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Abstract: We investigated whether semi-rigid and non-rigid π-conjugated fluorophores in the
photoexcited (S1) and ground (S0) states exhibited mirror symmetry by circularly polarized
luminescence (CPL) and circular dichroism (CD) spectroscopy using a range of compounds dissolved
in achiral liquids. The fluorophores tested were six perylenes, six scintillators, 11 coumarins,
two pyrromethene difluoroborates (BODIPYs), rhodamine B (RhB), and 4-(dicyanomethylene)-
2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM). All the fluorophores showed negative-sign
CPL signals in the ultraviolet (UV)–visible region, suggesting energetically non-equivalent and
non-mirror image structures in the S1 state. The dissymmetry ratio of the CPL (glum) increased
discontinuously from approximately −0.2 × 10−3 to −2.0 × 10−3, as the viscosity of the liquids
increased. Among these liquids, C2-symmetrical stilbene 420 showed glum ≈ −0.5 × 10−3 at 408 nm
in H2O and D2O, while, in a viscous alkanediol, the signal was amplified to glum ≈ −2.0 × 10−3.
Moreover, BODIPYs, RhB, and DCM in the S0 states revealed weak (−)-sign CD signals with
dissymmetry ratios (gabs) ≈ −1.4 × 10−5 at λmax/λext. The origin of the (−)-sign CPL and the
(−)-sign CD signals may arise from an electroweak charge at the polyatomic level. Our CPL and CD
spectral analysis could be a possible answer to the molecular parity violation hypothesis based on a
weak neutral current of Z0 boson origin that could connect to the origin of biomolecular handedness.

Keywords: circularly polarized luminescence; circular dichroism; symmetry breaking; parity
violation; weak neutral current; tunneling; Z0 boson; homochirality; precision measurement

1. Introduction

Since the mid-19th century, one of the greatest puzzles for scientists has been why life on Earth
selected L-amino acids and D-sugars, because the corresponding L/D enantiomers were considered
to be energetically identical [1–13]. Regarding other life forms that existed in the past or may exist
now on exoplanets, solar planets, satellites, and comets, it is a matter of great curiosity as to whether
these stereogenic centers and/or stereogenic bonds would be identical to those upon which our life is
now based [14–16]. Living organisms can exist only in a far-from-equilibrium system allowing open
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flows of solar/thermal energy and low-entropy food [17]. This mystery is intimately connected to the
origins of life [2–14] and the accelerating expansion of the universe [18,19].

In 1831, Faraday discovered that an oscillating magnetic (M) field induces an electric (E)
current [20]. In 1861, Maxwell formulated this phenomenon as the theory of electromagnetism
(EM) [20]. In 1845, Faraday observed a magneto-optical phenomenon, now called the “Faraday effect”,
in which a light–matter (LM) interaction causes linearly polarized (LP) light to be rotated clockwise
(CW) and counterclockwise (CCW) (from the observer) by passing through achiral lead-containing
glass and certain liquids under the influence of a static magnetic field. In 1860, Pasteur conjectured
that molecular asymmetry is a consequence of dissymmetric forces of cosmological origin [1]. Possibly,
the “Faraday effect” prompted Pasteur to attempt asymmetric crystallization under the influence of a
magnetic field, but the quest failed [1]. In 1894, Curie considered that magnetic and electric fields need
to align co-linearly or anti-colinearly to produce optically active substances [21].

Left (l)- or right (r)-handed circularly polarized (CP) light is a physical force carrying angular
momentum (±h̄) that is a pure chiral electromagnetic (EM) force, causing mirror-symmetric LM
interactions [22]. Linearly polarized (LP) light is expressed as a superposition of r- and l-CP light.
LeBel in 1874 and van’t Hoff in 1894 postulated that CP light could catalyze asymmetric chemical
reactions to produce chiral substances [21,23]. In 1896, Cotton, who discovered the anomalous
phenomenon of circular dichroism (CD) and optical rotation dispersion (ORD) of potassium chromium
(III) tartrate [24], attempted to degrade an alkaline aqueous solution of racemic copper tartrate using
CP light but failed [21]. The first successful CP light-driven asymmetric synthesis, in the destruction
mode, was reported by Kuhn and coworkers in 1929 and 1930, in which r- and l-CP light at 280 nm
predominantly decomposed one enantiomer in racemic mixtures of 1-bromopropionic ethyl ester and
azidopropionic acid dimethylamide, yielding corresponding optically active substances with small %
enantioexcess (ee) values [21].

In recent years, modern photochemical reactions using unpolarized (UP) light under the influence
of an intense static magnetic field afforded preferential degradation of one of two enantiomers, in
which the product chirality is controllable according to the collinear or anti-collinear conditions [25].
Alternatively, CW and CCW swirling of molecular/supramolecular/polymer systems was found
to result in mirror symmetry breaking (MSB) [26–28]; the product chirality was determined by the
direction of the mechanical rotations, while no MSB happened under static conditions. The macroscopic
mechano-physical rotation is assumed to impart a preferred twist direction to rotatable C–C single
bonds. However, a recent experimental result suggested the occurrence of MSB even under static
conditions via a thermal gradient at specific temperatures [29].

In 1927, Wigner formulated the principle of parity (P) symmetry (corresponding to mirror
symmetry in chemistry), in which all interactions in nature are invariant with respect to space
inversion [30]. This idea led to the categorization of seven symmetries, i.e., charge (C), P, time (T), CP,
PT, CT, and CPT [31,32]. Until 1956, the seven symmetries were thought to be invariant and conserved.
However, these ideas had to be partly revised because of two groundbreaking experiments: P-violated
β±-decay in 1957–1959 [33–38], and CP-violated decay from a neutral K0 meson in 1964 [31,39] and
neutral B0 meson in 2001 [40,41]. Without doubt, P and CP symmetries were broken at subatomic
levels, although CPT symmetry was conserved. More recently, an astonishing experiment conducted
by the Tokai-to-Kamioka (T2K) particle physics team investigated the possibility of CP-symmetry
breaking between neutrino and antineutrino due to generation mixing between an electron-like lepton
(first generation) and a muon-like lepton (second generation) [42]. The idea of generation mixing is
like the mixing between S1 and triplet (T1) states of luminophores [43,44]: the S1 state involves a small
fraction of the T1 state and, conversely, the T1 state is contaminated by a small fraction of the S1 state,
thereby permitting the occurrence of intersystem crossing [45]. Additionally, the mixing in degenerate
coupling of three anthracene dimers in a double-well (DW) was detected as quantum coherence beats
from a radiation process in the S1 state at room temperature [46].
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Currently, physicists concur that all events in the cosmos and material world are governed by
the strong, EM, weak, and gravitational forces, known as the four fundamental physical forces [9,47].
Their relative strengths at 10−15 m are ~1:10−2:10−13:10−38, respectively [47]. However, among these
fundamental physical forces, the only cosmologically dissymmetric force, causing MSB, is the weak
force, which is responsible for nuclear fusion and fission reactions, while the other three forces conserve
symmetry. Hence, a circularly polarized light source is a P-conserved physical source [47]. In the 1980s,
physicists at Conseil Europeen pour la Recherche Nucleaire or European Organization for Nuclear
Research (CERN) succeeded in the detection of charged W± bosons (80.4 GeV) and the neutral Z0

boson (91.2 GeV) [48–51]. This experiment proved that the P-conserved EM and P-violated weak
forces are unified as an electroweak (EW) force with massive W± and Z0 bosons and the massless
photon (γ) according to the Weinberg–Salam theory [48]. W± and Z0 bosons gain their masses from
the Higgs boson (125 GeV) [48] while γ remains massless. Although W±, Z0, and γ are an equal
family at high energies, Z0/γ and W± bifurcate into neutral massive/massless and charged massive
bosons, respectively.

Following 50 years of theoretical and experimental development, P- and CP-symmetry breaking
in particle and atomic physics is now well established [51–60]. The EW force led to the further
groundbreaking predictions theoretically [61–88] and experimentally [89–97] that paired L/D
molecules are no longer enantiomers and should behave as diastereomers. To date, several theories
invoke the P-violating weak neutral current (PV-WNC) via handed electron–nucleus interactions
mediated by the Z0 boson in the destabilization of one enantiomer by adding an extra energy bias
(+EPV) and, conversely, stabilizing the other by subtraction (−EPV). This parity-odd energy bias
is called a “parity violating energy difference” (PVED), ∆EPV, called EPV). The molecular parity
violation (MPV) hypothesis definitively contradicts the accepted notion of enantiomers in the realm
of modern stereochemistry and physical chemistry [98–100]. Molecular physicists have long argued
whether P-symmetry of a molecular pair is exactly energetically equal and whether, if violated, EPV is
detectable [61–88].

However, the MPV theories teach us that EPV between mirror-image molecules is very small:
around 10−8–10−14 kcal·mol−1 or 10−9–10−15 % ee [61–88]. It is, thus, likely impossible that this radical
hypothesis could be experimentally proven by ordinary UV–visible, infrared, microwave, or NMR
spectrometers, or by enantioseparation column chromatography. If the potential barrier (Eb) between
racemic molecules in a symmetrical DW is sufficiently small, the tunneling time between the two local
minima is inversely proportional to the tunneling splitting energy, ∆E± (hereafter called E±), because
of even- and odd-parity eigenstates [66,72,101–103].

In a previous paper [104] aiming to verify the MPV hypothesis experimentally, we used circularly
polarized luminescence (CPL) and CD spectroscopy in an investigation of semi-rigid and non-rigid
π-conjugated luminophores in symmetrical DW/multiple-well (MW) potentials with a smaller Eb in
the lowest photoexcited (S1) and ground (So) states. As we noted therein, a CPL spectropolarimeter
may be regarded as a “low-energy spinning photon–molecule collider decelerator” to measure an
inelastic scattering mode known as the Stokes’ shift [104], allowing for the detection of the subtle
difference between l- and r-handed light speeds and the radiative lifetimes of enantiomers in the
S1 state. We chose a series of luminophoric racemates, including oligofluorenes, linear and cyclic
oligo-p-arylenes, binaphthyls, and fused aromatics carrying rotatable side groups. To control the Eb
value in DW/MW of the luminophores in the S1 and S0 states, we used achiral solvents, including
linear and branched alkanes, linear and branched alcohols, alkyl halides, linear cyclic ethers, and
water (light and heavy) [104]. The solvent viscosity (η, in cP) was tunable, ranging from 0.21 to 71.0 at
20–25 ◦C. We observed that all the non-rigid luminophores showed negative-sign CPL signals in the
UV–visible region, suggesting generation of non-mirror image structures in the S1 state. The Kuhn’s
anisotropic parameter of CPL vs. photoluminescence (PL) signals (glum) of the non-rigid luminophores
increased progressively but discontinuously in the range −0.2 × 10−3 to −2.0 × 10−3 as the solvent
viscosity increased.
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In this paper, to test the MPV hypothesis by further experiments, we investigated whether
semi-rigid and non-rigid laser dyes, molecular scintillators, and other fluorophores in achiral
liquids are mirror symmetrical by CPL and CD spectroscopy. Six perylenes, six scintillators, 11
coumarins, two 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene derivatives (BODIPYs), rhodamine B
(RhB), and 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM) were chosen.
Negative-sign CPL signals were exhibited for all the fluorophores in the UV–visible region, suggesting
the generation of non-mirror image structures in the S1 state. Noticeably, BODIPY, RhB, and DCM in
the S0 states revealed clear (−)-sign CD signals with CD dissymmetry ratios (gabs) of approximately
−1.4 × 10−5 at λext. The present comprehensive CPL/CD experimental datasets should support the
long-argued MPV hypothesis regardless of PV-WNC scenarios [1].

2. Results

To validate the MPV hypothesis by CPL and CD spectroscopy, the crucial factors to choose
are as follows: (i) semi-rigid and non-rigid racemic fluorophores carrying side chains allowing for
rotatable freedom and/or flip-flop motional ability, (ii) fluorophores constituting only lighter atoms
among the first three periods of the periodic table, and (iii) achiral liquids as solvents to continuously
control the Eb value. Kasha’s rule predicts that fluorescence occurs spontaneously from the lowest
S1 electronic-and-vibration coupling states (vibronic modes) associated with a significant structural
reorganization at the photoexcited states via non-radiative, ro-vibrational, and translational pathways
even if the fluorophores are excited at the S2 and higher Sn states [43,44].

Previously, Quack et al. [72,80,84], MacDermott and Hegstrom [83], and Bargueño [86] argued
three representative cases, (i) EPV >> E±, (ii) EPV << E±, and (iii) EPV ~ E±, for several rigid, semi-rigid,
and non-rigid cases of molecular chirality. Rigid enantiomers consisting of tetrahedral stereocenters
cannot interfere with the E± value due to the minuteness of the EPV value. Quack et al. listed all the
EPV and E± values of nearly 20 non-rigid rotamers [80,84]; the sign and magnitude of EPV in non-rigid
XY–YX rotamers (X = H, D, T, Cl, and Y = O, S, Se, Te) definitively depend on the dihedral angles.
The EPV and E± values depend on the nature of the rotamers; the former changes by five orders of
magnitude and the latter by considerably more (25 orders of magnitude). From this, an increase in the
rotational barrier height of the rotamers may be inferred. Amongst the rotamers, only T2S2 can satisfy
the EPV~E± criterion (ideally EPV = E±), although radioactive T is not feasible in ordinary chemistry
laboratories [82,84].

The PV-WNC model allows CPL-silent/CD-silent racemic molecular mixtures to become
CPL-active/CD-active in the S0 state. This model is also applicable to racemates in the S1 state.
The EPV value of luminophores can be amplified by heavier atoms (e.g., Si, Ge, Sn, Pb, Se, Te, Cl, Br, I)
in periods 3–7 of the Periodic Table obeying the VSO (∝ Z2) law [69,82,84]. However, luminophores
containing such heavier atoms predominantly emit phosphorescence with a very low quantum yield
(QY < 0.01). Herein, we focus on fluorophores without stereogenic centers, which are utilized as laser
dyes and scintillators and have a high QY (typically, 0.1–0.9). Although these dyes and scintillators
consist of only lighter C, N, O, F, and S atoms, their spin–orbit interactions (ζ) are non-zero and notably
large with ζ = 0.1, 0.2, 0.4, 0.7, and 1.0 kcal·mol−1, respectively [44]. If a huge number of fluorophoric
molecules (>1010–1016) in a cuvette are photoexcited simultaneously by focusing on them an incident
laser beam, the faint 10−9–10−15 % ee or PVED of 10−8–10−14 kcal·mol−1 is expected to be resonantly
boosted to a level that is detectable using an ordinary CPL spectrometer during spontaneous radiation
in a synchronized fashion [104].

When non-rigid enantiomers drop into one well in preference to the other in a dissymmetrical
DW at the S1/S0 states by ceasing to oscillate, we postulate that the diastereomeric characteristics may
accord with one of the three following scenarios [104]: (i) the fluorophore does not reveal any CPL or
CD signals; (ii) the fluorophore at the S1 state does not reveal CPL signals but, at the S0 state, shows
CD signals; and (iii) the fluorophore reveals CPL signals at the S1 state and CD signals at the S0 state.
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Detectable signals, as (+)- or (−)-sign CPL or CD, are considered to arise due to handed rotational
and/or flip-flop motions.

2.1. D2h/D2 Symmetrical Perylene and C2/C1 Symmetrical Derivatives

Firstly, to ascertain the achirality of unsubstituted rigid flat π-conjugated aromatics with D2h
symmetry such as the fluorophores naphthalene, anthracene, tetracene, and pyrene (see Chart 1), in
the S1 and S0 states, we measured their CPL and CD spectra in the low-viscosity solvent methanol ([η]
= 0.55 cP) and several other solvents, since it was pointed out that artefact-free precision measurements
are serious concerns if CPL and CD spectrometers are operated using a single 50-kHz photoelastic
modulator (PEM) [105,106]. We confirmed that no obvious CPL or CD signals in the corresponding PL
and UV–visible spectral regions are detected by our CPL-200 [JASCO (Hachioji, Tokyo, Japan) model
CPL-200]] and CD (JASCO model J-820) spectrometers [104].
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Perylene has long been believed to adopt a D2h symmetrical planar and achiral framework and
is postulated as one of the polyaromatic hydrocarbons (PAHs) existing in molecular clouds of the
interstellar universe [107]. In actuality, the interstellar PAHs emit infrared (IR) radiation in bright HII
regions, and planetary and reflection nebulae. The interstellar IR spectral radiation upon excitation
of vacuum–UV and UV–visible spectral lines (for example, Lyman and Balmer series) from ionized
atomic hydrogen dominate most radiation sources of the galaxy and extragalaxies [108,109]. Our
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fundamental question, however, pertains to whether perylene truly remains achiral in the S1 and
S0 states when all the hydrogen atoms attached to the framework are considered. To address this
apparently naive query, we measured the CPL and CD spectra of unsubstituted perylene and five
related derivatives carrying rotatable side groups, 5,8,11-tetra-tert-butylperylene (ttBuperylene),
N′-bis(2,6-diisopropylphenyl)-1,6,7,12-tetraphenoxy-3,4,9,10-perylenetetracarboxylic diimide
(iPrPhPhOperylene), N,N′-bis(2,5-di-tert-butylphenyl)-3,4,9,10-perylenedicarboximide (BTBPT-CDI),
16,17-bis(n-octyloxy)-anthrax[9,1,2-cde]-benzo[rst]-pentaphene-5,10-dione (Violanthrone 79), and
N,N′-dioctyl-3,4,9,10-perylenedicarboxylic diimide (PTCDI-C8) (Chart 1).

It is possible to regard unsubstituted perylene as a fused dimer of l- and r-twistable biphenyl
substructures; however, if there is a twist, then perylene should no longer exhibit D2h symmetry but
should exist as a mixture of D2-symmetrical l- and r-twists and/or a CS-symmetrical achiral folded
framework. The structural hypothesis at the S0 state is obvious for the five cases of (a) four bulky
substituents in the 1-, 6-, 7- and 12-positions of iPrPh-PhO-perylene, (b) two bulky alkoxy substituents
in the 16- and 17-positions in Violanthrone 79, (c) two bulky aromatic groups in the N,N′-positions
of BTBPTCDI, (d) four bulky alkyl substituents in the 2-, 5-, 8- and 11-positions of ttBuperylene,
and (e) two less-bulky alkyl groups in the N,N′-positions of PTCDI-C8. This query at the S1 state is
still unanswered.

Figure 1a–j display comparisons of the CPL/PL (photoluminescence) spectra of perylene and five
derivatives in alcoholic solvents and chloroform at room temperature.
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Figure 1. Comparison of circularly polarized luminescence/photoluminescence (CPL/PL) and circular
dichroism (CD)/ultraviolet (UV)–visible spectra of perylene and five derivatives in alcoholic solvents
at room temperature (path length: 10 mm, cylindrical cuvette, concentration 1–2 × 10−5 M. CPL/PL
spectra of perylene excited at 390 nm in (a) methanol, and (b) 1,4-butanediol. CPL/PL spectra
of ttBuperylene excited at 395 nm in (c) methanol, and (d) 1,4-butanediol. CPL/PL spectra of
iPrPh-PhO-perylene excited at 470 nm in (e) methanol, and (f) 1,4-butanediol. CPL/PL spectra of
BTBPTCDI excited at 525 nm in (g) methanol, and (h) 1,4-butanediol. (i) CPL/PL spectra of PTCDI-C8
excited at 490 nm in 1,4-butanediol. (j) CPL/PL spectra of Violanthrone 79 excited at 625 nm in
chloroform. (k) CD/UV–visible spectra of iPrPh-PhO-perylene in methanol. (l) The glum value of
perylene, ttBuperylene, iPrPh-PhO-perylene, and BTBPTCDI as a function of solvent viscosity.

From Figure 1a,b, unsubstituted perylene in low-viscosity methanol (η, 0.55 cP) reveals a weak
vibronic CPL signal at the corresponding PL emission at approximately 400–500 nm. The vibronic
CPL band becomes more obvious, and glum reaches −0.45 × 10−3 at the first vibronic band when
methanol is replaced with the more viscous 1,4-butanediol (η, 71.0 cP). The magnitude of the vibronic
CPL band at the 0–0 and 0–1 peaks increases as solvent viscosity increases (Figure 1l and Figure S1a–f,
Supplementary Materials). However, CD signals at the corresponding UV–visible bands cannot be
distinguished due to π–π* transitions (Figure S1u, Supplementary Materials). These results imply that
perylene in the S1 state temporarily adopts a chiral twisted geometry. However, the observed chirality
of perylene disappears in the S0 state. Possibly, perylene in the S0 state exists as a mixture of l- and
r-twisted geometries, thereby resulting in a CD-silent pair of opposite chirality twisted conformers.
Photoexcited perylene may be optically active.
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Research on biaryl-sensitized terbium (III) complexes showed that fluorescence lifetime
enhancement in these systems is due to solvent polarity and oxygen sensitivity rather than viscosity
effects [110]. Nevertheless, oxygen solubilization does not significantly influence the fluorescence
quantum yield of most organic luminophores including laser dyes, but does significantly suppress
phosphorescence. Solvent viscosity is, therefore, considered to be a critical factor in the fluorescence
lifetimes in our systems.

In ttBuperylene, when the four hydrogen atoms in the 2-, 5-, 8- and 11-positions of the perylene
framework are replaced by four bulky three-fold symmetric tert-butyl groups as rotors, (−)-sign CPL
signals for the 0–0 and 0–1 peaks at approximately 450–500 nm in methanol, 1,4-butanediol, and
other solvents are more clearly evident (Figure 1c–d and Figure S1g–k, Supplementary Materials).
Similarly, in iPrPh-PhO-perylene, when the four isopropyl groups in the 2-, 5-, 8-, and 11-positions of
the perylene framework are replaced by four two-fold symmetric sterically hindered phenoxy groups
as rotors, the (−)-sign CPL signals redshift to 530–570 nm and are without doubt more obvious in
methanol, 1,4-butanediol, and other solvents (Figure 1e–f and Figure S1p–t, Supplementary Materials).

Similarly, BTBPTCDI, with two sterically hindered phenyl groups in the N,N′-positions of the
perylene diimide framework unambiguously exhibits (−)-sign vibronic CPL signals at approximately
550–590 nm in methanol, 1,4-butanediol, and other solvents (Figure 1g–h and Figure S1l–n,
Supplementary Materials). PTCDI-C8, bearing two less bulky n-octyl groups in the N,N′-positions
of the perylene diimide framework, reveals obvious (−)-sign vibronic CPL signals at approximately
540–580 nm in 1,4-butanediol and n-dodecane (Figure 1i and Figure S1o, Supplementary Materials).
CPL signals for Violanthrone 79 in chloroform were not detected (Figure 1j). A faint (−)-sign CD signal
for iPrPh-PhO-perylene in methanol may be seen on the order of gabs ≈ 10−6, but it is not obvious
(Figure 1k). No detectable CD signals for perylene and ttBuperylene were observed (Figure S1f,g,
Supplementary Materials).

Figure 1l summarizes the glum values of perylene, ttBuperylene, iPrPh-PhO-perylene, and
BTBPTCDI as a function of solvent viscosity for the solvents methanol, ethanol (1.1 cP), n-propanol (2.0
cP), n-undecanol (17.0 cP), 1,3-propandiol (33.0 cP), and 1,4-butanediol (71.0 cP). We can thus conclude
that the perylene and perylene diimide frameworks in the S1 state adopt a twisted geometry due to
steric repulsion in the 2-, 5-, 8-, and 11-positions of the perylene framework. CPL signals of (−)-sign
are apparent, and the glum value reaches a maximum of −2.0 × 10−3. Perylene, thus, does not adopt
an achiral framework in the S1 state, and the same is possibly true for the S0 state.

To see the effect of twisted perylene in snapshot mode, we simulated the CD/UV–visible spectra
with 0.20 eV full width at half maximum (fwhm) and electron density mapping at (c) the first first
lowest unoccupied molecular orbital (1st LUMO) and (d) the first highest occupied molecular orbital
(1st HOMO) for a hypothetical model of perylene twisted by 30◦ (Figure 2a–d). The twisted perylene
clearly shows negative CD spectra at 443 nm and bisignate CD bands at approximately 300 nm. The
value of gabs at 443 nm is found to be 4 × 10−4. A closed-chiral-loop current (reddish zone) (Figure 2c)
is obvious for the LUMO, while the same is not true for the HOMO (Figure 2d). The closed-loop
current may interfere with the one-handed chiral WNC postulated.

2.2. Rigid Luminophores Bearing Multiple Three-Fold Symmetrical Alkyl Substituents

C2v-symmetrical pyrromethene-difluoroborate (BODIPY) and its derivatives are established as
excellent emitters with a high QY and a very small Stokes’ shift (350–500 cm−1) [111,112]. Incorporation
of alkyl groups into BODIPYs improves their solubility in common organic solvents. It is conceivable
that certain BODIPYs carrying three-fold symmetrical alkyl groups may reveal optical activity due
to handed gear motions between these alkyl groups. We, therefore, designed several C2v BODIPYs
as candidates to address the question of whether the handed gear motions occur with exactly equal
energies and opposite senses [113]. If the gear-like motions in CW and CCW directions at the S0 and
S1 states are equally operational, CD and CPL signals will not be detectable due to mutual cancellation
of the opposite chiroptical signed bands, but they will have the same absolute magnitudes. However,
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if the gear-like motions in the S0 and/or S1 states are occurring unidirectionally due to unequal
intramolecular gear energies, this should be detectable as CD and CPL signals. Unidirectional gear-like
motions drive unidirectional molecular motors.
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Figure 2. (a) Hypothetical model of perylene twisted by 30◦; (b) simulated CD/UV–visible spectra
with 0.2 eV full width at half maximum (fwhm) and electron density mapping at (c) first lowest
unoccupied molecular orbital (1st LUMO) and (d) first highest occupied molecular orbital (1st HOMO).
For this time dependent density functional theory (TD-DFT) and Becke, three-parameter, Lee-Yang-Parr
exchange-correlation functional (B3LYP) with 6-31G(d) basis set, Gaussian09 rev D.01 (GaussView5
package)-calculated structures, a closed-chiral-loop current (red) is obvious for the LUMO, although
this is not the case for the HOMO.

Firstly, we tested the gear-motion behaviors of pyrromethene 597 (BODIPY 597) and pyrromethene
546 (BODIPY 546) (Chart 2), which both have five three-fold symmetry methyl groups in the 1-, 3-,
5-, 7- and 8-positions of the BODIPY frameworks. Pyrromethene 597 has two additional three-fold
symmetrical tert-butyl groups in the 4,4′-positions. The tert-butyl group itself consists of three methyl
groups with three-fold symmetry. Both methyl and tert-butyl groups are assumed to act as gears.
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Chart 2. Chemical structures of [[(4-tert-butyl-3,5-dimethyl-1H-pyrrol-2-yl)(4-tert-butyl-3,5-dimethyl
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Pyrromethene 597 (Chart 2) in methanol showed weakly vibronic CPL bands at 550–600 nm;
however, in 1,4-butanediol, these were amplified significantly to glum = −1.0 × 10−3 at 562 nm
(Figure 3a,d). Similarly, pyrromethene 546 (Chart 2) in methanol showed weakly vibronic CPL bands;
however, in 1,4-butanediol, these bands were magnified to glum = −0.4 × 10−3 at 515 nm (Figure 3g,h).
Pyrromethene 597 in n-undecanol, ethylene glycol, and other solvents showed similar vibronic CPL
bands at 550–600 nm (Figure 3b,c). These (−)-sign CPL characteristics of pyrromethenes 597 and 546
depend on the nature of solvents (Figure S2a–h, Supplementary Materials).
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Figure 3. Comparison of CPL/PL and CD/UV–visible spectra of two pyrromethenes bearing rotatable
alkyl groups (pyrromethene 597 and pyrromethene 546) in solution at room temperature (path length:
10 mm, cylindrical cuvette, concentration 1–3 × 10−5 M, and path length 0.1 cm and 1–3 × 10−4 M.
CPL/PL spectra of pyrromethene 597 excited at 490 nm in (a) methanol, (b) n-undecanol, (c) ethylene
glycol, and (d) 1,4-butanediol. CD/UV–visible spectra of pyrromethene 597 in (e) methanol, and
(f) 1,4-butanediol. CPL/PL spectra of pyrromethene 546 excited at 450 nm in (g) methanol, and
(h) 1,4-butanediol. CD/UV–visible spectra of pyrromethene 546 in (i) methanol, and (j) 1,4-butanediol.
(k) glum value of pyrromethene 597 and pyrromethene 546 as a function of solvent viscosity.
(l) Simulated CD/UV–visible spectra (fwhm = 0.20 eV) of hypothetical model of pyrromethene 597
twisted weakly by 2◦, electron density mapping at (m) first LUMO and (n) first HOMO, obtained with
TD-DFT, B3LYP functional with 6-31+G(d,p) basis set using Gaussian09 rev D.01 and GaussView5
package. A semi-closed-chiral-loop current (green) is seen for the HOMO, although this is not obvious
for the LUMO.

More surprisingly, pyrromethene 597 in methanol revealed a clear (−)-sign CD band (∆ε =
0.8 M−1·cm−1 at 530 nm, gabs = −1.5 × 10−5), whilst the λmax of the visible band was 525 nm
(Figure 3e). The Cotton CD band in viscous 1,4-butanediol showed a more intense (−)-sign CD band
(∆ε = 1.5 M−1·cm−1, gabs = −3.8 × 10−5 at 527 nm), with λmax of the visible band at 525 nm (Figure 3f).
Similarly, pyrromethene 546 in methanol revealed a clear (−)-sign CD band (∆ε = 1.0 M−1·cm−1

at 495 nm, gabs = −1.5 × 10−5) with λmax is 492 nm (Figure 3i). The Cotton CD band in viscous
1,4-butanediol revealed a (−)-sign CD band (∆ε = 1.0 M−1·cm−1, gabs = −1.4 × 10−5 at 496 nm)
(Figure 3j). These (−)-CD characteristics are unchanged and independent of the solvent (Figure S3a–h,
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Supplementary Materials). These (−)-sign gabs values for the S0 state are smaller by two orders of
magnitude compared to those of the corresponding (−)-sign glum values for the S1 state.

Pyrromethenes 597 and 546 (Chart 2) preferentially exhibit (−)-sign CD and CPL signals,
indicating that they preferentially absorb and emit l-CP light over r-CP light. These unexpected
chiroptical results imply the occurrence of handed gear-like motions between multiple alkyl rotors
in the S0 and S1 states, causing a subtle distortion of the framework of the BODIPY ring. Gaussian09
simulations usng time dependent density functional theory (TD-DFT) and Becke, three-parameter,
Lee-Yang-Parr exchange-correlation functional (B3LYP) with 6-31+G(d,p) basis set indicate that one of
the subtly distorted pyrromethenes 597 has a negative Cotton CD band at 450 nm (Figure 3l). Its LUMO
and HOMO orbitals correspond to symmetrical and anti-symmetrical electron density with respect to
the C2 molecular axis (Figure 3m,n). Green- and red-colored electron density maps merely indicate the
phase of the electron wavefunctions. If one assumes that a handed closed loop WNC flows only in
regions of the same phase (green regions) indicated by yellow arrows, pyrromethene 597 becomes a
handed chiral π-electron system at the C2 axis in the S0 state. Although a handed current flow by the
yellow arrows is not obvious for the S1 state, the framework of photoexcited pyrromethene 597 may be
more twisted and, thus, associated with more rapid gear motions of the seven three-fold symmetrical
alkyl (methyl and tert-butyl) rotors, suggesting a potential application of UP-driven one-way alkyl
rotors without chiral chemical entities detectable by CPL and CD spectroscopy.

2.3. Organic Scintillators

Spontaneous radiation produced by free electrons at the valence bands of molecules is responsible
for the production of scintillation light in π-conjugated organic molecules in crystalline forms and
molecularly disperse solutions [114]. Scintillation light is fluorescence from the S1 state. This scenario
should obey the Jablonski diagram [43,44]. Highly emissive fluorophores with a high QY are candidates
for molecular scintillators.

In fact, the Kamioka Liquid Scintillator Antineutrino Detector (KamLAND) used a molecular
scintillator to detect anti-neutrinos generated geologically from the β−-decay of 238U and 232Th in
the Earth’s crust, but it cannot detect anti-neutrinos from 40K due to the low energy [115,116]. Three
radioactive nuclei (40K, 238U, and 232Th) are responsible for geothermal power. These radioactive
atoms are considered probes of supernova explosions that followed the nucleosynthesis of heavy
elements and the birth of the Earth [117].

In KamLAND, 1000 tons of liquid scintillator was composed of n-dodecane (80 vol.%),
1,2,4-trimethylbenzene (20 vol.%), and 150 kg of diphenyloxazole (PPO, Chart 3) [115,116], although it
is unclear to us why n-dodecane was considered the best solvent for the liquid scintillator. Anyway,
fortuitous or otherwise, based on the glum–η relationship shown above and discussed in our previous
paper [104], we assume that a viscous fluid medium such as n-dodecane is crucial to magnify the
efficiency of scintillation light.

Non-rigid scintillators, 1,4-bis(2-methylstyryl)benzene (bis-MSB), 1,4-bis(5-phenyloxazol-2-yl)-
benzene (POPOP), 1,4-bis(4-methyl-5-phenyloxazol-2-yl)benzene (DMPOPOP), 2,5-bis(5-t-butyl-2-
benzoxalyl)thiophene (BBOT), 2,5-bis(4-biphenylyl)thiophene (BBT), are soluble in organic solvents,
and 2,2′′-([1,1′-biphenyl]-4.4′-diyldi-2,1-ethenediyl)bis-benzenesulfonic acid disodium salt (stilbene
420) is soluble in water and alcoholic solvents [118–121]. These molecular scintillators can adopt a
polar C2-symmetrical conformation in the S1 and S0 states due to their rotatable main axes. However,
due to multiple C–C bonds with low rotational barrier (~1.5 kcal·mol−1) between the aromatic and
trans-vinylene moieties, and due to the proximity effect of these C–H/H–C repulsions [122], those
molecules cannot adopt planar structures. Thus, these molecules should exist as a mixture of many
rotamers with an equal population of P- and M-twisted molecules in solution at ambient temperature.



Symmetry 2019, 11, 363 13 of 41

Symmetry 2019, 11, 363 12 of 41 

 

merely indicate the phase of the electron wavefunctions. If one assumes that a handed closed loop 
WNC flows only in regions of the same phase (green regions) indicated by yellow arrows, 
pyrromethene 597 becomes a handed chiral π-electron system at the C2 axis in the S0 state. Although 
a handed current flow by the yellow arrows is not obvious for the S1 state, the framework of 
photoexcited pyrromethene 597 may be more twisted and, thus, associated with more rapid gear 
motions of the seven three-fold symmetrical alkyl (methyl and tert-butyl) rotors, suggesting a 
potential application of UP-driven one-way alkyl rotors without chiral chemical entities detectable 
by CPL and CD spectroscopy. 

2.3. Organic Scintillators  

Spontaneous radiation produced by free electrons at the valence bands of molecules is 
responsible for the production of scintillation light in π-conjugated organic molecules in crystalline 
forms and molecularly disperse solutions [114]. Scintillation light is fluorescence from the S1 state. 
This scenario should obey the Jablonski diagram [43,44]. Highly emissive fluorophores with a high 
QY are candidates for molecular scintillators. 

In fact, the Kamioka Liquid Scintillator Antineutrino Detector (KamLAND) used a molecular 
scintillator to detect anti-neutrinos generated geologically from the −-decay of 238U and 232Th in the 
Earth’s crust, but it cannot detect anti-neutrinos from 40K due to the low energy [115,116]. Three 
radioactive nuclei (40K, 238U, and 232Th) are responsible for geothermal power. These radioactive 
atoms are considered probes of supernova explosions that followed the nucleosynthesis of heavy 
elements and the birth of the Earth [117]. 

In KamLAND, 1000 tons of liquid scintillator was composed of n-dodecane (80 vol.%), 
1,2,4-trimethylbenzene (20 vol.%), and 150 kg of diphenyloxazole (PPO, Chart 3) [115,116], although 
it is unclear to us why n-dodecane was considered the best solvent for the liquid scintillator. 
Anyway, fortuitous or otherwise, based on the glum– relationship shown above and discussed in our 
previous paper [104], we assume that a viscous fluid medium such as n-dodecane is crucial to 
magnify the efficiency of scintillation light. 

 

 

Chart 3. Chemical structures of non-rigid scintillators, 
2,2"-([1,1'-biphenyl]-4.4'-diyldi-2,1-ethenediyl)bis-benzenesulfonic acid disodium salt (stilbene 420), 
1,4-bis(2-methylstyryl)benzene (bis-MSB), 1,4-bis(5-phenyloxazol-2-yl)benzene (POPOP), 1,4- 
bis(4-methyl-5-phenyloxazol-2-yl)benzene (DMPOPOP), 2,5-bis(5-t-butyl-2-benzoxalyl)thiophene 
(BBOT), 2,5-bis(4-biphenylyl)thiophene (BBT), diphenyloxazole (PPO), and 1,2,4-trimethylbenzene 
(pseudocumene). 

Chart 3. Chemical structures of non-rigid scintillators, 2,2′′-([1,1′-biphenyl]-4.4′-diyldi-2,1-ethenediyl)
bis-benzenesulfonic acid disodium salt (stilbene 420), 1,4-bis(2-methylstyryl)benzene (bis-MSB),
1,4-bis(5-phenyloxazol-2-yl)benzene (POPOP), 1,4-bis(4-methyl-5-phenyloxazol-2-yl)benzene
(DMPOPOP), 2,5-bis(5-t-butyl-2-benzoxalyl)thiophene (BBOT), 2,5-bis(4-biphenylyl)thiophene (BBT),
diphenyloxazole (PPO), and 1,2,4-trimethylbenzene (pseudocumene).

Stilbene 420, as a trans-p-biphenylenevinylene-type oligomer, in H2O (0.96 cP) and D2O (0.96 cP)
emitted (−)-sign CPL with glum = −0.5 × 10−3 at 430 nm (Figure 4a,b), possibly at the second vibronic
0–1’ band, indicating no marked isotope effect between H and D. The glum value increased to −2.0 ×
10−3 at 410 nm at the first vibronic 0–0’ band when 1,4-butanediol was employed as a solvent. The
glum–η relationships showed several transitions when η = 0.96–2.5 cP, 2.5-6 cP, and >22 cP (Figure 4e,f).
This feature arises from 512◦ of rotational freedom of stilbene 420 with the five rotatable C–C bonds.
From the (−)-sign in a vacuum in glum value extrapolated at η = 0.0 cP and the (−)-sign glum value in
water and heavy water, water-soluble non-rigid PAHs in the interstellar universe could spontaneously
favor a handed chiral and/or helical geometry that is radiating (−)-sign CP light.

CPL/PL spectra and glum–η characteristics of bis-MSB as a trans-p-phenylenevinylene-type
oligomer are similar to those of stilbene 420 (Figure 5a–f). Moreover, bis-MSB in low-viscosity solvents
(n-pentane, diethyl ether, and methanol) revealed several weak but clearly detectable vibronic CPL
signals with (−)-sign at 400–450 nm (Figure 5a,c and Figure S5a–p, Supplementary Materials). The CPL
signals were further amplified to −0.72 × 10−3 and −0.90 × 10−3 at 400 nm when the more viscous
n-undecanol and squalane were employed, respectively (Figure 5b,d). The glum value progressively and
discontinuously increased when carbon numbers increased in two series of n-alkanes and n-alkanols
including ethanol (Figure 5e). The glum–η characteristics showed step-like transitions with at least
three plateaus between η = 5–10 cP, 10–17 cP, and >30 cP, while the glum value changed linearly in
response to the η value when η = 0.22–5 cP (Figure 5f). The glum value extrapolated to η = 0 cP is −0.5
× 10−3.
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Figure 4. CPL/PL spectra of stilbene 420 (water-soluble trans-p-biphenylenevinylene-type 
scintillator) in (a) H2O, (b) D2O, (c) methanol, and (d) 1,4-butanediol (path length: 10 mm, cylindrical 
cuvette, concentration 2.5–10 × 10−5 M); (e) glum value of stilbene 420 as a function of solvent viscosity 
( = 0–71 cP); (f) glum value of stilbene 420 as a function of solvent viscosity ( = 0–10 cP). 

Figure 4. CPL/PL spectra of stilbene 420 (water-soluble trans-p-biphenylenevinylene-type scintillator)
in (a) H2O, (b) D2O, (c) methanol, and (d) 1,4-butanediol (path length: 10 mm, cylindrical cuvette,
concentration 2.5–10 × 10−5 M); (e) glum value of stilbene 420 as a function of solvent viscosity (η =
0–71 cP); (f) glum value of stilbene 420 as a function of solvent viscosity (η = 0–10 cP).

The scintillators bis-MSB, POPOP, DMPOP, BBOT, BBT, and stilbene 420 have rotational freedom
along five, four, four, four, two, and five C–C bonds, respectively, producing huge numbers of
rotamers. In actuality, these π-conjugated organic scintillators do not reveal noticeable CD bands at the
corresponding π–π* transitions in UV–visible regions exemplified in Figures 6e,f and 7c, and Figures
S4k,l and S5q,r (Supplementary Materials). However, without exception, bis-MSB, POPOP, DMPOP,
BBOT, BBT, and stilbene 420 revealed intense (−)-sign CPL signals at the corresponding PL bands in
various solvents (Figures 4–7 and Figures S4a–p and S5a–p, Supplementary Materials).

The (−)-sign CPL signals and PL spectra of POPOP in chloroform and n-hexadecane are very
similar to those of DMPOPOP in chloroform and n-hexadecane (Figure 6a–d). The only difference is
the luminescence wavelength; the λlum values of the CPL/PL bands at the 0-0’ band are 399 nm for
POPOP and 407 nm for DMPOPOP (Figure 6a,b). Similarly, thiophene ring-containing scintillators
BBOT and BBT in n-hexadecane showed (−)-sign CPL signals with glum = −0.6 × 10−3 at 428 nm
(0–1’ band) and −1.0 × 10−3 at 409 nm (0–0’ band) (Figure 7a,b,d). No detectable CD signal of BBT in
chloroform was confirmed (Figure 7c). This difference in glum value between BBOT and BBT should
arise from the number of rotatable C–C bonds between the aromatic rings; BBOT has two, while BBT
has four.
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Figure 5. CPL/PL spectra of bis-MSB (trans-p-phenylenevinylene-type scintillator) in (a) methanol, 
(b) n-undecanol, (c) n-pentane, and (d) squalane (path length: 10 mm, cylindrical cuvette, 
concentration 2.5–10 × 10−5 M); (e) glum value of bis-MSB as a function of carbon number in two series 
of n-alkanes and n-alkanols (including methanol and ethanol); (f) glum value of bis-MSB as a function 
of solvent viscosity ( = 0–30 cP). 

  

Figure 5. CPL/PL spectra of bis-MSB (trans-p-phenylenevinylene-type scintillator) in (a) methanol,
(b) n-undecanol, (c) n-pentane, and (d) squalane (path length: 10 mm, cylindrical cuvette, concentration
2.5–10 × 10−5 M); (e) glum value of bis-MSB as a function of carbon number in two series of n-alkanes
and n-alkanols (including methanol and ethanol); (f) glum value of bis-MSB as a function of solvent
viscosity (η = 0–30 cP).
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Figure 6. CPL/PL spectra of POPOP, a 1,3-oxazole ring-containing scintillator, in (a) chloroform and 
(c) n-hexadecane, and CD/UV–visible spectra in (e) methanol (path length: 10 mm, cylindrical 
cuvette, concentration 2.5–10 × 10−5 M). For comparison, CPL/PL spectra of DMPOPOP in (b) 
chloroform, and (d) n-dodecane, and normalized CD/UV–visible spectra in (f) methanol (path length: 
10 mm, cylindrical cuvette, concentration 2.5–10 × 10−5 M). 

  

  
  

Figure 7. CPL/PL spectra of BBOT, a thiophene ring-containing scintillator, in (a) n-hexadecane and 
CD/UV–visible spectra in (c) 1,4-butanediol at room temperature. CPL/PL spectra of BBT in (b) 
chloroform and (d) n-hexadecane. Path length: 10 mm, cylindrical cuvette, concentration 2.5–10 × 10−5 
M. 

Figure 6. CPL/PL spectra of POPOP, a 1,3-oxazole ring-containing scintillator, in (a) chloroform and
(c) n-hexadecane, and CD/UV–visible spectra in (e) methanol (path length: 10 mm, cylindrical cuvette,
concentration 2.5–10 × 10−5 M). For comparison, CPL/PL spectra of DMPOPOP in (b) chloroform,
and (d) n-dodecane, and normalized CD/UV–visible spectra in (f) methanol (path length: 10 mm,
cylindrical cuvette, concentration 2.5–10 × 10−5 M).
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Figure 7. CPL/PL spectra of BBOT, a thiophene ring-containing scintillator, in (a) n-hexadecane and 
CD/UV–visible spectra in (c) 1,4-butanediol at room temperature. CPL/PL spectra of BBT in (b) 
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Figure 7. CPL/PL spectra of BBOT, a thiophene ring-containing scintillator, in (a) n-hexadecane
and CD/UV–visible spectra in (c) 1,4-butanediol at room temperature. CPL/PL spectra of BBT in
(b) chloroform and (d) n-hexadecane. Path length: 10 mm, cylindrical cuvette, concentration 2.5–10 ×
10−5 M.
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2.4. Luminophores Carrying Dialkylamino Group with Flip-Flop and/or Rotatable Motions

MacDermott and Hegstrom proposed that ammonia-type molecules (R1R2R3N with a
lone pair) able to undergo flip-flop motion are well suited to test the MPV hypothesis [83]
experimentally. Coumarin derivatives, DCM, and RhB [118–121], which are C1-symmetrical
π-conjugated luminophores, are candidates because the frameworks of coumarin, rhodamine,
4-(dicyanomethylene)-6-styryl-4H-pyran possess dialkylamino groups, which are susceptible to
flip-flop and/or rotatable motions in the S1 and S0 states. The temporal generation at the S1 state
and/or persistent generation at the S0 state are detectable as CPL and/or CD signals if certain chiral
geometries are indeed generated. Most researchers do not think that coumarins, DCM, and rhodamine
B are optically inactive because of the lack of chiral stereocenters. Chemical structures of 11 coumarin
derivatives, DCM, and rhodamine B, which all carry dialkylamino group(s) as side chains, are shown
in Chart 4.

1 
 

 

Chart 4. Chemical structures of coumarin 6, coumarin 545, coumarin 466, coumarin 6H,
coumarin 481/35, coumarin 153, coumarin 1/460, coumarin 102, coumarin 7, coumarin
30, 3,3′-carbonyl-bis(7-diethylaminocoumarin) (bis-coumarin), 4-(dicyanomethylene)-2-methyl-6-(4-
dimethylaminostyryl)-4H-pyran (DCM), and rhodamine B (RhB).

Firstly, we measured the CPL/PL spectra of coumarin 6 and coumarin 545 in several solvents
(Figure 8a–f and Figure S6a–j, Supplementary Materials), and, for comparison, we measured the
CD/UV–visible spectra in methanol (Figure 8g,h). Coumarin 6 and coumarin 545 showed very
weak green-colored (−)-sign CPL signals on the order of glum = −0.1 × 10−3 at 505 nm and 520 nm,
respectively (Figure 8a,b). When 1,4-butanediol was employed as the solvent, the weak (−)-sign CPL
signals increased substantially to glum = −1.2 × 10−3 at 509 nm and glum = −1.3 × 10−3 at 526 nm,
respectively (Figure 8e,f). The magnitude of the (−)-sign CPL signals in n-hexadecane (η = 3.47 cP)
was between those in methanol and in 1,4-butanediol (Figure 8c,d). Coumarin 6 and coumarin 545
also showed very weak (−)-sign CD signals on the order of gabs = −1.3 × 10−5 at 464 nm and gabs =
−1.3 × 10−5 at 479 nm, respectively.



Symmetry 2019, 11, 363 18 of 41

Symmetry 2019, 11, 363 17 of 41 

 

Chart 4. Chemical structures of coumarin 6, coumarin 545, coumarin 466, coumarin 6H, coumarin 
481/35, coumarin 153, coumarin 1/460, coumarin 102, coumarin 7, coumarin 30, 
3,3'-carbonyl-bis(7-diethylaminocoumarin) (bis-coumarin), 4-(dicyanomethylene)-2-methyl-6-(4- 
dimethylaminostyryl)-4H-pyran (DCM), and rhodamine B (RhB). 

Firstly, we measured the CPL/PL spectra of coumarin 6 and coumarin 545 in several solvents 
(Figure 8a–f and Figures S6a–j, Supplementary Materials), and, for comparison, we measured the 
CD/UV–visible spectra in methanol (Figure 8g,h). Coumarin 6 and coumarin 545 showed very weak 
green-colored (−)-sign CPL signals on the order of glum = −0.1 × 10−3 at 505 nm and 520 nm, 
respectively (Figure 8a,b). When 1,4-butanediol was employed as the solvent, the weak (−)-sign CPL 
signals increased substantially to glum = −1.2 × 10−3 at 509 nm and glum = −1.3 × 10−3 at 526 nm, 
respectively (Figure 8e,f). The magnitude of the (−)-sign CPL signals in n-hexadecane ( = 3.47 cP) 
was between those in methanol and in 1,4-butanediol (Figure 8c,d). Coumarin 6 and coumarin 545 
also showed very weak (−)-sign CD signals on the order of gabs = −1.3 × 10−5 at 464 nm and gabs = −1.3 × 
10−5 at 479 nm, respectively. 

 

  
Symmetry 2019, 11, 363 18 of 41 
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n-hexadecane, and (f) 1,4-butanediol at room temperature (path length: 10 mm, cylindrical cuvette, 
concentration 2.5–10 × 10−5 M. (g) CD/UV–visible spectra of coumarin 6 in methanol. (h) CD/UV–
visible spectra of coumarin 545 in methanol. 

These unexpected CD signals can be seen in ethanol and 1,4-butanediol. The major difference 
between coumarin 6 and coumarin 545 is that the former allows for free-rotation and flip-flop 
motions of the dialkylamino group, while, in the latter, free rotation is restricted, although the 
flip-flop motion is still permitted. We assume that certain flip-flop twists of the dialkylamino group 
commonly induce optically active conformations at the S1/S0 states of coumarin 6 and coumarin 545, 
giving rise to an optically active intramolecular charge transfer (ICT) state arising due to electron 
donation by the dialkylamino group to the electron-accepting benzothiazole ring. 

Next, to clarify the effect of the benzothiazole ring, we measured the CPL/PL spectra of 
coumarin 466 and coumarin 6H in several solvents (Figure 9a–d and Figure S7a–f, Supplementary 
Materials), and, for comparison, the CD/UV–visible spectra in methanol (Figure 9e,f). Similarly, 
coumarin 466 and coumarin 6H showed very weak (−)-sign CPL signals on the order of glum = −0.1 × 
10−3 at 457 nm and 481 nm (Figure 9a,b). In 1,4-butanediol, the (−)-sign CPL signals were enhanced to 
glum = −0.67 × 10−3 at 459 nm and glum = −0.53 × 10−3 at 482 nm, respectively (Figure 9c,d). These (−)- sign 
CPL magnitudes are half those of coumarin 6 and coumarin 545. Introduction of the benzothiazole 
ring appears, thus, to result in CPL signal amplification by a factor of two. Coumarin 466 and 
coumarin 6H also showed very weak bisignate-like CD signals although they are not obvious 

Figure 8. Comparison of CPL/PL and UV–visible spectra of coumarin 6 and coumarin 545. CPL/PL
spectra of coumarin 6 excited at 420 nm in (a) methanol, (c) n-hexadecane, and (e) 1,4-butanediol at room
temperature. CPL/PL spectra of coumarin 545 excited at 420 nm in (b) methanol, (d) n-hexadecane,
and (f) 1,4-butanediol at room temperature (path length: 10 mm, cylindrical cuvette, concentration
2.5–10 × 10−5 M. (g) CD/UV–visible spectra of coumarin 6 in methanol. (h) CD/UV–visible spectra of
coumarin 545 in methanol.

These unexpected CD signals can be seen in ethanol and 1,4-butanediol. The major difference
between coumarin 6 and coumarin 545 is that the former allows for free-rotation and flip-flop motions
of the dialkylamino group, while, in the latter, free rotation is restricted, although the flip-flop motion
is still permitted. We assume that certain flip-flop twists of the dialkylamino group commonly induce
optically active conformations at the S1/S0 states of coumarin 6 and coumarin 545, giving rise to
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an optically active intramolecular charge transfer (ICT) state arising due to electron donation by the
dialkylamino group to the electron-accepting benzothiazole ring.

Next, to clarify the effect of the benzothiazole ring, we measured the CPL/PL spectra of coumarin
466 and coumarin 6H in several solvents (Figure 9a–d and Figure S7a–f, Supplementary Materials),
and, for comparison, the CD/UV–visible spectra in methanol (Figure 9e,f). Similarly, coumarin 466 and
coumarin 6H showed very weak (−)-sign CPL signals on the order of glum = −0.1 × 10−3 at 457 nm
and 481 nm (Figure 9a,b). In 1,4-butanediol, the (−)-sign CPL signals were enhanced to glum = −0.67
× 10−3 at 459 nm and glum = −0.53 × 10−3 at 482 nm, respectively (Figure 9c,d). These (−)- sign CPL
magnitudes are half those of coumarin 6 and coumarin 545. Introduction of the benzothiazole ring
appears, thus, to result in CPL signal amplification by a factor of two. Coumarin 466 and coumarin 6H
also showed very weak bisignate-like CD signals although they are not obvious (Figure 9e,f). Similarly,
the twisted flip-flop motion of the dialkylamino group may be crucial in inducing optically active
conformations at the S1 states of coumarin 466 and coumarin 6H.
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To clarify the effect of the three-fold symmetrical but electron-accepting CF3 group, we 
measured the CPL/PL spectra of coumarin 481/35 and coumarin 153 in several solvents (Figure 10a–f 
and Figures S8a–j, Supplementary Materials), and, for comparison, the CD/UV–visible spectra in 
methanol (Figure 10g,h). Coumarin 481/35 and coumarin 153 in methanol showed weak 
green-colored (−)-CPL signals at 507 nm and 527 nm, respectively (Figure 10a,b). Interestingly, these 
coumarins in squalane emitted blue-colored (−)-CPL signals with increased glum = −0.28 × 10−3 at 437 
nm and glum = −0.39 × 10−3 at 455 nm, respectively (Figure 10c,d). In 1,4-butanediol, these (−)-CPL 
signals became enhanced to glum = −1.17 × 10−3 at 509 nm and glum = −0.59 × 10−3 at 527 nm, respectively 
(Figure 10e,f). 

Figure 9. Comparison of CPL/PL spectra of coumarin 466 and coumarin 6H at room temperature
(path length: 10 mm, cylindrical cuvette, concentration 2.5–10 × 10−5 M. CPL/PL spectra of coumarin
466 excited at 370 nm in (a) methanol, and (c) 1,4-butanediol at room temperature. CPL/PL spectra
of coumarin 6H excited at 400 nm in (b) methanol, and (d) n-hexadecane. CD/UV–visible spectra of
(e) coumarin 466 and (f) coumarin 6H in methanol.

To clarify the effect of the three-fold symmetrical but electron-accepting CF3 group, we measured
the CPL/PL spectra of coumarin 481/35 and coumarin 153 in several solvents (Figure 10a–f and
Figure S8a–j, Supplementary Materials), and, for comparison, the CD/UV–visible spectra in methanol
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(Figure 10g,h). Coumarin 481/35 and coumarin 153 in methanol showed weak green-colored (−)-CPL
signals at 507 nm and 527 nm, respectively (Figure 10a,b). Interestingly, these coumarins in squalane
emitted blue-colored (−)-CPL signals with increased glum =−0.28× 10−3 at 437 nm and glum =−0.39×
10−3 at 455 nm, respectively (Figure 10c,d). In 1,4-butanediol, these (−)-CPL signals became enhanced
to glum = −1.17 × 10−3 at 509 nm and glum = −0.59 × 10−3 at 527 nm, respectively (Figure 10e,f).Symmetry 2019, 11, 363 20 of 41 
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(e) 1,4-butanediol (excited at 415 nm). CPL/PL spectra of coumarin 153 in (b) methanol (excited at 435 
nm), (d) squalane (excited at 385 nm), and (f) 1,4-butanediol (excited at 435 nm). CD/UV–visible 
spectra of (g) coumarin 481/35, and (h) coumarin 153 in methanol. 

We tested the effect of the CH3 group at the peripheral position of the coumarin framework in 
place of the CF3 group. The CPL/PL spectra of coumarin 1/460 and coumarin 102 were recorded in 
several solvents (Figure 11a–d and Figures S9a–d, Supplementary Materials), and, for comparison, 
the CD/UV–visible spectra were recorded in methanol (Figure 11e,f). Coumarin 1/460 and coumarin 
102 in methanol showed weak blue (−)-CPL signals at 450 nm and 480 nm (Figure 11a,b). In 
1,4-butanediol, these increased to glum = −0.72 × 10−3 at 449 nm and −0.65 × 10−3 465 nm, respectively. 
The CD signals of coumarin 1/460 and coumarin 102 in methanol are not obvious (Figure 11e,f). 

Figure 10. Comparisons of CPL/PL and UV–visible spectra of coumarin 481/35 and coumarin 153 at
room temperature (path length: 10 mm, cylindrical cuvette, concentration 2.5–10 × 10−5 M. CPL/PL
spectra of coumarin 481/35 in (a) methanol (exited at 410 nm), (c) squalane (excited at 370 nm), and
(e) 1,4-butanediol (excited at 415 nm). CPL/PL spectra of coumarin 153 in (b) methanol (excited at
435 nm), (d) squalane (excited at 385 nm), and (f) 1,4-butanediol (excited at 435 nm). CD/UV–visible
spectra of (g) coumarin 481/35, and (h) coumarin 153 in methanol.
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We tested the effect of the CH3 group at the peripheral position of the coumarin framework in
place of the CF3 group. The CPL/PL spectra of coumarin 1/460 and coumarin 102 were recorded in
several solvents (Figure 11a–d and Figure S9a–d, Supplementary Materials), and, for comparison, the
CD/UV–visible spectra were recorded in methanol (Figure 11e,f). Coumarin 1/460 and coumarin 102
in methanol showed weak blue (−)-CPL signals at 450 nm and 480 nm (Figure 11a,b). In 1,4-butanediol,
these increased to glum = −0.72 × 10−3 at 449 nm and −0.65 × 10−3 465 nm, respectively. The CD
signals of coumarin 1/460 and coumarin 102 in methanol are not obvious (Figure 11e,f).Symmetry 2019, 11, 363 21 of 41 
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Figure 11. Comparisons of CPL/PL and UV–visible spectra of coumarin 1/460 and coumarin 102 at
room temperature (path length: 10 mm, cylindrical cuvette, concentration 2.5–10 × 10−5 M. CPL/PL
spectra of coumarin 1/460 in (a) methanol (excited at 365 nm), and (c) 1,4-butanediol (excited at 365 nm).
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To view the effect of the N-methyl group at benzimidazole, the CPL/PL spectra of coumarin 7
and coumarin 30 were recorded in several solvents (Figure 12a–d and Figure S10a–p, Supplementary
Materials). Coumarin 7 and coumarin 30 in methanol showed weak blue-green vibronic (−)-CPL
signals associated with glum = −0.16 × 10−3 at 465 nm and −0.22 × 10−3 at 482 nm, respectively
(Figure 12a,b). In 1,4-butanediol, these (−)-CPL signals increased to glum = −1.21 × 10−3 at 497 nm
and −1.20 × 10−3 at 452 nm, respectively (Figure 12c,d). Coumarin 7 and coumarin 30 in methanol
may show similar bisignate features in their CD signals, but the spectral profile of coumarin 7 is
the opposite of coumarin 30 (Figure 12e,f). Although the effect of the methyl group is minimal, the
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presence of the benzimidazole ring markedly affects the glum values in 1,4-butanediol, when compared
to coumarins 466, 6H, 481/35, 153, 1/460, and 102. The presence of benzimidazole and benzothiazole
groups in coumarins with dialkylamino groups may possibly be another crucial factor in photoinduced
CPL signals.Symmetry 2019, 11, 363 22 of 41 
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−0.74 × 10−3 at 574 nm in n-C11H23OH (Figure 14c), glum = −0.72 × 10−3 at 581 nm in ethylene glycol 
(Figure 14d), glum = −0.83 × 10−3 at 596 nm in 1,4-dioxane (Figure 14b), and glum = −1.01 × 10−3 at 576 nm 
in 1,4-butanediol (Figure 14e). Similarly, ethylene glycol and 1,4-dioxane are recommended for RhB 

Figure 12. Comparisons of CPL/PL and UV–visible spectra of coumarin 7 and coumarin 30 at room
temperature (path length: 10 mm, cylindrical cuvette, concentration 2.5–10 × 10−5 M. CPL/PL spectra
of coumarin 7 in (a) methanol (excited at 420 nm), and (c) 1,4-butanediol (excited at 420 nm). CPL/PL
spectra of coumarin 30 in (b) methanol (excited at 430 nm), and (d) 1,4-butanediol (excited at 430 nm).
UV–visible spectra of: (e) coumarin 7, and (f) coumarin 30 in methanol.

As candidates of photoinduced red-light CPL emitters without stereocenters, we investigated
whether 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM) and rhodamine
6 in several solvents reveal CPL signals at the corresponding PL bands. DCM and rhodamine 6 are
representative red-light emitters, and both bear flip-flop dialkylamino groups.

Surprisingly, DCM showed weak (−)-sign CD signals on the order of gabs =−1.3× 10−5 at 474 nm
(Figure 13f). This weak CD signal was reproducible when measured on several different occasions and
unchanged in ethanol, n-propanol, and 1,4-butanediol. Although DCM showed weak (−)-CPL signals
in methanol on the order of glum = −0.18 × 10−3 at 615 nm (Figure 13a), the CPL signal increased to
glum =−0.95× 10−3 at 615 nm in ethylene glycol (Figure 13c),−1.44× 10−3 at 617 nm in 1,4-butanediol
(Figure 13d), and, more surprisingly, −1.17 × 10−3 at 549 nm in the low-viscosity solvent, 1,4-dioxane
(η = 1.10 cP) (Figure 13b). The CPL/PL wavelengths of DCM in 1,4-dioxane greatly blue-shifted by
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ca. 70 nm and showed spectral narrowing compared to the alcoholic solvents. For reasons which are
unclear, ethylene glycol and 1,4-dioxane are recommended for DCM when it is used as a laser dye.

Symmetry 2019, 11, 363 23 of 41 

 

when it is used as a laser dye. Ethylene glycol and 1,4-dioxane are not the only solvents for RhB and 
are the key to magnified (−)-sign CPL signals in fluidic media with a higher viscosity. 

  

  

  
  

Figure 13. Comparisons of CPL/PL spectra of 4-(dicyanomethylene)-2-methyl-6-(4-dimethyl- 
aminostyryl)-4H-pyran (DCM) in (a) methanol (b) 1,4-dioxane (c) ethylene glycol, (d) 
1,3-propanediol, and (e) 1,4-butanediol. (f) CD/UV–visible spectra of DCM in methanol at room 
temperature (path length: 10 mm, cylindrical cuvette, concentration 2.5–10 × 10−5 M. 

Finally, we checked the CPL/PL and CD/UV–visible spectra of 3,3'-carbonylbis(7-diethylamino- 
coumarin) (bis-coumarin). As a result, bis-coumarin in 1,4-butanediol showed clear but broader 
(−)-sign CPL signals with glum = −0.65 × 10−3 at 531 nm (Figure 15a) and a clearly associated (−)-sign 
CD signal with gabs = −1.0 × 10−5 at 463 nm (Figure 15b). 

As exemplified in the cases of the fused aromatic rings with substituents, BINOL derivatives 
[104], BODIPY, and organic scintillators shown in the sections above, the magnitudes of the (−)-sign 
CPL signals in a series of coumarin dyes, DCM, and RhB are greatly amplified in response to the 
viscosity of the solvents. The glum– relationships for ten sets of coumarin dyes, DCM, and RhB are 
summarized in Figures 16a–16j and Figures 17a–17b. The data show that, in most cases, the absolute 
glum values leveled off at specific values when  > 30 cP. The leveled-off glum values are highly 
dependent on the nature of the substituents such as, for example, the presence or absence of 
benzimidazole or benzothiazole as electron-accepting groups and the position of the alkyl 
substituents. Moreover, in all cases, the glum values extrapolated to  = 0.0 cP are non-zero values, 
−0.2 × 10−3, suggesting that these luminophores should emit (−)-CPL signals under solvent-free 
conditions, such as in a collision-free vacuum. 

Figure 13. Comparisons of CPL/PL spectra of 4-(dicyanomethylene)-2-methyl-6-(4-dimethyl-
aminostyryl)-4H-pyran (DCM) in (a) methanol (b) 1,4-dioxane (c) ethylene glycol, (d) 1,3-propanediol,
and (e) 1,4-butanediol. (f) CD/UV–visible spectra of DCM in methanol at room temperature (path
length: 10 mm, cylindrical cuvette, concentration 2.5–10 × 10−5 M.

More surprisingly, RhB had a clear (−)-sign CD signal on the order of gabs = −2.0 × 10−5 at
550 nm (Figure 14f). This CD signal was reproducible when measured on several different occasions
and was confirmed to be unchanged in ethanol, n-propanol, and 1,4-butanediol. Although RhB in
methanol showed weak vibronic CPL signals at 572 nm (Figure 14a), it magnified abruptly to glum =
−0.74 × 10−3 at 574 nm in n-C11H23OH (Figure 14c), glum = −0.72 × 10−3 at 581 nm in ethylene glycol
(Figure 14d), glum = −0.83 × 10−3 at 596 nm in 1,4-dioxane (Figure 14b), and glum = −1.01 × 10−3 at
576 nm in 1,4-butanediol (Figure 14e). Similarly, ethylene glycol and 1,4-dioxane are recommended for
RhB when it is used as a laser dye. Ethylene glycol and 1,4-dioxane are not the only solvents for RhB
and are the key to magnified (−)-sign CPL signals in fluidic media with a higher viscosity.
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Figure 15. (a) CPL/PL spectra of bis-coumarin excited at 430 nm in 1,4-butandiol, and (b) CD/UV–
visible spectra in methanol at room temperature (path length: 10 mm, cylindrical cuvette, 
concentration 2.5 and 10 × 10−5 M. 
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Figure 14. Comparisons of CPL/PL spectra of rhodamine B (RhB) in (a) methanol, (b) 1,4-dioxane,
(c) n-undecanol, (d) ethylene glycol, and (e) 1,4-butanediol. (f) CD/UV–visible spectra in methanol at
room temperature (path length: 10 mm, cylindrical cuvette, concentration 2.5–10 × 10−5 M.

Finally, we checked the CPL/PL and CD/UV–visible spectra of 3,3′-carbonylbis(7-diethylamino-
coumarin) (bis-coumarin). As a result, bis-coumarin in 1,4-butanediol showed clear but broader
(−)-sign CPL signals with glum = −0.65 × 10−3 at 531 nm (Figure 15a) and a clearly associated (−)-sign
CD signal with gabs = −1.0 × 10−5 at 463 nm (Figure 15b).
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Figure 15. (a) CPL/PL spectra of bis-coumarin excited at 430 nm in 1,4-butandiol, and (b) CD/UV–visible
spectra in methanol at room temperature (path length: 10 mm, cylindrical cuvette, concentration 2.5 and
10 × 10−5 M.
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As exemplified in the cases of the fused aromatic rings with substituents, BINOL derivatives [104],
BODIPY, and organic scintillators shown in the sections above, the magnitudes of the (−)-sign CPL
signals in a series of coumarin dyes, DCM, and RhB are greatly amplified in response to the viscosity
of the solvents. The glum–η relationships for ten sets of coumarin dyes, DCM, and RhB are summarized
in Figures 16a–j and 17a–b. The data show that, in most cases, the absolute glum values leveled off
at specific values when η > 30 cP. The leveled-off glum values are highly dependent on the nature of
the substituents such as, for example, the presence or absence of benzimidazole or benzothiazole as
electron-accepting groups and the position of the alkyl substituents. Moreover, in all cases, the glum
values extrapolated to η = 0.0 cP are non-zero values, −0.2 × 10−3, suggesting that these luminophores
should emit (−)-CPL signals under solvent-free conditions, such as in a collision-free vacuum.

The non-zero glum values with (−)-sign extrapolated at η = 0.0 cP suggest that coumarins bearing
dialkylamino group(s) with flip-flop capability adopt a handed chiral geometry preferentially by
radiating (−)-sign CP light even in solvent-free, collision-free conditions. We conjecture that twisted
flip-flop motions of the dialkylamino group in these luminophores may play a key role in the emergent
photoinduced (−)-sign CPL signals at the S1 state with inherent handedness dictated by the PV-WNC
mediated by Z0 boson.Symmetry 2019, 11, 363 25 of 41 
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Figure 16. Comparison of glum values of (a) coumarin 6, (b) coumarin 545, (c) coumarin 466,
(d) coumarin 6H, (e) coumarin 48/135, (f) coumarin 153, (g) coumarin 1/460, (h) coumarin 102,
(i) coumarin 7, and (j) coumarin 30 as a function of solvent viscosity at room temperature (path length:
10 mm, cylindrical cuvette, concentration 2.5–10 × 10−5 M.Symmetry 2019, 11, 363 26 of 41 
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Figure 17. Comparison of glum values of (a) DCM and (b) RhB as a function of solvent viscosity at
room temperature (path length: 10 mm, cylindrical cuvette, concentration (2.5–10) × 10−5 M.

In Figure 18, we show the CD/UV–visible spectra and HOMO–LUMO electron density of
coumarin 545 optimized by Gaussian09 (DFT, B3LYP/6-31G(d) level), followed by 20 singlet states
by TD-DFT calculation at the B3LYP/6-31G(d) level. Optimized coumarin 545 adopts a chiral
conformation such that the dihedral angle between the benzothiazole and coumarin rings is 27.7◦,
and the two dihedral angles between the nitrogen atom and the two nearest carbons are 4.1◦ and
7.8◦ (Figure 18a). In fact, the chiral coumarin 545 reveals CD signals at the corresponding UV–visible
bands (fwhm = 0.20 eV). The gabs value at the first Cotton band (397 nm) is calculated to be −8 ×
10−5 M−1·cm−1 (Figure 18b). From the estimated gabs value, the experimental gabs (= −1.3 × 10−5 at
479 nm) implies an enantiomeric excess (ee) of 16% in methanol. However, no CD signals are detected
at the S2 state (~300 nm). The weak (−)-CD with gabs = −1.3 × 10−5 at the S1 state (~480 nm) may be
interpreted as the postulated PV-WNC under a zero magnetic field.
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Figure 18. (a) Chemical structure of coumarin 545 optimized by Gaussian09 (DFT, B3LYP/6-31G(d)
level) (b) Simulated CD/UV spectra with fwhm 0.20 eV, (c) 1st LUMO, and (d) 1st HOMO of coumarin
545 obtained with Gaussian09 (DFT, B3LYP/6-31G(d) level), followed by 20 singlet states by TD-DFT
calculation at the B3LYP/6-31G(d) level.

The mapping of electron densities in the first LUMO and first HOMO of the optimized coumarin
545 are displayed in Figure 18c,d, respectively. The nitrogen atom in the dialkylamino group retains
high electron density at both HOMO and LUMO levels. However, the phases (from green to red or
vice versa) differ between HOMO and LUMO. Coumarin 545 at the S1 state may possibly adopt a more
distorted geometry, simultaneously allowing a twisted flip-flop motion at the nitrogen atom.

3. Discussion

Weak interactions occur between all the six quarks and six leptons at the first., second, and third
generations in the framework of elemental particle physics [47,81,123,124]. The weak interactions
generate a “weak charge”, leading to a charged weak current and the weak neural current (WNC).
Only left-handed particles and right-handed anti-particles carry the weak charge. The weak charge is
analogous to Coulomb charges (+ and −) and Mulliken charges (δ+ and δ−) established in chemistry
arising from the parity-conserving EM force. The weak charge is unique and is responsible for the basis
of handedness at subatomic and atomic levels and, presumably, even at artificial molecular, oligomer,
and polymer levels. The hierarchy in the handedness could be connected to the origin of biomolecular
and biopolymer handedness, and beyond.

Charged left-particles and right-anti-particles can take part in the parity violating β− decay
process of neutrons in the n→ p + e− + anti-νe reaction. This event arises from a left-handed spinning
electron (or right-handed electron from the observer) and right-handed spinning anti-neutrino (or
left-handed anti-neutrino from the observer’s perspective).

According to Fermi’s theory, β− decay is the result of current–current interactions, leading to the
vector (V)–axial vector (A) components of the charged weak currents. The term V is a polar vector and
A is carrying angular momentum. Although the charged currents may be considered analogously to
the cationic or anionic charges in molecules, no suggestion of dynamically flowing current is applied
to cationic or anionic static charges. The V–A terms can generate different electric charges between p
→ n and e− → νe reactions, leading to the charged weak current.

Weinberg, Salam, and Glashow [47,123,124] formulated a unified theory of parity-conserving
EM and parity-violating weak forces among the four fundamental physical forces based on gauge
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symmetry group SU(2) × U(1), while SU stands for special unitary (triplet states) and U unitary
(singlet state) groups. The unified theory is popularly called the “Standard Model”, and formulates an
electroweak (EW) force.

A spontaneous symmetry-breaking process with handedness is a result of three massive bosons
(W+, W−, and Z0) and the massless photon (γ) [47]. The WNC is coupled with the massive neutral Z0

boson, and the EM neutral current is coupled with γ. The unified theory connects the electric charge e
to the effective weak coupling gw, given by gw = e/2

√
2 sinθw, where θw is the Winberg’s weak mixing

angle. Experimental datasets are mw (for W± bosons) = 81.0 GeV, mz (for Z0 boson) = 92.4 GeV, and
sin2θw = 0. 223, because cosθw = mw/mz, while γ is kept massless.

Certainly, exchange of γ and Z0 occurs between electrons and the nucleus. The PV interaction
in elemental particles can cause atomic parity violation (APV) effects as observable values in
photon-induced absorption and radiation modes. Several APV theories invoked the idea that
negatively charged electrons bonded to a positively charged nucleus by Coulomb force (γ) and
the weak force (Z0), as illustrated in Figure 1.3 (Reference [47]) can involve three γ–γ–γ, Z0–γ–γ, and
γ–γ–Z0 processes. PV potential is expressed as

VPV =
GF

4
√

2
Qw

mec

[
σ ·←p δ3(r) + δ3(r)σ ·→p

]
, (1)

where GF is Fermi’s weak coupling constant (1.16637 × 10−11 eV or 2.68971 × 10−10 kcal·mol−1), r
is the position of the electron, σ is the spin operator, me is the electron mass, c is the light speed, p =
−ih̄∇momentum operator, and δ is Dirac’s delta function. The admixing factor between the s1/2 and
p1/2 states of the atom is on the order of 10−17 Z3Kr, whereby Kr is a relativistic correction factor (Kr ~
3 for Cs and ~ 10 for Bi) [47]. The weak charge Qw is expressed as

Qw = 2∑
p,n

(CVP + CVn) = Z(1− 4 sin2 θw)− N ≈ −N, (2)

where CVp and CVn are the coupling constants of vectoral V of proton and neutron, and N and Z
are the numbers of neutrons and protons. Because 1 − 4 sin2θW = 0.116 < 1, Qw ≈ −N. In actuality,
chiroptical rotation in visible and near infrared (NIR) regions due to APV effects for vapors of heavy
atoms (Bi, Pb, Tl, and Cs) is always of (−)-sign, regardless of atomic mass, indicating the dominance of
the −N term of Equation (2) [47].

A proton is constituted by two up quarks and one down quark, while a neutron is constituted
by one up quark and two down quarks. All atoms are, thus, made of multiple up and down quarks
and electrons. We radically postulate that the (−)-sign Qw value of all molecules is linearly [61]
and nonlinearly amplified by huge numbers of neutrons because molecules are polyatomic and
polyneutron systems constituting parity-violating atoms: unsubstituted perylene contains 20 ×
6 = 120 neutrons, while pyrromethene 597 and stilbene 420 have 169 neutrons and 248 neutrons,
respectively. We conjecture that enantiomeric pairs are no longer equivalent energetically, and their
characteristics behave diastereomerically, owing to hundreds of neutrons within the nuclei that leads
to non-mirror-symmetric LM interactions as a consequence of the (−)-sign electroweak charge.

The consistent observation of (−)-sign CPL and (−)-sign CD signals may arise from the inherent
(−)-sign of Qw. If the negative-sign Qw in Equation (2) can be applied to spontaneous radiation and
non-radiative processes from photoexcited non-rigid fluorophores, the CPL (and CD) signals are
postulated to be commonly the same (−)–sign regardless of their chemical structures. Because the
CPL signals from the observer are defined as PL(left) − PL(right), the non-rigid fluorophores in the
present results and previous study [104] are primarily radiating PL(right) over PL(left) during the
non-radiating reorganization process at the S1 state. Although the predicted signs in CPL and CD
signals are inverted by dihedral angles of multiple C–C bonds in the non-rigid fluorophores [80], the
weak (−)-charge Qw may be efficiently coupled with dipolar (δ+ and δ–) molecular structures that can
adopt a significantly polar V-shape and syn-form (pseudo-C2 symmetric rotamer), and a polar rod-like
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shape (C1-symmetric rotamer) in the S1 and S0 states, as schematically illustrated in Charts 1–4. The
negative value Qw is additive to δ− (then, δ− − |Qw|) but is subtractive to δ+ (then, δ+ + |Qw|), then
|δ− − |Qw|| 6= |δ+ + |Qw|| for an enantiomeric pair of rotamers.

From the viewpoint of molecular dynamics, the PV-WNC force causes parity-odd rotational
and/or flip-flop motions. The motions enforce (R)- and (S)-forms in the same direction (CW or
CCW) that facilitates radiation with only (−)-sign CPL. However, the EM force, a parity-even,
parity-conserved force, allows plural C–C bonds in the (R)-form to rotate and/or undergo flip-flop
motions with CW motion and, conversely, those with the (S)-form to rotate and/or flip-flop CCW or vice
versa. These motional dynamics should be mirror-symmetric. The handedness of motional dynamics
by handed elemental particles can be recognized as chiral crystallization of achiral molecules: longitude
polarized electrons and positrons that mirror image leptons oppositely affect an L/R preference in the
crystallization of sodium chlorate and bromates in water solution [81].

In our previous paper [104], we grouped the apparent CPL and CD spectral characteristics with
their signs, magnitudes, and wavelengths and associated barrier heights (Eb) in double-well and
multi-well potentials into four categories as follows:

(i) Case 1. The value of Eb between rigid enantiomers is relatively high >30 kcal·mol−1 in the S0

and S1 states. Mirror-image CD and CPL spectra are evident for the enantiomers. The parity-conserved
EM force is a determining factor. Racemization rate obeys the Arrhenius equation with activation
energy (Ea).

(ii) Case 2. When 10 < Eb < 30 kcal·mol−1 at the S0 and S1 states, non-mirror-image CPL and CD
spectra are often observed [15,27,90,95,120,122,125–134]. Although (+)- and (−)-signs in CPL and CD
are primarily determined by atrope and point chirality, the absolute magnitudes and wavelengths at
the CPL and CD bands differ considerably from each other.

(iii) Case 3. When 1 < Eb < 10 kcal·mol−1 at the S1 and S0 states, only (−)-sign CPL and (−)-sign
CD spectra should be observed. The parity-violating weak force might be a determining factor in the
S1 and S0 states [104].

(iv) Case 4. When 0 < Eb < 1 kcal·mol−1 in the S1 and S0 states, no detectable CD bands are
observed, although (−)-sign CPL signals are obvious. Resonance quantum tunneling without Ea

is responsible for dynamic racemization, oscillating chirality, and quantum beat [66,72,101]. The
parity-violating weak force is a determining factor in the S1 state, while the parity-conserved EM force
is a determining factor in the S0 state.

Moreover, regarding hidden molecular chirality, in 1970s, Mislow argued the cryptochirality of
mirror-image molecules in which optical activity is non-detectable [135]. In 2006 and 2009, approaches
to chemically decipher cryptochiral molecules and polymers were reported [136,137]. Additionally,
with the help of CPL and CD spectroscopy, a photophysical deciphering approach was applied to the
EM-originating cryptochirality of several CD-silent molecules [138–142].

The previous paper did not report Case 3, though we reported examples of Cases 1, 2, and 4 [104].
The present paper reports Case 3 for the first time, i.e., that pyrromethene 546, pyrromethene 597,
DCM, RhB, and bis-coumarin all reveal (−)-sign CPL and (−)-sign CD spectra, even in low-viscosity
solvents. EW-perturbed quantum chemistry [143], EW-perturbed photophysics and EW-perturbed
photochemical reactions should be considered when open questions of unexpected L/R preference and
their detectable L/R differences in non-rigid and semi-rigid artificial molecules, and supramolecules
and biomolecules in the S0 and S1, Sn . . . states are raised.

Other plausible scenarios for the L/R preference are possible. The handedness of non-rigid
molecules in an ultra-tiny % ee can be increased to ~100% ee upon photoexcitation of parity-conserved
(PC) EM force-driven circularly polarized (CP) light carrying a single angular momentum (±nh̄, n = 1)
in the broad range of γ-ray, X-ray, vacuum–UV, UV–visible–IR, far-IR far-THz, and cosmic microwave
radiation according to certain nonlinear amplification scenarios [97–109], known as autocatalytic
self-replication [144], sergeant-and-soldier and majority rules [145], and polymerization [146].
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Parity-conserving EM force-originating macroscopic MSB was comprehensively reviewed for a
large number of molecules, polymers, supramolecules, colloids, gels, and crystals [147–150]. These
alternative modern scenarios provide other possible answers to the greatest mystery on the origin of
homochirality on Earth.

Recently, lightning was found to be a natural particle accelerator, ubiquitously generating γ-rays.
Lightning causes atmospheric photonuclear reactions. The γ-ray energy is captured by N2 molecules,
followed by producing, possibly, weak force-origin handed neutrons, right-handed positrons, and
left-handed neutrinos [151]. Additionally, cosmological-origin right-handed anti-ν interacting with
14N in molecular clouds in star-forming regions of supernovae and neutron stars [87,152], gravitational
origin parity violation [153,154], and hydrodynamic vortex flows with the opposite handedness in
the north and south hemispheres on Earth [26,27,155] are of specific interest. In recent years, vortex
light (alternatively called optical spanner, spiral light, twisted light, and helical light) [156–169] was
recognized as a new sort of chiral light carrying multiple orbital angular momenta (OAM) with ±
lh̄, l = 1, 2, 3, 4, 5, 10 . . . up to 200. Vortex light with l = 0 is achiral. Vortex light can generate a
torque enabling the rotation of molecular droplets, polymeric solids, and metallic particles in CW
or CCW directions [158,161,164]. The helical wavefront for the Laguerre–Gaussian mode of vortex
light allows for sculpturing spiral relief and motifs and for rotating small objects in CCW or CW
directions [156–170]. Like CP light–matter interactions [171,172], vortex light can discriminate between
enantiomers [164], and it is possible to predominantly generate handed chiral motifs from achiral
polymers [162,163,169]. Astrophysical origin vortex light [156], CP light, and right-handed solar
neutrinos may, thus, be connected to the L/R preference of biomolecular substances.

Recently, astonishing findings seeking source materials connecting with the handedness of
biomolecules on Earth were reported. In 2009, a National Aeronautics and Space Administration
(NASA) team characterized extraterrestrial-origin glycine-embedded samples returned from comet
81P/Wild2 using liquid chromatography and spectrometry [173]. In 2016, other researchers determined
glycine, phosphorus and several organic substances involving O, S, and F in specimens collected
from the coma of 67P/Churyumov–Gerasimenko using a double-focusing mass spectrometer [174].
Moreover, in 2016, radio astronomers found the first astronomical-origin chiral propylene oxide and
achiral n-propanol in the Sagittarius B2 star-forming region of the Milky Way galaxy, although the
existence of any L/R preference remains to be elucidated [175]. Comets and interstellar materials
could deliver biomolecules or their precursors and water to Earth. Although it is possible to synthesize
mirror-image DNA and proteins in laboratories [176,177], it is challenging to directly detect the L/R
preference, possibly associated with (−)-sign circularly polarized radiation from the observation
of interstellar PAHs at the S1/S0 states in the UV–visible region [175], and rigid and non-rigid
non-π-conjugated organics at the near-IR/mid-IR/far-IR/microwave regions [108,109]. It remains a
great challenge and a great curiosity to provide more realistic scenarios for biomolecular handedness.

4. Materials and Methods

Instrumentation details, lists of solvents and fluorophores and their vendors, preparation of
sample solutions, and chiroptical analytical data [99,104] are described below.

4.1. Instrumentation

Using a JASCO (Tokyo, Japan) J-820 spectropolarimeter, UV–visible and CD spectra were
simultaneously recorded at ambient temperature using a cylindrical quartz cuvette with a path length
of 10 mm. The cylindrical cuvette assured a precise CD measurement compared to the rectangular
cuvettes that are often used in routine experiments. Precise CD/UV–visible spectra were obtained by
using a bandwidth of 2 nm, with one or two accumulations at scanning rates of 50 or 100 nm·min−1

with a response time of 2 s. The CD signals of the two BODIPYs and RhB were triply confirmed under
the following conditions: bandwidth = 2 nm, response time = 8 s, scanning rate = 20 nm·min−1 with
four accumulations. To minimize drifts in the light source and power supply, the instrument was aged
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for at least 2 h prior to measurements. CPL and PL spectra were likewise collected using a JASCO
CPL-200 spectrofluoropolarimeter (Hachioji, Tokyo, Japan) employing cylindrical quartz cuvettes with
path lengths of 10 mm at ambient temperature. The best experiment parameters were as follows:
bandwidth = 10 nm for excitation and detection; response time of PMT = 8–16 s during measurements;
two to eight accumulations with scanning rate = 20–50 nm·min−1.

4.2. Materials

4.2.1. Luminophores (vendor)

Section 1: Perylene (Tokyo Chemical Company (TCI), Tokyo, Japan), 5,8,11-tetra-tert- butylperylene
(TCI), N,N′-bis(2,6-diisopropylphenyl)-1,6,7,12-tetraphenoxy-3,4,9,10-perylene-tetra-carboxylic
diimide (TCI), N,N′-bis(2,5-di-tert-butylphenyl)-3,4,9,10-perylenedicarboximide (Sigma-Aldrich, St.
Louis, MO, USA), 16,17-bis(n-octyloxy)-anthrax[9,1,2-cde]-benzo[rst]-pentaphene-5,10-dione (TCI), and
N,N′-di-n-octyl-3,4,9,10-perylenetetracarboxylic diimide (Sigma-Aldrich) were obtained as indicated.

Section 2: Pyrromethene 546 (TCI) and pyrromethene 597 (TCI) were obtained as indicated.
Section 3: Stilbene 420 (Exciton, Tokyo Instruments Inc. (Tokyo, Japan)), bis-MSB (Exciton),

POPOP (TCI), DMPOPOP (Dotite, Kumamoto, Japan), BBOT (Dotite), and BBT (TCI) were obtained
as indicated.

Section 4: Coumarin 6 (TCI), coumarin 545 (TCI), coumarin 466 (TCI), coumarin 6H (Sigma-
Aldrich), coumarin 481/35 (TCI), coumarin 153 (Sigma-Aldrich), coumarin 1/460 (Sigma-Aldrich),
coumarin 102 (Sigma-Aldrich), coumarin 7 (Sigma-Aldrich), coumarin 30 (Sigma-Aldrich),
biscoumarin) (TCI), DCM (Sigma-Aldrich), and RhB (TCI) were obtained as indicated.

4.2.2. Solvents

Vendor, viscosity in cP, and temperature in ◦C are provided in brackets [178–183]; in each series,
entries are given in order of increasing viscosity as follows:

(1) n-Alkanes: n-pentane (FUJIFILM Wako, 0.21 (25)), n-hexane (FUJIFILM Wako, 0.30 (25)),
n-heptane (Sigma-Aldrich, 0.39 (25)), n-octane (Sigma-Aldrich, 0.51 (25), n-nonane (Sigma-Aldrich,
0.71 (20)), n-decane (Sigma-Aldrich, 0.85 (25)), n-undecane (Sigma-Aldrich, 0.93 (20)), n-dodecane
(Sigma-Aldrich, 1.36 (25), n-tridecane (Sigma-Aldrich, 1.88 (20)), n-tetradecane (Fluka, 2.08 (25),
n-pentadecane (Sigma-Aldrich, 2.86 (20)), and n-hexadecane (Sigma-Aldrich, 3.71 (20)).

(2) Branched and cyclic alkanes: isooctane (Dotite, 0.50 (25)), cyclohexane (Dotite, 0.93 (22)), and
squalane (2,6,10,15,19,23-hexamethyltetracosane) (Sigma-Aldrich, 29.50 (25)).

(3) Non-branched and n-alcohols: methanol (FUJIFILM Wako, 0.55 (25)), ethanol (FUJIFILM Wako,
1.09 (25)), n-propanol (Sigma-Aldrich, 1.96 (25)), n-butanol (FUJIFILM Wako, 2.59 (25)), n-pentanol
(Sigma-Aldrich, 3.47 (25)), n-hexanol (Sigma-Aldrich, 4.59 (25)), n-heptanol (Wako, 5.97 (25)), n-octanol
(Wako, 7.59 (25)), n-nonanol (Sigma-Aldrich, 9.51 (25)), n-decanol (Sigma-Aldrich, 11.50 (25)), ethylene
glycol (FUJIFILM Wako, 16.1 (25), n-undecanol (Sigma-Aldrich, 16.95 (25)), 1,3-propandiol (FUJIFILM
Wako, 33.0 (25)), and 1,4-butanediol (FUJIFILM Wako, 71.0 (25)).

(4) Branched alcohols: isopropanol (Dotite, 2.07 (25), isobutanol (Sigma-Aldrich, 3.38 (25)), and
isopentanol (Sigma-Aldrich, 3.86 (25)).

(5) Chlorinated hydrocarbons: dichloromethane (Dotite, 0.41 (25)) and chloroform (Dotite,
0.55 (25)).

(6) Other solvents: diethyl ether (FUJIFILM Wako, 0.22 (25)), acetone (FUJIFILM Wako, 0.31 (25),
acetonitrile (FUJIFILM Wako, 0.34 (25)), tetrahydrofuran (Dotite, 0.46 (25)), benzene (FUJIFILM Wako,
0.60 (25)), water (Wako, 1.00 (20)), 1,4-dioxane (Dotite, 1.10 (25)), anisole (TCI, 1.09 (25)), heavy water
(Wako, 1.25 (20)), and sulfolane (TCI, 10.10 (25)).
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4.3. Preparation of Sample Solutions

Firstly, a representative stock solution (10−3 M) of luminophore dissolved in spectroscopic grade
CHCl3 (Dotite, Kumamoto, Japan) was prepared. For RhB and stilbene 420, ethanol was used as
the stock solution solvent. A small quantity of the stock solution was added to the desired liquid
(1.9–2.1 mL) in the cylindrical quartz cuvette using a microsyringe. The CD/UV–visible and CPL/PL
spectra were then recorded. Oxygen was not purged from the solvents or solutions in CPL and
CD measurements since it does not significantly influence the fluorescence quantum yield of most
organic luminophores.

4.4. Chiroptical Analysis

The dissymmetry factor of the circular polarization at the S0 state (gabs) was evaluated as gabs = (εL

− εR)/(1/2(εL+εR)), where εL and εR are the extinction coefficients for l- and r-CP light, respectively [99].
The dissymmetry factor of the circular polarization at the S1 state (glum) was evaluated as glum = (IL −
IR)/(1/2(IL + IR)), where IL and IR are the intensities of the signals for l- and r-CP light respectively,
under the incident UP light [99]. The parameter gabs was experimentally determined using the
expression ∆ε/ε = (ellipticity (in mdeg)/32980)/absorbance at the CD extremum, similar to the
parameter glum, calculated as ∆I/I = (ellipticity (in mdeg)/(32980/ln10))/total PL intensity (in volts) at
the CPL extremum.

5. Conclusions

We tested whether or not semi-rigid and non-rigid π-conjugated fluorophores in the S1 and S0

states in a series of achiral liquids with η ranging from 0.22 cP to 71.0 cP are optically inactive and have
mirror symmetry as measured by CPL and CD spectroscopy. The fluorophores included six perylenes
with and without substituents, two BODIPYs, six scintillators, RhB, DCM, and 11 coumarins. Perylenes
were models of interstellar small and large PAHs radiating IR spectra of bright HII regions, planetary
nebulae, and reflection nebulae. Without exception, all the non-rigid fluorophoric enantiomers, and
possibly also the highly twisted perylene derivatives, showed (−)-sign CPL signals radiating from
the vibronic photoexcited state in support of the molecular parity-violating hypothesis based on the
Z0 boson origin PV-weak neutral current mechanism. The fluorophore emission intensities increased
progressively and discontinuously to approximately –0.2 × 10−3 and −2.0) × 10−3 as a function of the
solvent viscosity. Of specific interest was the detection of weak but clear CD signals with gabs values of
−1.4 × 10−5 at λmax/λext for two pyrromethene derivatives, RhB, DCM, and bis-coumarin at the S0

states. The results of the present CPL and CD spectral characteristics should provide a possible answer
to the parity violation hypothesis at the molecular level based on a handed weak neutral current
mediated by the Z0 boson. The present comprehensive and previous experimental datasets [104]
led us to address the “Ozma problem” posed by Gardner [1]. The query was how we can correctly
communicate the left-and-right issue to intellectually advanced alien lifeforms. Our answer is that,
when an unpolarized UV light source is applied to excite semi-rigid and non-rigid π-conjugated
luminophores, we define (−)-sign CPL signals from the observer as “right” without exception.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-8994/11/3/363/
s1.
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