

  symmetry-11-00424




symmetry-11-00424







Symmetry 2019, 11(3), 424; doi:10.3390/sym11030424




Article



An Effective Global Optimization Algorithm for Quadratic Programs with Quadratic Constraints



Dongwei Shi *, Jingben Yin and Chunyang Bai





School of Mathematical Sciences, Henan Institute of Science and Technology, Xinxiang 453003, China









*



Correspondence: shidongwei@hist.edu.cn







Received: 13 January 2019 / Accepted: 7 March 2019 / Published: 22 March 2019



Abstract

:

This paper will present an effective algorithm for globally solving quadratic programs with quadratic constraints. In this algorithm, we propose a new linearization method for establishing the linear programming relaxation problem of quadratic programs with quadratic constraints. The proposed algorithm converges with the global optimal solution of the initial problem, and numerical experiments show the computational efficiency of the proposed algorithm.
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1. Introduction


Quadratic programs with quadratic constraints (QPWQC) have attracted the attention of many researchers for several decades. On the one hand, it is since these classes of problems have a broad applications in multistage shipping, path planning, finance, and portfolio optimization, among others. [1,2,3,4,5,6,7,8,9,10,11]. On the other hand, it is because these classes of problems exist as important theoretical complexities and computational difficulties, that is to say, they are known to generally possess multiple local optimal solutions, which are not optimal solutions.



In the last several decades, many algorithms have been developed for globally solving the (QPWQC) and its special cases, such as branch-and-bound method [12,13], approximation approach [14], robust approach [15], branch-reduce-bound algorithm [16,17,18,19], geometric programming approach [20,21,22,23], and others. Except for the above approaches, some global optimization algorithms [24,25,26,27,28,29,30,31,32,33,34,35,36,37,38] for linear multiplicative programming problems and generalized linear fractional programming problems can be used to solve the quadratic programs with quadratic constraints (QPWQC) considered in this paper. Although these algorithms can be employed to solve the QPWQC and its special cases, less work has been done for globally solving the QPWQC considered in this paper.



In this paper, first of all, by making use of the characteristics of simple variable quadratic function, we construct a new linearization method for establishing the linear programming relaxation problem of the QPWQC. Next, we present a global optimization algorithm based on the branch-and-bound scheme for solving the QPWQC. Finally, the global convergence of the proposed algorithm is proved, and numerical experimental results demonstrate the higher computational efficiency of the proposed algorithm.



The main features of the proposed algorithm are given as follows. (1) A new linearization method is proposed for systematically converting the QPWQC into a sequence of linear programming relaxation problems, and the solutions of these linear programming relaxation problems can infinitely approximate the global optimal solution of the original QPWQC by subdividing the linear relaxation of the feasible region of the QPWQC and solving a series of linear programming relaxation problems. (2) The constructed linear programming relaxation problems are embedded within a branch-and-bound framework, which can be effectively solved by any efficient linear programming method. (3) Combining the proposed linear programming relaxation problem with the branch-and-bound framework, an effective algorithm is proposed for solving the problem of QPWQC. (4) Compared with the exist algorithms [37,39,40,41,42,43,44,45,46,47], numerical results show that the proposed algorithm in this paper can be used to globally solve the QPWQC with higher computational efficiency.



The remaining sections of this paper are organized as follows. Firstly, the aim of Section 2 is to propose a new linearization method for establishing the linear programming relaxation problem of the initial QPWQC. Secondly, based on the branch-and-bound scheme, Section 3 proposes a global optimization algorithm, and its global convergence is proved. Thirdly, compared with the existing methods, Section 4 describes some numerical examples to show the computational efficiency of the proposed algorithm. Finally, some conclusions are given.




2. New Linearization Method for Deriving Linear Programming Relaxation Problem


In this paper, the mathematical modeling of quadratic programs with quadratic constraints is given as follows:


(QPWQC){min ψ0(x)=∑k=1nckoxk+∑j=1n∑k=1ndij0xjxk  s.t.  ψi(x)=∑k=1nckixk+∑j=1n∑k=1ndijixjxk≤bi, i=1,2,…,m,  x∈X0={ x∈Rn: l0≤x≤u0},



(1)




where djki,cki, and bi are all arbitrary real numbers; l0=(l10,…,ln0)T>−∞,      u0=(u10,…,un0)T<+∞.



In this section, we construct a new linearization method for deriving the linear programming relaxation problem of the QPWQC, and the detailed construction process of the linearization method is described as follows.



For convenience, we assume without loss of generality that X={(x1,x2,…,xn)T∈Rn:lj≤xj≤uj,j=1,2,…,n}⊆X0.



Theorem 1.

For anyx∈X,k∈{1,2,…,n},we consider the functionsxk2,uk2+2uk(xk−uk)and uk2+2lk(xk−uk), we have the following conclusions:


uk2+2uk(xk−uk)≤xk2≤uk2+2lk(xk−uk);



(2)






lim‖u−l‖→0{xk2−[uk2+2uk(xk−uk)]}=0



(3)






lim‖u−l‖→0{uk2+2lk(xk−uk)−xk2}=0



(4)









Proof. 

(i) From the mean value theorem, there exists a point ξk=αlk+(1−α)uk∈[lk,uk], where α∈[0,1], which satisfies that


xk2=uk2+2ξk(xk−uk).



(5)







From lk≤ξk≤uk, it follows that


uk2+2lk(xk−uk)≥uk2+2ξk(xk−uk)=xk2≥uk2+2uk(xk−uk).



(6)







(ii) From


xk2−[uk2+2uk(xk−uk)]=uk2−xk2≤(uk−lk)2,



(7)




it follows that


lim‖u−l‖→0{xk2−[uk2+2uk(xk−uk)]}=0.



(8)







Also from


uk2+2lk(xk−uk)−xk2=(xk−uk)[2lk−uk−xk]≤2(uk−lk)2.



(9)







Therefore, we have


lim‖u−l‖→0{uk2+2lk(xk−uk)−xk2}=0.



(10)







The proof is completed. □





From the conclusion (2), it follows that


uj2+2uj(xj−uj)≤xj2≤uj2+2lj(xj−uj),



(11)






(xj−xk)2≥(uj−lk)2+2(uj−lk)[xj−xk−(uk−lk)],



(12)






(xj−xk)2≤(uj−lk)2+2(lj−uk)[xj−xk−(uk−lk)].



(13)







From the conclusions (3) and (4), it follows that


lim‖u−l‖→0{xj2−[uj2+2uj(xj−uj)]}=0,



(14)






lim‖u−l‖→0{uj2+2lj(xj−uj)−xj2}=0,



(15)






lim‖u−l‖→0{(uj−lk)2+2(lj−uk)[xj−xk−(uk−lk)]−(xj−xk)2}=0.



(16)




and


lim‖u−l‖→0{(xj−xk)2−{ (uj−lk)2+2(uj−lk)[xj−xk−(uj−lk)]}}=0. 



(17)







For any x∈X,j,k∈{1,2,…,n},j≠k, without loss of generality, we define


ψ_jk(x)=12{uj2+2uj(xj−uj)+uk2+2uk(xk−uk)−{(uj−lk)2+2(lj−uk)[xj−xk−(uk−lk)]}]



(18)




and


ψ¯jk(x)=12{uj2+2lj(xj−uj)+uk2+2lk(xk−uk)−{(uj−lk)2+2(uj−lk)[xj−xk−(uk−lk)]}],



(19)







Theorem 2.

For anyx∈X,j,k∈{1,2,…,n},j≠k,consider the functionsψ_jk(x),xjxkandψ¯jk(x) ,the following conclusions hold:


ψ_jk(x)≤xjxk=12[xj2+xk2−(xj−xk)2]≤ψ¯jk(x),



(20)






lim‖u−l‖→0[xjxk−ψ_jk(x)]=0,



(21)




and


lim‖u−l‖→0[ψ¯jk(x)−xjxk]=0.



(22)









Proof. 

(i) By the conclusions of Theorem 1, it follows that


ψ¯jk(x)=12{uj2+2lj(xj−uj)+uk2+2lk(xk−uk) −{(uj−lk)2+2(uj−lk)[xj−xk−(uk−lk)]}}≥ 12[xj2+xk2−(xj−xk)2]=xjxk≥ 12{uj2+2uj(xj−uj)+uk2+2uk(xk−uk) −{(uj−lk)2+2(lj−uk)[xj−xk−(uj−lk)]}}=ψ_jk(x).



(23)







(ii) From the inequalities (7) and (9), we have


xjxk−ψ_jk(x)=12[xj2+xk2−(xj−xk)2]− 12{uj2+2uj(xj−uj)+uk2+2uk(xk−uk) −{(uj−lk)2+2(lj−uk)[xj−xk−(uj−lk)]}}≤12(uj−lj)2+12(uk−lk)2+(uk+uj−lj−lk)2.



(24)







Thus, we can get that lim‖u−l‖→0[xjxk−ψ_jk(x)]=0. □





Also from the proof of Theorem 2 and the inequalities (7) and (9), we get that


ψ¯jk(x)−xjxk=12{uj2+2lj(xj−uj)+uk2+2lk(xk−uk) −{(uj−lk)2+2(uj−lk)[xj−xk−(uj−lk)]}} −12[xj2+xk2−(xj−xk)2]≤(uj−lj)2+(uk−lk)2+12(uk+uj−lk−lj)2.



(25)







Thus, we can get that lim‖u−l‖→0[ψ¯jk(x)−xjxk]=0.



Without loss of generality, for any X=[l,u]⊆X0 for any x∈X, and i∈{0,1,2,…,m} we let


f_kki={dkki{uki+2uk(xk−uk)},if dkki>0 ,dkki{uki+2lk(xk−uk)},if dkki<0, 



(26)






f_jki={djkiψ_jk(x),if djki>0 ,j≠k,djkiψ¯jk(x),if djki<0 ,j≠k,



(27)






ψiL(x)=∑k=1n(ckixk+f_kki(x))+∑j=1n∑k=1,k≠jnf_jki(x).



(28)







Theorem 3.

For anyx∈X=[l,u]⊆X0,for eachi=0,1,2,…,m,we get thatψiL(x)≤ψi(x)andlim‖u−l‖→0[ψi(x)−ψiL(x)]=0.





Proof. 

(i) From (2) and (12), we have


f_kki≤dkkixk2≤f¯kki(x)    and   f_jki≤djkixjxk≤f¯jki(x).



(29)







By (29), it follows that ψiL(x)≤ψi(x).



(ii)


ψi(x)−ψiL(x)=∑k=1nckixk+∑k=1ndkkixk2+∑j=1n∑k=1,k≠jndjkixjxk −[∑k=1nckixk+∑k=1nf_kki(x)+∑j=1n∑k=1,k≠jnf_jki(x)]=∑k=1n(dkkixk2−f_kki(x))+∑j=1n∑k=1,k≠jn[djkixjxk−f_jki(x)]=∑k=1,dkki>0ndkki{xk2−[uk2+2uk(xk−uk)]} +∑k=1,dkki<0ndkki{xk2−[uk2+2lk(xk−uk)]} +∑j=1n∑k=1,k≠j,dkki>0ndjki[xjxk−ψ_jk(x)] +∑j=1n∑k=1,k≠j,dkki<0ndjki[xjxk−ψ¯jk(x)]



(30)







From (3), (4), (14), and (15), we get


lim‖u−l‖→0{xk2−[uk2+2uk(xk−uk)]}=0,



(31)






lim‖u−l‖→0{[uk2+2lk(xk−uk)]−xk2}=0,



(32)






lim‖u−l‖→0[xjxk−ψ_jk(x)]=0



(33)




and


lim‖u−l‖→0[ψ¯jk(x)−xjxk]=0.



(34)







Therefore, we have


lim‖u−l‖→0[ψi(x)−ψiL(x)]=0.



(35)







The proof is completed. □





By Theorem 3, we can establish the linear programming relaxation problem (LPRP) of the QPWQC over X as follows:


(LPRP):{min ψ0L(x)=∑k=1n(ck0xk+φ_kk0(x))+∑j=1n∑k=1,k≠jnφ_jk0(x),  s.t.   ψiL(x)=∑k=1n(ckixk+φ_kki(x))+∑j=1n∑k=1,k≠jnφ_jki(x)≤bi,   i=1,2,…,m,  x∈X={x:l≤x≤u}.



(36)







From the construction process of the former linearizing method, it is obvious that for any given X, each feasible point of the QPWQC is also feasible to the LPRP, and the optimal value of the LPRP is less than or equal to that of QPWQC. Therefore, the LPRP offers a reliable lower bound for the optimal value of the QPWQC. Except for the above approach, Theorem 3 also ensures the global convergence of the proposed algorithm.




3. New Global Optimization Algorithm


In this section, based on the former LPRP, we shall present a new global optimization algorithm for solving the QPWQC. In this algorithm, there are the following several key operations: branching, bounding, and space reduction.



Firstly, we choose a simple branching operation, which is called an interval bisection method. For any selected box X′=[l′,u′]⊆X0. Let δ∈argmax{ui′−li′: i=1,2,…,n}, subdivide [x_δ′−x¯δ′] into [x_δ′,(x_δ′+x¯δ′)/2] and [(x_δ′+x¯δ′)/2,x¯δ′],X′ can be subdivide into X′1 and X′2. The selected branching operation is sufficient to ensure the global convergence of this algorithm.



Secondly, for each investigated sub-box X⊆X0, we must solve the LPRP, and set LBs=min{LB(X)|X∈Ωs}, where Ωs is still not fathomed as a sub-box set. In order to update the upper bound, we need to fathom the feasible point, and set Θ be the known feasible point set and UBs=min{ψ0(x)|x∈Θ}, to be the existent best upper bound.



In addition, we can introduce an interval reduction operation from Theorem 3 [6] to improve the convergent speed of the proposed algorithm.



3.1. Steps for Global Optimization Algorithm


For any investigated box Xs⊆X0, let LB(Xs) and xs=x(Xs) be the optimal value and optimal solution of the LPRP over Xs. Based on the branch-and-bound scheme and the former LPRP, a new global optimization algorithm is described as follows.



Algorithm Steps:



Step 1. Set ε=10−6, solve the (LPRP) over X0 to obtain its optimal solution x0 and the optimal value LB(X0), respectively.



Let the lower bound LB0=LB(X0). If x0 is feasible to the QPWQC, let the upper bound be UB0=ψ0(x0), otherwise let the initial upper bound be UB0=+∞.



If UB0−LB0≤ε, let the global ε– optimal solution of the QPWQC be x0, otherwise let Ω0={X0},  Λ=ϕ,  s=1.



Step 2. Let the upper bound be UBs=UBs−1, partition Xs−1 into Xs,1 and Xs,2, and let Λ=Λ∪{Xs−1} be the deleted sub-boxes set.



For each Xs,t,t=1,2, utilize the interval reduction method to compress the investigated box, and let Xs,t be the remaining box.



For each remaining box Xs,t,t=1,2, solve the LPRP to obtain its optimal solution xs,t and optimal value LB(Xs,t), respectively.



Set Ωs={X|X∈Ωs−1∪{Xs,1,Xs,2},X∉Λ} and LBs=min{LB(X)|X∈Ωs}.



Step 3. For each Xs,t,t=1,2, if xmid is the feasible point of the QPWQC, let Θ:=Θ∪{xmid}, and let the new upper bound UBs=minx∈Θ{ψ0(x)}; if xs,t is feasible to the QPWQC, let the new upper bound UBs=min{UBs,ψ0(xs,t)}, and let the best known feasible point be xs, which satisfies UBs=ψ0(xs).



Step 4. If UBs−LBs≤ε, then we let the ε–global optimal solution of the QPWQC be xs, otherwise let s=s+1, and return to Step 2.




3.2. Global Convergence of the Proposed Algorithm


If the proposed algorithm terminates after finite iterations, then, when it terminates, we can obtain the global optimal solution of the QPWQC. Otherwise, the proposed algorithm will generate an infinite sequence, whose limitation is the global optimal solution of the QPWQC; the detailed proof is given as follows.



Theorem 4.

If the proposed algorithm does not terminate after finite iterations, then the proposed algorithm will generate an infinite sequence {Xs}, whose accumulation point will be the global optimal solution of the QPWQC.





Proof. 

First of all, in the proposed algorithm, the selected branching method is the rectangle bisection, which is exhaustive, and which guarantees that the intervals of all variables converge to 0.



Secondly, as ‖u−l‖→0, from the conclusions of Theorem 3, it follows that the LPRP will sufficiently approximate the QPWQC, which is to say, lims→∞(UBs−LBs)=0, i.e., the proposed algorithm satisfies that the bounding operation is consistent. Thirdly, in the proposed algorithm, the subdivided box which achieved the actual lower bound is immediately selected for the later partition, and the proposed algorithm satisfies that the selected operational bound is improving. By Theorem 4.3 of Reference [39], the proposed branch-and-bound algorithm satisfies the global convergent sufficient condition. Hence, the proposed algorithm converges to the global optimal solution of the QPWQC. □







4. Numerical Experiments


Let ε=10−6 be the convergence error. Some numerical examples in recent literature are solved in C++ program on microcomputer, and the simplex approach is employed to solve the LPRP. Compared with the existent algorithms, these numerical examples are given as follows, and their computational results are listed in Table 1 and Table 2.



Example 1 (Reference [40])


(LPRP):{min ψ0L(x)=∑k=1n(ck0xk+φ_kk0(x))+∑j=1n∑k=1,k≠jnφ_jk0(x),  s.t.  ψiL(x)=∑k=1n(ckixk+φ_kki(x))+∑j=1n∑k=1,k≠jnφ_jki(x)≤bi,   i=1,2,…,m,  x∈X={x:l≤x≤u}.










{min ψ0(x)=x1 s.t.  ψ1(x)=14x1+12x2−116x12−116x22≤1,  ψ2(x)=−37x1−37x2+114x12+114x22≤−1,  1≤x1≤5.5,  1≤x2≤5.5,











Example 2 (Reference [40])


{min ψ0(x)=x1x2−2x1+x2+1s.t.  ψ1(x)=−6x1−16x2+8x22≤−11, ψ2(x)=3x1+2x2−x22≤7, 1≤x1≤2.5,  1≤x2≤2.225.











Example 3 (References [37,41,42])


{min ψ0(x)=x12+x22s.t.  ψ1(x)=0.3x1x2≥1, 2≤x1≤5,  1≤x2≤3.











Example 4 (References [41,42,43,44])


{min ψ0(x)=x1s.t.  ψ1(x)=4x2−4x12≤1, ψ2(x)=−x1−x2≤−1, 0.01≤x1,x2≤15.











Example 5 (Reference [45])


{min ψ0(x)=6x12+4x22+5x1x2s.t.  ψ1(x)=−6x1x2≤−48, 0≤x1,x2≤10.











Example 6 (Reference [46])


{min ψ0(x)=−x1+x1x20.5−x2s.t.  ψ1(x)=−6x1+8x2≤3, ψ2(x)=3x1−x2≤3, 1≤x1,x2≤1.5.











Example 7 (References [26,43])


{min ψ0(x)=4x2+(x1−1)2+x2−10x32s.t.  ψ1(x)=x12+x22+x32≤2, ψ2(x)=(x1−2)2+x22+x32≤2, 2−2≤x1≤2,  0≤x2,x3≤2.











Comparing with the existent algorithms, numerical results show that the proposed algorithm has the higher computational efficiency.



To demonstrate robustness of the proposed algorithm, we give a large-scale random numerical example as follows.



Example 8. (Reference [47])


{min ψ0(x)=∑k=1nckoxk+∑j=1n∑k=1ndij0xjxks.t.    ψi(x)=∑k=1nckixk+∑j=1n∑k=1ndijixjxk≤bi, i=1,2,…,m, x∈X0={ x∈Rn: l0≤x≤u0},








where ck0,k=1,2,…,n, is randomly generated in [0, 1], dkj0,k=1,2,…,n,j=1,2,…,n, is randomly generated in [0, 1]; cki,i=1,…,m,k=1,2,…,n, is randomly generated in [−1, 0], dkji,k=1,2,…,n,j=1,2,…,n, is randomly generated in [−1, 0], bi,i=1,2,…,m, is randomly generated in [−300, −90]. In the Example 8, ‘n’ denotes the number of variables while ‘m’ denotes the number of constraints. Numerical results about the Example 8 are given in the Table 2.




5. Concluding Remarks


This paper presents an effective algorithm for globally solving quadratic programs with quadratic constraints. In this algorithm, a new linearization method is constructed for deriving the linear programming relaxation problem of the QPWQC. The proposed algorithm converges to the global optimal solution of the initial problem of QPWQC, and numerical experimental results show the higher computational efficiency of the proposed algorithm.
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Table 1. Numerical comparisons for Examples 1–7.






Table 1. Numerical comparisons for Examples 1–7.





	
Example

	
Refs.

	
Optimal Value

	
Optimal Solution

	
Iteration

	
Time (s)






	
1

	
ours

	
1.177124990

	
(1.177124344, 2.177124344)

	
22

	
0.0091




	
[40]

	
1.177124327

	
(1.177124327, 2.177124353)

	
434

	
1.0000




	
2

	
ours

	
−0.999999202

	
(2.000000, 1.000000)

	
22

	
0.0085




	
[40]

	
−1.0

	
(2.000000, 1.000000)

	
24

	
0.0129




	
3

	
ours

	
6.777809491

	
(2.000000000, 1.666676181)

	
13

	
0.0038




	
[37]

	
6.777778340

	
(2.000000000, 1.666666667)

	
30

	
0.0068




	
[41]

	
6.777782016

	
(2.000000000, 1.666666667)

	
40

	
0.0320




	
[42]

	
6.7780

	
(2.00003, 1.66665)

	
44

	
0.1800




	
4

	
ours

	
0.500000600

	
(0.500000000, 0.500000000)

	
26

	
0.0061




	
[41]

	
0.500004627

	
(0.5 0.5)

	
34

	
0.0560




	
[42]

	
0.5

	
(0.5, 0.5)

	
91

	
0.8500




	
[43]

	
0.500000442

	
(0.500000000, 0.500000000)

	
37

	
0.0193




	
[44]

	
0.5

	
(0.5, 0.5)

	
96

	
1.0000




	
5

	
ours

	
118.381493268

	
(2.564162744, 3.119857633)

	
70

	
0.0435




	
[45]

	
118.383756475

	
(2.5557793695, 3.1301646393)

	
210

	
0.7800




	
6

	
ours

	
−1.162882315

	
(1.499977112, 1.5)

	
37

	
0.0412




	
[46]

	
−1.16288

	
(1.5, 1.5)

	
84

	
0.1257




	
7

	
ours

	
−11.363635682

	
(1.0,0.181818133, 0.983332175)

	
229

	
0.3919




	
[43]

	
−11.363636364

	
(1.0,0.181818470, 0.983332113)

	
420

	
0.2845




	
[26]

	
−10.35

	
(0.998712, 0.196213, 0.979216)

	
1648

	
0.3438
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Table 2. Computational results for Example 8.






Table 2. Computational results for Example 8.





	
(n,m)

	
Algorithm of [47]

	
This Paper




	
Computational Time (s)

	
Computational Time (s)






	
(4, 6)

	
2.37678

	
1.9894




	
(5, 11)

	
6.39897

	
4.9867




	
(14, 6)

	
9.22732

	
6.4567




	
(18, 7)

	
15.8410

	
11.6856




	
(20, 5)

	
11.9538

	
8.9802




	
(35, 10)

	
74.8853

	
56.7866




	
(37, 9)

	
77.1476

	
45.6324




	
(45, 8)

	
86.7174

	
65.6845




	
(46, 5)

	
44.2502

	
32.2150




	
(60, 11)

	
315.659

	
216.534
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