is
generically direction dependent for a given time-harmonic excitation [12–14]. In summary, lossless
nonlinear systems are usually both time-reversal invariant and nonreciprocal, the two conditions are
not incompatible [10]. In the rest of the article, I focus on linear systems.

2.2. Time-Harmonic Variation

Consider a time-harmonic solution of the Maxwell equations, such that the electromagnetic
fields and current density are of the form: E(r, t) = Re

{
Eω(r)ejωt}, H(r, t) = Re

{
Hω(r)ejωt},

j(r, t) = Re
{

jω(r)e
jωt}, with ω being the real-valued oscillation frequency. Under a time reversal

the electric field is transformed as E(r, t)→ Re
{

Eω(r)e−jωt} = Re
{

E∗ω(r)ejωt} , where the symbol “*”
stands for complex conjugation. Hence, the complex amplitudes of the fields and current density are
transformed as:

Eω(r)
T→ E∗ω(r),

Hω(r)
T→ −H∗ω(r),

jω(r)
T→ −j∗ω(r).

(3)

Thus, in the frequency domain the time-reversal operation is closely linked to phase
conjugation [15,16]. Similarly, voltages and currents are transformed as:

Vω
T→ V∗ω,

Iω
T→ −I∗ω.

(4)

For example, consider a N-port microwave network such that the voltages and currents at a generic
port i are of the form: Vω,i = V+

ω,i + V−ω,i and Iω,i = (V+
ω,i −V−ω,i)/Z0, i = 1, . . . , N. Here, V+

ω,i represents
an incoming (incident) wave and V−ω,i an outgoing (scattered) wave. The characteristic impedance of

the ports is Z0. The incident and scattered waves are related as V− = S ·V+, where V± =
[
V±ω,i

]
are

column vectors and S =
[
Sij
]

is the scattering matrix. The time reversal operation exchanges the roles
of the incident and scattered waves, such that VTR,± = V∓,∗. Therefore, if the system is time-reversal
invariant V+,∗ = S ·V−,∗. Thus, the scattering matrix must satisfy S = S−1,∗. On the other hand, for a
lossless system the incident power must equal the scattered power: V− ·V−,∗ = V+ ·V+,∗. To satisfy
this additional constraint the scattering matrix must be unitary S · S† = 1. Combining the two results,
one finds that the scattering matrix must be transpose symmetric:

S = ST . (5)

Thus, any time-reversal invariant linear lossless system is necessarily reciprocal (Sij = Sji) [17].
Here, I note in passing that in electromagnetic theory the time-reversal operator T is idempotent,

such that T 2 = 1. In other words, a “double” time reversal leaves the system dynamics unchanged.
In contrast, in condensed matter theory the time reversal operator satisfies T 2 = −1, and because
of this property the scattering matrix of fermionic systems is anti-symmetric, S = −ST [17]. It was
recently shown that photonic systems protected by a special parity-time-duality (PT D) symmetry are
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constrained by S = −ST , and thereby are matched at all ports (Sii = 0) [17]. Such systems can enable
bi-directional transmission of light free of back scattering.

3. Application to Antenna Theory

The time-reversal property may be used to explain several well-known properties of radiating
systems. Similar to the previous section, I assume that the antennas are formed by lossless materials,
e.g., lossless dielectrics or perfect conductors. In particular, the radiation efficiency of the antennas
is 100%.

Consider a generic antenna radiating in free-space (Figure 2a). The antenna is fed by a
generator with a time-harmonic variation. The antenna radiates the electromagnetic fields Erad

ω , Hrad
ω .

By definition, the antenna impedance is Za = V0,ω/I0,ω where V0,ω , I0,ω are the complex amplitudes of
the voltage and current at the antenna terminals. In the far-field region the radiated electric field is
asymptotically of the form [18]:

Erad
ω ≈ Eff

ω ≡ η0 jk0 I0,ω
e−jk0r

4πr he(r̂)
he(r̂) = r̂× (r̂× 1

I0,ω

∫
jω(r

′)ejk0 r̂·r′d3r′).
(6)
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Figure 2. (a) An antenna fed by a time-harmonic generator radiates in free-space. (b) Time-reversed
problem wherein all the radiated energy returns to the antenna. The antenna terminals are connected
to a matched load.

In the above, k0 = ω/c is the free-space wave number, η0 is the free-space impedance, and he(r̂)
is the (vector) effective height of the antenna, which depends on the direction of observation r̂ (r̂ can
be expressed in terms of angles θ, ϕ associated with a system of spherical coordinates). The antenna
effective height depends on the total current distribution jω(r

′), which includes the external currents
associated with the generator and the induced polarization and conduction currents in the materials.

The polarization of the antenna in the direction r̂ is determined by the closed curve defined by
Erad(t) = Re

{
Erad

ω ejωt
}
∼ Re

{
he(r̂)ejωt}, and hence by the effective height he because the electric

field is evaluated in the far-field region.

3.1. Polarization and Impedance Matching

Consider now the time-reversed problem represented in Figure 2b, where all the radiated energy
is returned back to the antenna. The time reversed voltage and current at the antenna terminals are
VTR

0,ω = V∗0,ω and ITR
0,ω = −I∗0,ω (Equation (4)). The current flowing into the antenna terminals (inward

direction) is IL,ω = −ITR
0,ω (see Figure 2; note that in the scenario of Figure 2a the current is positive

when it flows in the outward direction). From here, it follows that VTR
0,ω/IL,ω = V∗0,ω/I∗0,ω = Z∗a , i.e.,

in the time-reversed scenario the generator is effectively equivalent to a matched load with impedance
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Z∗a . Furthermore, the field arriving to the antenna in the direction r̂ is evidently ETR
ω = Erad,∗

ω ∼ h∗e (r̂),
which is the well-know condition for polarization matching. These properties show that in the
time-reversed problem the antenna is impedance matched to the load and polarization matched to the
incident wave for any direction r̂.

Thus, the time-reversal invariance provides a rather intuitive understanding of the conditions
of impedance and polarization matching, as it shows that the two conditions emerge naturally in the
time-reversed problem where the receiving antenna captures the energy arriving from the far-field
with 100% efficiency.

In the time domain ETR(t) = Erad(−t) and thereby the polarization curve associated with
ETR

ω is the same as the polarization curve associated with Erad
ω . In a time period (T = 2π/ω),

ETR(t), Erad(t) follow the same polarization curve but in opposite directions due to the time-reversal
link. Yet, the polarization of the two waves is the same, i.e., the antenna and the wave are polarization
matched, because the propagation directions of the two waves differ by a minus sign (Erad

ω propagates
in the outward radial direction and ETR

ω in the inward radial direction).
For example, an antenna that radiates a right-circularly polarized (RCP) wave in some direction

of space is polarization matched to an incoming plane wave with RCP polarization. Even though the
wave and antenna polarizations are identical, the geometrical senses of rotation of the relevant electric
fields are opposite. This otherwise intriguing property can be understood as a simple consequence of
time-reversal invariance.

3.2. Time-Reversed Field Generated with a Far-Field Illumination

The problem of generating a time-reversed field distribution is of practical interest, as it enables
concentrating and focusing energy from the far field into some desired region of space. The theory
and application of time-reversed fields were developed and extensively explored by Fink and
co-authors [19–24]. Here, I revisit the problem and highlight some features that were not discussed in
Reference [24].

In the time-reversed problem of Figure 2b the incident wave ETR
ω propagates from r = ∞ to the

antenna where it is fully absorbed by the matched load, without generating any back-reflections. It is
natural to wonder what happens if the same antenna is illuminated by the time-reversed far field (time
reversal of Eff

ω) rather than by the fully time-reversed field (the time reversal of Erad
ω given by ETR

ω ). In
the former case, the incident wave Einc

ω (r) should be a superposition of plane waves emerging from all
possible directions of space r̂′. From Equation (6), the field dEinc

ω (r) associated with the wave emerging
from the infinitesimal solid angle dΩ(r̂′) must have amplitude proportional to e+jk0 r̂′ ·rh∗e (r̂

′)dΩ(r̂′).
Notably, I prove in the Appendix A that the solution of the scattering problem formulated in the

previous paragraph can be constructed from the fully time reversed field ETR
ω . Specifically, when an

impedance-matched antenna is illuminated by the incident field

Einc
ω (r) =

k2
0

8π2 I∗0,ωη0

∫
e+jk0 r̂′ ·rh∗e (r̂

′)dΩ(r̂′), (7)

the field scattered by the antenna is precisely given by Escat
ω = ETR

ω − Einc
ω , such that the total field is

ETR
ω . Thus, ETR

ω may be both understood as an incident wave that is absorbed by the antenna with no
back-scattering, or alternatively as the superposition of an incident wave (Einc

ω ) and the corresponding
field back scattered by the antenna (Escat

ω ). The two cases, even though totally different from a physical
point of view, cannot be mathematically distinguished in time-harmonic regime.

As previously mentioned, the incident field Einc
ω is a superposition of propagating plane waves

emerging from all directions of space. This type of wave is known as a Herglotz wave. The integral in
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Equation (7) is over all solid angles dΩ(r̂′). Furthermore, it is shown in Appendix A that the scattered
field has the following asymptotic form in the far-field region:

Escat
ω (r) ≈ −η0 jk0 I∗0,ω

e−jk0r

4πr
h∗e (−r̂). (8)

Comparing Equations (6) and (8) it is evident that the power scattered by the antenna when it is
illuminated by Einc

ω is Pscat = Prad where Prad is the power radiated by the antenna in the scenario of
Figure 2a. Furthermore, since the total field Einc

ω + Escat
ω is identical to ETR

ω it is evident that the power
absorbed by the matched load is Pr = Prad. These properties imply that when the impedance-matched
antenna is illuminated by the Herglotz wave it captures the same power as it scatters: Pr = Pscat.
The property Pr = Pscat is specific to the Herglotz wave considered here, and it generally does not
hold true for other far-field excitations [25,26]. Note that the polarization curve associated with the
scattered field Escat

ω along the direction r̂ is determined by h∗e (−r̂), which generally differs from the
polarization of the antenna in transmitting mode.

It is emphasized that the fully time reversed field ETR
ω can be excited simply by illuminating the

impedance matched antenna with the Herglotz wave Einc
ω , which is a superposition of propagating

plane waves.

4. Conclusions

I revisited the topic of time-reversal symmetry in macroscopic electromagnetism. I showed
that under a time-reversal transformation a transmitting antenna becomes the impedance matched
receiving antenna. Heuristically, the excitation with the time-reversed wave must be the most
effective way of delivering power to an antenna. Thus, the time-reversal invariance provides a
simple and intuitive understanding of the conditions of impedance and polarization matching in
antenna theory. In particular, it elucidates why a polarization matched incident wave has an electric
field that rotates geometrically in a direction opposite to that of the field radiated by the antenna in the
same direction. In addition, I generalized the ideas of Reference [24] and showed that the time reversal
of the field emitted by a lossless transmitting antenna can be created by illuminating an impedance
matched receiving antenna with the far-field excitation associated with the Herglotz wave given by
the Equation (7). In such a scenario, the power captured by the matched load is precisely the same as
the power scattered by the antenna.
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Engineering Research Prize and by Fundação para Ciência e a Tecnologia (FCT) under project PTDC/EEITEL/
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Appendix A

Consider the configuration of Figure 2a, where a generic lossless antenna radiates in free-space.
Let jω(r

′) be the total electric current distribution, determined both by the external current associated
with the generator and by the polarization and conduction currents in the materials. The radiated
fields in time-harmonic regime may be expressed in terms of a vector potential as

Aω(r) = µ0

∫
jω(r

′)
e−jk0|r−r′ |

4π|r− r′|d
3r′. (A1)

Under a time reversal, the vector potential is transformed as Aω(r)
T→ −A∗ω(r). Thus,

the time-reversed vector potential is:

ATR
ω (r) = µ0

∫
−j∗ω(r

′)
e+jk0|r−r′ |

4π|r− r′|d
3r′. (A2)
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Using e+jk0|r−r′ | = e−jk0|r−r′ | + 2j sin(k0|r− r′|), I obtain the decomposition ATR
ω = Ainc

ω +

Ascat
ω , with

Ascat
ω (r) = µ0

∫
−j∗ω(r

′)
e−jk0|r−r′ |

4π|r− r′|d
3r′, (A3a)

Ainc
ω (r) = µ0

∫
−j∗ω(r

′)
j sin(k0|r− r′|)

2π|r− r′| d3r′. (A3b)

Evidently, the time-reversed field has a similar decomposition ETR
ω = Einc

ω + Escat
ω (see also

Reference [24]). The field Escat
ω is obtained from Ascat

ω , and thus satisfies the Sommerfeld radiation
conditions. Thus, Escat

ω can be understood as the wave scattered by Einc
ω . From Equation (A3a) it is

simple to check that in the far-field region

Escat
ω (r) ≈ −jk0η0

e−jk0r

4πr
r̂× (r̂×

∫
j∗ω(r

′)e+jk0 r̂·r′d3r′). (A4)

Comparing this result with Equation (6), one obtains Equation (8).
The potential Ainc

ω is an analytic function and can be written as a superposition of plane waves.
Indeed, from

sin k0r
4πr

=
k0

16π2

∫
e−jk0k̂·rdΩ(k̂), (A5)

the incident vector potential may be expressed as:

Ainc
ω (r) = −µ0

jk0

8π2

∫
dΩ(k̂)ejk0k̂·r

(∫
d3r′ j∗ω(r

′)e−jk0k̂·r′
)

. (A6)

With the help of Equation (6), it can be checked that the “incident” electric field
Einc

ω = (1/jωε0)∇×∇×Ainc
ω /µ0 is given by Equation (7).

The power received by an impedance-matched antenna is

Pr =
|Voc|2

8Ra
. (A7)

Here, Ra = Re{Za} is the input resistance of the antenna and Voc is the voltage induced by the
incident field at the antenna terminals when they are terminated with an open circuit. As is well
known, for reciprocal systems the open-circuit voltage is Voc = Einc

0 ·he(r̂) where Einc
0 is field associated

with an incident plane wave (arriving from direction r̂) evaluated at the origin [18]. Thus, from the
superposition principle, the voltage induced by the Herglotz wave given by Equation (7) is:

Voc =
k2

0
8π2 I∗0,ωη0

∫
|he(r̂)|2dΩ(r̂). (A8)

For a lossless system the input resistance is coincident with the radiation resistance, which from

(6) can be written as Ra = η0
k2

0
16π2

∫
|he(r̂)|2dΩ(r̂). This result implies that Voc = 2I∗0,ωRa so that the

received power is given by Pr =
1
2 Ra|I0,ω |2 = Prad. This direct analysis confirms that when the antenna

is illuminated by the Herglotz wave the power absorbed by a matched load is exactly the power
radiated by the antenna in the scenario of Figure 2a.
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