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Abstract

:

Let q≥2 be a positive integer and let (aj),(bj) and (cj) (with j nonnegative integer) be three given C-valued and q-periodic sequences. Let A(q):=Aq−1⋯A0, where Aj is defined below. Assume that the eigenvalues x,y,z of the “monodromy matrix” A(q) verify the condition (x−y)(y−z)(z−x)≠0. We prove that the linear recurrence in Cxn+3=anxn+2+bnxn+1+cnxn,n∈Z+ is Hyers–Ulam stable if and only if (|x|−1)(|y|−1)(|z|−1)≠0, i.e., the spectrum of A(q) does not intersect the unit circle Γ:={w∈C:|w|=1}.






Keywords:


difference and differential equations; discrete dichotomy; Hyers–Ulam stability




MSC:


34D09; 39B82












1. Introduction


Exponential dichotomy and its links with the unconditional stability of differential dynamics systems were first highlighted by O. Perron in 1930 [1]. The reader can find details on the subsequent evolution of this topic in Coppel’s monograph [2]. The history of the Ulam problem (concerning the stability of a functional equation) and of stability in the sense of Hyers–Ulam is well known. In particular, Hyers–Ulam stability for linear recurrences and for systems of linear recurrences is considered in [3,4,5,6,7,8,9,10,11,12,13,14,15,16], and the references therein.



The relationship between exponential stability and Hyers–Ulam stability has been studied in the articles [3,8,9,17,18], and this article continues these studies.




2. Notations and Definitions


By C, we denote the set complex numbers and Z+ is the set of all nonnegative integers. Now, Cm (with m a given positive integer) is the set of all vectors v=(ξ1,⋯,ξm)T with ξj∈C for every integers 1≤j≤m; here and in as follows T denotes the transposition. The norm on Cm is the well-known Euclidean norm defined by ∥v∥:=(|ξ1|2+⋯+|ξm|2)12. In addition, Cm×n (with m and n given positive integers) denotes the set of all m by n matrices with complex entries. In particular, Cm×m becomes a Banach algebra when it is endowed with the (Euclidean) matrix norm defined by ∥M∥:=sup∥v∥≤1∥Mv∥,v∈Cm,M∈Cm×m. As is usual, the rows and columns of a matrix M∈Cm×n are identified by vectors of the corresponding dimensions and in that case its norm is the vector norm. The entry mij of a matrix M (i.e., the entry in M located at the intersection between the ith row and the jth column) is denoted by [M]ij. As is usual, the uniform norm of a Cm-valued and bounded sequence g=(gn) is defined and denoted by ∥g∥∞:=supj∈Z+∥gj∥.



Let ε>0 be given. We recall (see also [8] for the two-dimensional case) that a scalar valued sequence (yj) is an ε-approximative solution of the linear recurrence


xn+3=anxn+2+bnxn+1+cnxn,n∈Z+



(1)




if


|yn+3−anyn+2−bnyn+1−cnyn|≤ε,∀n∈Z+.



(2)







The recurrence in Equation (1) is Hyers–Ulam stable if there exists a positive constant L such that for every ε>0 and every ε-approximative solution y=(yj) of Equation (1) there exists an exact solution θ=(θj) of Equation (1) such that ∥y−θ∥∞≤Lε.



Remark 1.

Since any ε-approximative solution of the recurrence in Equation (1) can be seen as a solution of the nonhomogeneous equation


xn+3−anxn+2−bnxn+1−cnxn=fn+1,n∈Z+,



(3)




for some scalar valued sequence (fn) with f0=0 and ∥(fk)∥∞≤ε, one has that Equation (1) is Hyers–Ulam stable if and only if there exists a positive constant L such that for every ε>0, every sequence as above, and every initial condition Y0=(z0,v0,w0)T∈C3, there exists an initial condition X0=(x0,x1,x2)T∈C3 such that


ϕ(n,Y0,(fk))−ϕ(n,X0,(0))≤Lε.



(4)







Here, and in what follows, (ϕ(n,Y0,(fk)) denotes the solution of the nonhomogeneous linear recurrence in Equation (3) initiated from Y0.





Proof. 

See the proof of Proposition 3.1 in [9]. □






3. Background, Previous Results and the Main Result


Proposition 1.

([19]) Let A be a 3 by 3 matrix whose spectrum (i.e., the set of its eigenvalues σ(A):={x,y,z}) satisfies the condition


(x−y)(x−z)(y−z)≠0.



(5)







Then, for every nonnegative integer n, one has


An=xnB+ynC+znD



(6)




where


B=(A−yI3)(A−zI3)(x−y)(x−z),C=(A−xI3)(A−zI3)(y−x)(y−z)



(7)




and


D=(A−xI3)(A−yI3)(z−x)(z−y).



(8)









Remark 2.

(i) The matrices B,C and D in Equation (6) are orthogonal projections, that is


BC=BD=CD=03; the null matrix of order three,



(9)




and


B2=B,C2=C, and D2=D.



(10)




(ii) In addition, B,C, and D are nonzero matrices.





Proof. 

Under assumption in Equation (5), the characteristic polynomial PA and the minimal polynomial mA of A coincide and PA(λ)=(λ−x)(λ−y)(λ−z). Thus, from the Hamilton–Cayley Theorem we have PA(A)=(A−xI3)(A−yI3)(A−zI3)=03, and Equation (9) becomes clear.



To prove Equation (10), it is enough to see that


B2−B=(A−yI3)(A−zI3)(A−xI3)(A−(y+z−x)I3))(x−y)2(x−z)2;








the details are clear thus omitted. Then, we apply the Hamilton–Cayley theorem and obtain Equation (10).



Finally, assuming that B=03, the polynomial


Q(λ)=(λ−y)(λ−z)(x−y)(x−z)








is annulated by A and its degree is equal 2 and is a contradiction with the minimality of the degree of mA. □





Let q, (aj), (bj),(cj) be as above. Recall that


A(q):=Aq−1⋯A0, where Aj:=010001cjbjaj,j∈Z+.



(11)







Our main result reads as follows.



Theorem 1.

Assume that the eigenvalues x,y,z (of A(q)) satisfy the condition in Equation (5). Then, the following two statements are equivalent:



1.The linear recurrence in C


xn+3=anxn+2+bnxn+1+cnxn,n∈Z+



(12)




is Hyers–Ulam stable.



2.The eigenvalues of A(q) verify the condition


(|x|−1)(|y|−1)(|z|−1)≠0.



(13)









The proof of the implication 2⇒1 is covered (for the most part) in the existing literature. We present the ideas and complete the details. For unexplained terminology, we refer the reader to [8,9]. The following result is taken directly from the second section of [9].



Let X be a complex, finite dimensional Banach space and let B={Bn}n∈Z+ and P={Pn}n∈Z+ be two families of linear operators acting on X. Assume that:



[A1] Bn+q=Bn and Pn+q=Pn, for all n∈Z+ and some positive integer q.



[A2] Pn2=Pn, for all n∈Z+, that is, P is a family of projections.



[A3] BnPn=Pn+1Bn, for all n∈Z+. In particular, this yields that Bnx∈ker(Pn+1) for each x∈ker(Pn).



[A4] For each n∈Z+, the map


x↦B|nx:=Bnx:ker(Pn)→ker(Pn+1)








is invertible. Denote by (B|n)−1 its inverse.



We say that the family B is P-dichotomic if there exist four positive constants N1,N2,ν1 and ν2 such that

	(i)

	
∥UB(n,k)Pk∥≤N1e−ν1(n−k) for all n≥k≥0.




	(ii)

	
∥UB(n,k)(I−Pk)∥≤N2eν2(n−k) for all 0≤n<k.









Here, UB(n,k)=Bn−1⋯Bk when n>k,UB(k,k)=I-the identity operator on X, and UB(n,k):=(B|k)−1·⋯·(B|n−1)−1 when n<k.



Theorem 2.

([9]) Assume that the families B and P satisfy [A1]–[A4] above. The following four statements are equivalent:



(1) The monodromy operator B(q):=Bq−1⋯B0 is hyperbolic (that is, the spectrum of B(q) does not intersect the unit circle Γ={w∈C:|w|=1}, or equivalently (with the terminology in [9]) it possesses a discrete dichotomy.



(2) The family B is P-dichotomic.



(3) For each bounded sequence (Gn)n∈Z+,G0=0 (of X-valued functions) there exists a unique bounded solution (starting from ker(P0)) of the difference equation.


xn+1=Bnxn+Gn+1,n∈Z+.











(4) The family B is Hyers–Ulam stable.





We mention that the equivalence between (2) and (3) still works when X is an infinite dimensional Banach space (see [20]). We use Theorem 2 to prove 2⇒1 in Theorem 1.



The main ingredient in the proof of the implication 1⇒2 in Theorem 1 is the following Lemma.



With A we denote the set of all matrices Aj (with j∈Z+), where Aj is given in Equation (11)) and the matrix UA(n,k) is defined above.



Lemma 1.

If the spectrum of A(q) intersects the unit circle then for each ε>0 there exists a C-valued sequence (fj)j∈Z+ with f0=0 and ∥(fj)∥∞≤ε such that for every initial condition Z0=(x0,y0,z0)T∈C3, the C-valued sequence


UA(n,0)Z0+∑k=1nUA(n,k)Fk11n∈Z+



(14)




(with Fk=(0,0,fk)T), is unbounded.






4. Proofs


Proof of Lemma 1.

We first use Proposition 1 with A(q) instead of A. Assume that the eigenvalue x has modulus 1. Let Px be the Riesz projection associated to A(q) and x; that is


Px=12πi∫C(x,r)wI3−A(q)−1dw,








where C(x,r) is the circle centered at x of radius r, and r is small enough that y and z are located outside of the circle. Using Dunford calculus (see [21]), it is easy to see that PxA(q)n=xnB, for each n∈Z+. Consider the matrix B from Equation (6), of the form:


B=b11b12b13b21b22b23b31b32b33.











The solution of the system


Xn+1=AnXn+Fn+1,n∈Z+,



(15)




initiated from Z0, where Xn:=znvnwnT∈C3,Fn=00fnT and


An:=010001cnbnan








is given by


Φn:=Φ(n,Z0,(Fk))=UA(n,0)Z0+∑k=1nUA(n,k)Fk.



(16)







Denote by φ(n,Z0,(fk) the solution of Equation (1). An obvious calculation yields


φn:=φ(n,Z0,(fk))=UA(n,0)Z0+∑k=1nUA(n,k)Fk11.



(17)







In fact, one has Φn=φnφn+1φn+2T.



Case 1.1. Let b13≠0. Set


Fk=xk/qu0, if k=nq0, ifk is not a multiple of q,



(18)




where u0:=00c0T and c0 is a randomly chosen nonzero complex scalar with |c0|<ε. Successively, one has


Φnq=UA(nq,0)Z0+∑k=1nqUA(nq,k)Fk










=UA(nq,0)Z0+UA(nq,0)F0+UA(nq,q)Fq+⋯+UA(nq,nq)Fnq










=UA(nq,0)Z0+∑j=1nUA(nq,jq)Fjq=A(q)nZ0+∑j=1nxjA(q)n−ju0,








that yields


PxUA(nq,0)Z0+∑k=1nqUA(nq,k)Fk










=PxA(q)nZ0+∑j=1nxjPxA(q)n−ju0










=xnBZ0+∑j=1nxjxn−jBu0.










=xnBZ0+nxnBu0.











Since the sequence (xnBZ0)n is bounded, it is enough to prove that the sequence ([nxnBu0]11)n is unbounded, and note


|[nxnBu0]11|=nb13c0→∞ as n→∞.











Case 1.2. Let b23≠0. Arguing as above we can show that φn+1 is unbounded, that is that φn is unbounded as well.



Case 1.3. Analogously, we can treat the case b33≠0.



Case 2.1. Let b13=b23=b33=0 and b12≠0. Set


Fk=xk/qAq−1u0, if k=nq0, if k is not a multiple of q,



(19)




where u0 and c0 are taken as above. We obtain


Φnq=A(q)nZ0+∑j=1nxjA(q)n−jAq−1u0








which leads to


φnq=∑j=1nxjPxA(q)n−jAq−1u011=∑j=1nxjxn−jBAq−1u011=∑j=1nxnb12c0=nxnb12c0=nb12c0→∞ as n→∞.











Case 2.2. Let b22≠0. Similar to the previous case, we can show that φn+1 is unbounded, that is that φn is unbounded as well.



Case 3. Let b12=b13=0 and b11≠0. Then, set


Fk=xk/qAq−2Aq−1u0, if k=nq0, if k is not a multiple of q,



(20)




with u0 and c0 as above.



As in the previous cases, we obtain


∑j=1nxjPxAn−jAq−2Aq−1u011=nxnb11c0=nb11c0→∞ as n→∞,








therefore (φn) is again unbounded.



Finally, we remark that the matrix B cannot be of the form 000*00**0. Indeed, if this is the case, all eigenvalues of B are equal to 0 and the Hamilton–Cayley Theorem yields B3=03. Since B2=B we obtain B2=03, that is, B=03. This contradicts the statement in Remark 2, (ii). □





Proof of Theorem 1.

1⇒2. We argue by contradiction. Suppose that σ(A(q)) intersects the unit circle. Without loss of generality, assume that x is an eigenvalue of A(q) and |x|=1. Let Y0 and X0 be as in the Remark 1. From Lemma 1, it follows that the sequence in Equation (14) with Y0−X0 instead of Z0 is unbounded and this contradicts Equation (4).



2⇒1. From the assumption and Theorem 2, it follows that the system Xn+1=AnXn is Hyers–Ulam stable. Thus, for a certain positive constant L, every ε>0, every sequence (fn), every Y0 and some X0 one has


ϕ(n,Y0,(fk))−ϕ(n,X0,(0))










=UA(n,0)(Y0−X0)+∑k=1nUA(n,k)Fk11










≤UA(n,0)(Y0−X0)+∑k=1nUA(n,k)Fk≤Lε








for all n∈Z+. Now, the assertion follows from Remark 1. □






5. An Example


The following example illustrates our theoretical result.



Example 1.

The linear recurrence of order three


xn+3=sin2nπ3xn+2+cos2nπ3xn+1+cnxn,n∈Z



(21)




(with


cn=1,if n is a multiple of 30,elsewhere)








is Hyers–Ulam stable. Indeed, with the above notation one has


A0=010001110A1=0100010−1232








and


A2=0100010−12−32.











Now, the monodromy matrix associated to Equation (21) is


A(3)=A2A1A0=1103232−12−54−5434











The characteristic equation associated to A(3) is


λ3−1+334λ2+3−14λ=0








and the absolute value of each of its solutions is different to 1.





Remark 3.

Reading [22], we note that an interesting question is if the spectral condition (|x|−1)(|y|−1)(|z|−1)≠0 is equivalent to Hyers–Ulam stability of the recurrence in Equation (12) with Z+ replaced by Z. We thank the anonymous reviewer who made us aware of the work in [22].
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