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Abstract: The supplier appraisal process is one of the most important decision problems for
companies focused on improving supply chain costs. Supplier selection is typically a multi-criteria
decision making (MCDM) issue, as there is a lot of uncertain information. In order to overcome this
issue, The Pythagorean Fuzzy Set is applied to handle the uncertainties involved in comparing the
alternatives, criteria and opinions of decision makers. At the same time, a potential of Dimensional
Analysis is a technique which deploys an association of the criteria capturing the interrelationship
normally present in MCDM. In this sense, the purpose of this paper is to evaluate the suppliers in a
supply chain cycle using Pythagorean Fuzzy Set and Dimensional Analysis. Finally, the applicability
of the proposed method is illustrated through numerical examples, and a validation via Spearman
correlation and Cronbach’s alpha.

Keywords: multi-criteria decision making; supplier selection; Pythagorean Fuzzy Set; Dimensional
Analysis

1. Introduction

In today’s competitive world, the selection of suppliers has become a complicated problem that
involves a large number of academics and professionals [1]. The selection of the provider depends
on a variety of criteria such as characteristics of markets, demands from customers, delivery times,
quality, price and service excellence [2,3]. Therefore, choosing the best suppliers can be conflicting in
nature. According to Kang et al. [4], a supplier’s selection can be modeled as a typical multi-criteria
decision making problem.

Moreover, various supplier selection methods such as Analytical Hierarchy Process (AHP),
Analytic Network Process (ANP), Artificial Neural Network (ANN), Technique for Order Preference
by Similarity to Idal Solution (TOPSIS), Data Envelopment Analysis (DEA), Integer programming,
Genetic Algorithms and combinations of any of these tools are observed in the literature [1]. However,
in decision making, most of these methods only consider quantitative criteria, and other type of
factors—such as incomplete information, qualitative criteria and imprecision preferences—are not
included [5].

In this context, the Fuzzy Set method has recently been applied for supplier selection [5]. As per a
proposal from Jafarnejad and Aghasi [6], the integration of fuzzy Preference Ranking Organization
Methods for Enrichment Evaluations (PROMETHEE) and linear programs for supplier selection
under uncertainty. This is applicable in business to allow for the building of road maps for profit
maximization. Mavi, Goh and Mavi [7] proposed a Shannon entropy and fuzzy TOPSIS, the first for
weighing criteria and the second for ranking suppliers. Their findings show that demand risk is the
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most important factor. On other hand, Bolturk [8] developed the Pythagorean fuzzy extension of the
COmbinative Distance-based Assessment (CODAS) method, which is applicable in supplier selection
problems that are vague and imprecise. Additionally, the literature shows [5,6,9,10] that most of these
methods such as AHP, TOPSIS—including fuzzy versions—and others have the following limitations:

Do not take into account the interrelationship among three or more arguments.
Limited qualitative criteria.
Imprecise preferences of decision makers.

Dimensional Analysis (DA) is able to capture the interrelationship between multiple arguments (or
criteria) into single dimensionless indexes [11], making it convenient in multi-criteria decision making
(MCDM) problems with different measurement scales [11-13]. The main advantage of DA is that is can
integrate the opinions of a group of decision makers (DM) on diverse information, such as alternatives,
criteria and the importance of each criteria [11]. Nevertheless, DA is weak using quantitative (crisp)
and qualitative (fuzzy) information, which is commonly present in MCDM problems.

On the other hand, Pythagorean Fuzzy Sets (PFS) have become a new generalization of fuzzy sets
(FS) and can handle and model uncertain information in a more “flexible” way in the DM process than
can Intuitionistic Fuzzy Sets (IFS). The main advantage of PFS is the condition that the square sum
of their degree of membership and the degree of non-membership is equal to or less than 1 [14-21].
For example, when a decision maker provides the evaluation information whose membership grade is
0.4 and the degree of non-membership is 0.9, an IFS cannot address this problem because 0.4 + 0.9 > 1.
However, 0.4% + 0.92 < 1. That is, a PFS is able to represent this evaluation information [15].

Based on the aforementioned considerations, this research could have industrial application
in medium and small enterprises, and may be directed to management, engineers and buyers that
tackle the issue of supplier appraisal. Using an integrated tool: an extension of DA with PFS: the
qualitative criteria, imprecision preferences of the DMs and interrelationship among the multi-input
arguments can be overcame for multi-input arguments. The rest of the paper is organized as follows:
In Section 2, the preliminaries of Pythagorean Fuzzy Sets (PFS) and Dimensional Analysis (DA) are
given. In Section 3, the methodology of the integration of PFS and DA is given, and an algorithm is
proposed in eight steps. In Section 4, two illustrated examples for supplier selection problems are
presented, applying the proposed method. This approach is as follows: (1) A sensitivity analysis, (2) a
comparative analysis with other fuzzy methods; in addition a Spearman correlation and Cronbach’s
alpha in order to validate our method; (3) results. Finally, in Section 5, the conclusion is given and
suggestions for further research are presented.

2. Preliminaries

2.1. Pythagorean Fuzzy Set (PFS)

Basic concepts of PFS are the following:
Definition 1. [14,16,20], let X be a universe of discourse. Then IFS I in X is given by:

I'={(x pr(x), v (x))|x e X}. @

Definition 2. [17,20-24], let X be a universe of discourse. A PFS P in X is given by:

P = {(x, up(x), vp (x))|x e X}. )
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The degree of indeterminacy [14,16,23-25] is expressed, where up : X — [0,1] denotes the degree
of membership and vp : X — [0,1] denotes the degree of non-membership of the element xeX to the
set P. Therefore, the degree of indeterminacy is given by:

%) = /1= (p (1)) = (vp ()% ()

According to Zhang and Xu [14], for convenience called (up (x), vp (x)) a PFS denoted by
p = (up, vp).

Definition 3. [15,16,18]; for any PFS, p = (u, v), p is defined as follows:

s(p) = ()* = (v)? )
where s(p)e[—1,1].
Definition 4. [14,16,18]; for any PFS, p = (u, v), the accuracy is defined as follows:

a(p) = () + (v)? ®)
where a(p) € [0,1].

Definition 5. [16,26], if M, N € PFSs, and then the operations are defined as follows:

ME = {(x, vm(x), pu(x) ) x € X} ®)

M C Niffvx € X,um(x) < pn(x)andvpy(x) > vn(x) @)

M = Niffvx € x,ymx) = un(x) and vy (x) = vy () ®)
mo={{x1,0)]x € X} )

={(x,0,1)|x € X} (10)

MON = {{x, mxm i (), v (x) Vo (x) ) [x € X} a1
MUN = {(x, i (x) V o (x), v () A Vie(2) ) [x € X} 12)

M &N {(x, /18y (0)+ #3(x) = 183, () (x), vm(x)ow () ) [x € X (13)

_ pa ()= % () v
MON = {(x, /B, ) x € X, if pua(0) 2 v

< minfpy(x), DT

1/2 X 71/2 X .
MoN = {(x [0 ) 5 e XY, if v(x) > un(@), (%)

(15)
< minfju(x), PEEE) )
pr= (1= (=) (16)
M ®@N = {(x, upm(x)un(x), \/1/]2\/I (x)+ v — 3, (x)vd(x) ) |x € X} (17)

Ap= (1= (1— ), v). (1)



Symmetry 2019, 11, 336 40f 13

2.2. Dimensional Analysis (DA)

DA is a technique that has been used in the decision making process, particularly for the selection
of multi-criteria-type alternatives. DA is an MCDM technique that assumes there is an optimal solution
better than the rest, S*. DA compares each alternative in evaluation with this ideal alternative to
generate an index of similarity, therefore the highest index of similarity is chosen as the best alternative
to the MCDM problem [11-13].

Definition 6. Let af(k=1,...,n)(I=1,...m) and S} = a; (I =1,...,m) represent a database of crisp
numbers. DA is defined as follows:

1S;(ay, a5,...,ay,) :H(S—i) (19)
1

where 1S; is called the index of similarity for alternative i; af is the crisp evaluation of criterion 1 for alternative i;
S is the crisp value of the ideal alternative for criterion I; w; (z = 1,...,m) is the crisp weight for criterion I.

3. Methodology

In this section, we introduced the Pythagorean Fuzzy Dimensional Analysis (PFDA) approach for
MCDM problems.
Based on Equation (18), the definition of PFDA is given as follows.

Definition 7.  Pythagorean Fuzzy Set Dimensional Analysis method. Let w; = (Ui Vi) (i =1,2,...1)
, i
(j=1,2...m)and S;- = (‘uwz, w i)(j =1,2...m) bea collection of PF;, if

PFIS;(w], wh,..., wy) = (D] (S—f) 1) = (@7 (E) ), (20)

then PFIS; is named “Pythagorean Fuzzy Index of Similarity” for alternative i. Here, w; is the Pythagorean
fuzzy evaluation of criterion j for alternative i, S]’f is the Pythagorean fuzzy value of the “ideal alternative”
for criterion j, and T; (j =1,2,...m) is the corresponding crisp weight for criterion j satisfying T; >

0(j=12,...m)and E T =1
j=1

Based on Equations (3)—(7) of the PFS described in Section 2, the next results can be derived.

Theorem 1. Let 6; = (yéi,vg,;)(i =1,2,...,n)(j=1,2,...,m) be a collection of PFS. Therefore, the
N
aggregated value, by using PFIS is the following:

m m m
. . , . T T'
]:1

j=1

Proof. Based on Equation (15) described in Section 2, we can obtained Equation (23):

[ (Ml
= = ) = pni, vt ). 22
J i \ Moy 1= Var (” g 5]') -
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Then, by Equation (16):
T , .
@' = (g [1= =), 23)
Also, according to Equation (17):
" T,
® (&)=
j=1
: : : 24
(™) ™) (g ™) L= (A =g =Ty D) = @Y
m ) m T;
M <u¢;>Tu\/1 SO )
j=1 j j=1 ]

This completes the proof of Theorem 1. [

When the MCDM problem contains both types of criteria, benefit criteria (BN) and cost criteria
(C), the following has to be considered. If #; € BN; then:

. 0(; ]’lw; Uw]’: —Vw
L= 2 = a|l | = i) Vai i € BN. 25
& 5; o 1_ Vo <P‘§j g}) ] (25)

Otherwise, if nj € C; then,

I e
@

Following the next conditions,

Vo = ((mim/w,: |j € BN), (maxv,; |j € C)), (28)
j j

where

S] = (Hw;/\'w;‘)' (29)
If DMy = {pk, vk, 70 } is a Pythagorean fuzzy number, the weight of DM [27] is represented by:

e = (et e (u/ (i + vi))) (30)
k I
V=1 (e + 7 (e / (e +vie)))

where ch:l e =1
Preferences of the DM need to be gathered in a Pythagorean fuzzy matrix [27]:

Xy = PFWA(X{), X, 5,5? x)y = ?u)lx,ﬁ}) @ EUZX]SIZ) ®. 00X .0 -
wjXy' = [Ther (@ ) (@)l

The algorithm for proposed PF-DA below.
In accordance with above analysis, PF-DA is defined in the following steps:

Step 1: Define the Pythagorean decision matrix.

Step 2: Select the ideal solution in accordance with BN or C criteria values.
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Step 3: Establish criteria weights, use Equations (30) and (31).
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Step 4: Standardized matrix—use Equation (25) for BN criteria, Equation (26) for C criteria.

Step 5: Standardized matrix elevated in accordance with criteria weights, use Equation (16).

Step 6: Generate PFIS index, use Equation (21).
Step 7: Establish the highest index of the index of similarity (IS), use Equation (4).
Step 8: Establish the ranking, with highest values to lowest values.

4. Numerical Illustration

In this section, we consider a decision making problem that a manufacturing company is facing at
Ciudad Juarez, Mexico. Mainly the problem is focused on supplier selection to achieve cost reductions
at the finished goods manufacturing phase. The company is considering five suppliers for electronics
items. Suppliers are defined by A = {A;, A, A3, A4, As}. Four criteria involved are defined as:

Price (X7): the most minimum values are selected.

Facility (X3): great assessments are selected.

Lead time (X3): high assessments are selected.

Quality (Xy): great assessments are selected.

Step 1: In accordance with DM evaluations, the Pythagorean fuzzy decision matrix is defined as

follows:

{0.10, 0.97} {0.25, 0.90}
{0.40, 0.87} {0.60, 0.71}
{0.96, 0.04} {0.96, 0.04}
{0.71, 050}  {0.10, 0.97}
{050, 0.80} {0.40, 0.87}

{1.00, 0.00}
{0.50, 0.80}
{0.96, 0.04}
{0.10, 0.97}
{0.71, 0.50}

{0.80, 0.44}
{0.70, 0.60}
{0.10, 0.97} |. (32)
{0.25, 0.92}
{0.50, 0.80}

Step 2: Establish the ideal solution in accordance with criteria values:
S*:{0.10, 0.97} {0.96, 0.04} {1.00, 0.00} {0.80, 0.44}. (33)
Step 3: Establish the criteria weights, use Equations (30) and (31):

{0.24}
{0.24}
{0.22}
{0.31}

W{Xll X2, X3, X4} = (34)

Step 4: In order to standardize the matrix, use Equations (25) and (26) in accordance with BN or C:

{1.0000, 0.0000}
{0.2500, 0.6564}
{0.1042, 0.9692}
{0.1408, 0.8585}
{0.2000, 0.7139}

{0.2604, 0.8998}
{0.6250, 0.7094}
{1.0000, 0.0000}
{0.1042, 0.9700}
{0.4167, 0.8698}

{1.0000, 0.0000}
{0.5000, 0.8000}
{0.9600, 0.0400}
{1.0000, 0.9700}
{0.7100, 0.5000}

{1.0000, 0.0000}
{0.8750, 0.4543}
{0.1250, 0.9627} (35)
{0.3125, 0.8997}
{0.6250, 0.7440}

Step 5: Then, each criteria column in the standardized matrix is elevated with criteria weights;

use Equation (16):

{1.0000, 0.0000}
{0.7170, 0.3557}
{0.5811, 0.6997}
{0.6247, 0.5237}
{0.6796, 0.3965}

{0.7240, 0.5731}
{0.8930, 0.3932}
{1.0000, 0.0000}
{0.5810, 0.7019}
{0.8100, 0.5362}

{1.0000, 0.0000}
{0.8590, 0.4487}
{0.9910, 0.0188}
{0.6030, 0.6806}
{0.9270, 0.2476}

{1.0000, 0.0000}
{0.9590, 0.2629}
{0.5250, 0.7451} (36)
{0.6970, 0.6340}
{0.8640, 0.4703}
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Step 6: Then, to generate an index of similarity, PFIS;, use Equation (21):

0.7240 0.5730
0.5276 0.6720
0.3023 0.8790 |. (37)
0.1525 0.9390
0.4416 0.7490

Step 7: To obtain the highest index of similarity, use Equation (4):

0.1958
~0.1726
—0.6817 |. (38)
—0.8585
—0.3661

Step 8: Establish the ranking; the results reveal that:
Ar > Ay > As > Az > Ay

Therefore A is selected as the best supplier, and the highest index of similarity is chosen as the
best alternative.

Mlustration Example 2

In this example taken from the literature [8], an entrepreneur wants to select a supplier. Suppliers
are defined by P = {P;, P», P;, Py, P5}, and the evaluation criteria are defined as:

Product Quality (X7): BN criteria.
Delivery Compliance (X»): BN criteria.
Price (X3): high assessment C criteria.
Production Capability (X4): C criteria.
Technological Capability (Xs5): C criteria.

Step 1: A linguistic evaluation process is preferred since expert’s opinions, and then the
Pythagorean fuzzy decision matrix is defined by DMs:

{022, 0.65} {047, 056} {029, 051} {0.55, 0.76} {0.28, 0.69}
{0.67, 020} {0.23, 0.73} {0.39, 0.45} {0.61, 0.70} {0.37, 0.61}
{041, 049} {042, 059} {0.34, 041} {0.65, 0.68} {0.48, 0.58}
{055, 0.48} {0.63, 0.55} {0.46, 0.40} {0.67, 0.67} {0.65, 0.57}

(39)

Step 2: Establish the ideal solution in accordance with criteria values:
S*:{0.67, 0.20} {0.63, 0.55} {0.29, 0.51} {0.55, 0.76}{0.28, 0.69}. (40)
Step 3: Weights are assigned to each criterion by the experts:

{0.25}
{0.10}
Wix, %, X5, X3 = | 1050} |- (41)
{0.10}
{0.05}
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Step 4: In order to standardize the matrix, use Equations (26) and (27) in accordance with BN or C:

{3.0455, 0.6312}  {1.3404, 0.1262} {1.0000, 0.0000} {1.0000, 0.0000} {1.0000, 0.0000}
{1.0000, 0.2000} {27391, 0.7300} {1.3448, 0.2687} {1.1091, 0.4144} {1.3214, 0.4070}
{1.6341, 0.4900} {1.5000, 0.5900} {1.1724, 0.3326} {1.1818, 0.4629} {1.7143, 0.4588}
{1.2182, 0.4800} {1.0000, 0.5500} {1.5862, 0.0000} {1.2182, 0.4833} {2.3214, 0.4733}

(42)

Step 5: Then, each criteria column in the standardized matrix is elevated with criteria weights;
use Equation (18):

{1.3210, 0.3454}  {1.0297, 0.0400} {1.0000, 0.0000} {1.0000, 0.0000} {1.0000, 0.0000}
{1.0000, 0.1008}  {1.1060, 0.2707} {1.1597, 0.1918} {1.0104, 0.1366} {1.0140, 0.0949}
{1.1306, 0.2576}  {1.0414, 0.2047} {1.0828, 0.2386} {1.0168, 0.1544} {1.0273, 0.1084}
{1.0506, 0.2517}  {1.0000, 0.1881} {1.1294, 0.0000} {1.0199, 0.1620} {1.0430, 0.1122}

(43)

Step 6: Then, to generate an index of similarity, PFIS;, use Equation (22):

1.3603 0.3475
1.3141 0.3752
1.3318 0.4314
1.4076 0.3624

(44)

Step 7: To obtain the highest index of similarity, use Equation (4):

1.7297
1.5862
1.5875
1.8499

(45)

Step 8: Establish the ranking; the results reveal that:
Py> P> P3> P,

Therefore Py is selected as the best supplier; the highest index of similarity is chosen as the
best alternative.

4.1. Sensitivity Analysis

Different weights are assigned by changing the criteria weights to those obtained by PF-DA in
order to observe how much it would influence the final rankings of alternatives. In the first example,
we changed the weights of criteria as is shown in Table 1.

Table 1. Example 1 sensitivity analysis.

C1 C2 C3 C4 Rankings

0.24 0.24 0.22 0.31 Al>A2>A5>A3> A4
0.25 0.25 0.25 0.25 Al>A2>A5>A3> A4
0.2 0.2 0.3 0.3 Al>A2>A5>A3> A4
0.3 0.3 0.2 0.2 Al>A2>A5>A3> A4
0.1 0.3 0.2 0.4 Al>A2>A5>A3> A4
0.5 0.2 0.15 0.15 Al>A2>A5>A3> A4

In the second example, we changed the weights of criteria as is shown in Table 2.
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Table 2. Example 2 sensitivity analysis.

C1 c2 C3 C4 C5 Rankings

0.25 0.1 0.5 0.1 0.05 P4>P1>P3>P2
0.1 0.1 0.3 0.4 0.1 P4>P2>P3>P1
0.15 0.15 0.3 0.2 0.2 P4>P3>P2>P1
0.1 0.1 0.4 0.2 0.2 P4>P2>P3>P1
0.3 0.1 0.15 0.15 0.3 P4>P3>P1>P2
0.2 0.2 0.2 0.2 0.2 P3>P4>P2>P1

4.2. Comparative Analysis

In accordance with example 1, using the PF-Multi-O bjective Optimization based on Ratio Analysis
(MOORA) method, the results were the following;:

Ar > Ay > Az > As > Ay

Furthermore, applying the PF-Technique for Order Preference by Similarity to Ideal Solution
(TOPSIS) method [15], we obtained the following results in Table 3.

Table 3. PF-TOPSIS closeness and rank.

D (X;, X™) D (X;, X*) Closeness (X;) Rank
0.7063 0.2062 0.43059021 1
0.3355 0.3955 —1.23888967 2
0.4937 0.4743 —1.30058103 3
0.2427 0.8114 —3.4439003 5
0.3559 0.4981 —1.69490467 4

Then we have: A1 > Ay > Az > As > Ajg.

The Spearman correlation coefficient is based on the ranked values for each variable rather
than the raw data. Spearman correlation is often used to evaluate relationships involving ordinal
variables [28]. Table 4 shows the rankings to calculate the Spearman correlation coefficient [28,29] is

given by:
6% Y1 d?
o—=1— - =i=1"i 16
S 7”13 —n ( )
Table 4. Spearman correlation calculation for PF-DA, PEEFMOORA and PF-TOPSIS.
Alternative PF-DA Ranking PF-MOORA Ranking  PF-TOPSIS Ranking d d?
Al 1 1 1 0 0
A2 2 2 2 0 0
A3 4 3 3 1 1
A4 5 5 5 0 0
Ab 3 4 4 1 1
n
Whenn=5,and ¥ dlz = 2, then we have the following:
i=1
6%2
rs=1————=009. 47
S 53 _ 5 ( )

On other hand, Cronbach’s alpha [30-32] is calculated using SPSS as is shown in Table 5.
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Table 5. Reliability statistics for PF-DA, PE-MOORA and PF-TOPSIS.

Cronbach’s Alpha Cronbach’s Alpha Based on the Typified Elements N of Elements
0.977 0.977 3

The Figure 1 is a graphic with the ranking comparison for PE-DA, PF MOORA and PF-TOPSIS.

5
4
3
2
5 2
[ ..
0
’c}
4 3
@— PF-AD ranking PF MOORA ranking PF TOPSIS ranking

Figure 1. PF-DA vs. PE-MOORA vs. PF-TOPSIS rankings.
In accordance with example 2, using the PF-CODAS method, the results show the following;:
Py > P> P, > Ps.

Table 6 shows the rankings to calculate the Spearman correlation coefficient [28,29], for illustration
example 2:

Table 6. Spearman correlation calculation for PF-DA and PF-CODAS

Alternative PF-DA Ranking PF CODAS Ranking d d?
P1 4 4 0 0
P2 1 1 0 0
P3 3 2 1 1
P4 2 3 1 1
n
Whenn=4,and ) dlz = 2, then we have the following:
i=1
6%2
re=1— —— =0.8. 48

The Figure 2 is a graphic with the ranking comparison for PF-DA and PF-CODAS.
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PF-AD ranking PF CODAS ranking

Figure 2. PF-DA vs. PF-CODAS rankings.
On other hand, Cronbach’s alpha [30-32] is calculated using SPSS as is shown in Table 7.

Table 7. Reliability statistics for PE-DA and PF-CODAS.

Cronbach’s Alpha N of Elements
0.889 2

4.3. Results

Due the PFS satisfies the condition that the square sum of their degree of membership and the
degree of non-membership was equal to or less than 1 [14,16-21], the PFS is able to represent the
evaluation information [15]; then we presented two illustrated examples using PFS.

In illustration example 1, for PF-DA, PE-MOORA and PF-TOPSIS, where A; was selected as
the best supplier, the highest index of similarity was chosen as the optimal alternative. The result
shows that the Spearman correlation was 0.9, which proved that there is a substantial correspondence
between our approach, PF-DA, and the two MCDM approaches stated in the literature, namely
PF-MOORA and PE-TOPSIS. On other hand, the Cronbach’s alpha was 0.977, which is a high value
and indicates strong consistency [33]. This means that PF-DA is suitable for dealing with MCDM
problems. Moreover, the integration of PF-DA provides advantages over PE-MOORA and PF-TOPSIS
as DA attempts to integrate the opinions of a group of decision makers (DM) on diverse information,
including alternatives, criteria and the importance of such criteria [11], whereas MOORA and TOPSIS
do not.

On other hand, in illustration example 2, for PF-DA and PE-CODAS, P; was selected as the best
supplier as it presented the highest index of similarity, indicating the optimal alternative. However,
in CODAS the negative ideal solution is considered [8], while in DA the positive ideal solution is
considered [11,12]. The Spearman correlation was 0.8, which means that there is substantial similarity
between the PF-DA and PF-CODAS approaches. The Cronbach’s alpha was 0.889, which is a high
value and indicates strong consistency [33].

5. Conclusions

In this paper we introduced a method of the Pythagorean Fuzzy Dimensional Analysis (PF-DA)
in fuzzy forecasting decision problems. Forecasts are interesting because they can counteract adverse
actions and simulate decisions. Therefore, it is necessary to use aggregation operators and methods
that cope well with uncertainty and inaccuracy in forecasts [33]. In this sense, the DA method is
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extended with PFS in order to deal with commonly involved problems in MCDM such as the imprecise
preferences of DMs and their interrelationships. Thus, the PF-DA method is developed in eight
steps. Furthermore, the application of the proposed method is illustrated by numerical examples
that demonstrate that the method is suitable for supplier selection. The Spearman correlation and
Cronbach’s alpha values show that PF-DA is suitable to deal with MCDM problems. In future,
works concerning PF-DA could focus on dealing with other kinds of MCDM problems such as: project
selection, investment selection, machine selection, manufacturing systems, staff selection, etc.

Author Contributions: Conceptualization, A.J.V.S. and L.A.P.D.; methodology, A.J.V.S. and L.A.P.D.; validation,
AJ.VS. and L].C.P.O,; formal analysis, A.J.V.S; investigation, A.J.V.S,; resources, E.M.G.; writing—original draft
preparation, EM.G. and A.A -L; writing—review and editing, A.J].V.S. and L.A.P.D.; supervision, L.A.P.D.; Authors
read and approved the final manuscript.

Funding: CONACYT (Consejo Nacional de Ciencia y Tecnologia), and UAC] (Universidad Auténoma
de Cd. Juarez).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Sultana, M.N.; Habibur, R.; Mamun, A.A. Multi Criteria Decision Making Tools for Supplier Evaluation and
Selection: A Review. Eur. J. Adv. Eng. Technol. 2016, 3, 56—65.

2. Gurung, S.; Phipon, R. Multi-criteria decision making for supplier selection using AHP and TOPSIS method.
Int. J. Eng. Invent. 2016, 6, 2278-7461. [CrossRef]

3. Shahryari, N.A,; Olfat, L.; Esmaeili, A.; Rostamzadeh, R.; Antuchevicieng, J. Using fuzzy Choquet Integral
operator for supplier selection with environmental considerations. J. Bus. Econ. Manag. 2016, 17, 503-526.
[CrossRef]

4.  Kang, B;; Hu, Y;; Deng, Y.; Zhou, D. A New Methodology of Multicriteria Decision-Making in Supplier
Selection Based on Z Numbers. Math. Probl. Eng. 2016, 2016, 8475987. [CrossRef]

5. Makui, A.; Gholamian, M.R. A Hybrid Intuitionistic Fuzzy Multi-criteria Group Decision Making Approach
for Supplier Selection. . Optim. Ind. Eng. 2016, 20, 61-73.

6. Jafarnejad, A.; Aghasi, E. An Integration between Fuzzy PROMETHEE and Fuzzy Linear Program for
Supplier Selection Problem: Case Study. J. Appl. Math. Model. Comput. 2015, 4, 79-88. [CrossRef]

7. Mavi, RK.; Goh, M.; Mavi, N.K. Supplier Selection with Shannon Entropy and Fuzzy TOPSIS in the
Context of Supply Chain Risk Management. In Proceedings of the 12th International Strategic Management
Conference ISMC 2016, Antalya, Turkey, 28-30 October 2016. Also published in Procedia Soc. Behav. Sci. 2016,
235, 216-225. [CrossRef]

8.  Bolturk, E. Pythagorean fuzzy CODAS and its application to supplier selection in a manufacturing firm.
J. Enterp. Inf. Manag. 2018, 31, 550-564. [CrossRef]

9.  Zhu, B,; Xu, Z. Extended hesitant fuzzy sets. Technol. Econ. Dev. Econ. 2016, 22, 100-121. [CrossRef]

10. Liu, P; Qin, X. Maclaurin symmetric mean operators of linguistic intuitionistic fuzzy numbers and their
application to multiple-attribute decision-making. J. Exp. Theor. Artif. Intell. 2017, 29, 1173-1202. [CrossRef]

11. Perez-Domnguez, L.; Alvarado-Iniesta, A.; Garca-Alcaraz, J.L.; Valles-Rosales, D.J. Intuitionistic fuzzy
dimensional analysis for multi-criteria decision making. Iran. J. Fuzzy Syst. 2018, 15, 17-40.

12.  Garcia, J.L.; Ju, C. Evaluacién y Seleccion de Tractores Agricolas con Analisis Dimensional. Acad. J. Rev.
Ing. Ind. 2010, 4, 1-8.

13. Perez-Domnguez, L.; Alvarado-Iniesta, A.; Garca-Alcaraz, J.L.; Valles-Rosales, D.]. Analisis dimensional
difuso Intuicionista para la selecciéon de personal. In Proceedings of the Congreso Internacional de
Investigacion Academia Journals 2015, Ciudad Juarez, Chihuahua, Mexico, 20-24 April 2015; Volume 2.

14.  Zhang, X.; Xu, Z. Extension of TOPSIS to Multiple Criteria Decision Making with Pythagorean Fuzzy Sets
Extension of TOPSIS to Multiple Criteria Decision Making with Pythagorean Fuzzy Sets. J. Int. Syst. Intell.
2014, 29, 1061-1078. [CrossRef]

15. Naz, S.; Ashraf, S.; Akram, M. A Novel Approach to Decision-Making with Pythagorean Fuzzy Information.
Mathematics 2018, 6, 95. [CrossRef]


http://dx.doi.org/10.1108/BIJ-04-2014-0036
http://dx.doi.org/10.3846/16111699.2016.1194315
http://dx.doi.org/10.1155/2016/8475987
http://dx.doi.org/10.7508/aiem.2015.01.008
http://dx.doi.org/10.1016/j.sbspro.2016.11.017
http://dx.doi.org/10.1108/JEIM-01-2018-0020
http://dx.doi.org/10.3846/20294913.2014.981882
http://dx.doi.org/10.1080/0952813X.2017.1310309
http://dx.doi.org/10.1002/int.21676
http://dx.doi.org/10.3390/math6060095

Symmetry 2019, 11, 336 13 of 13

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Peng, X.; Yuan, H.; Yang, Y. Pythagorean Fuzzy Information Measures and Their Applications. Int. |.
Intell. Syst. 2017, 32, 991-1029. [CrossRef]

Liang, W.; Zhang, X.; Liu, M. The maximizing deviation method based on interval-valued pythagorean
fuzzy weighted aggregating operator for multiple criteria group decision analysis. Discret. Dyn. Nat. Soc.
2015, 2015, 746572. [CrossRef]

Sajjad, M.; Khan, A. Pythagorean fuzzy prioritized aggregation operators and their application to
multi-attribute group decision making. Granul. Comput. 2018. [CrossRef]

Mardani, A.; Nilashi, M.; Zavadskas, E.K.; Awang, S.R.; Zare, H.; Jamal, N.M. Decision Making Methods
Based on Fuzzy Aggregation Operators: Three Decades Review from 1986 to 2017. Int. |. Inf. Technol. Decis.
Mak. 2018, 17, 391-466. [CrossRef]

Wei, G.; Lu, M.A.O. Dual hesitant pythagorean fuzzy Hamacher aggregation operators in multiple attribute
decision making. Arch. Control Sci. 2017, 27, 365-395. [CrossRef]

Wei, G. Models for Green Supplier Selection in Green Supply Chain Management with Pythagorean 2-Tuple
Linguistic Information. IEEE Access 2018, 6, 18042-18060. [CrossRef]

Yager, R.R. Pythagorean fuzzy subsets. In Proceedings of the Joint IFSA world congress and NAFIPS annual
Meeting, Edmonton, AB, Canada, 24-28 June 2013; pp. 57-61.

Xu, Q.; Yu, K,; Zeng, S.; Liu, J. Pythagorean fuzzy induced generalized owa operator and its application to
multi-attribute group decision making. Int. J. Innov. Comput. Inf. Control 2017, 13, 1527-1536.

Rahman, K.; Ali, A. Some Interval-Valued Pythagorean Fuzzy Weighted Averaging Aggregation Operators
and Their Application to Multiple Attribute Decision Making. . Math. 2018, 50, 113-129.

Liang, D.; Xu, Z. The new extension of TOPSIS method for multiple criteria decision making with hesitant
Pythagorean fuzzy sets. Appl. Soft Comput. J. 2017, 60, 167-179. [CrossRef]

Biswas, A.; Sarkar, B. Pythagorean fuzzy multicriteria group decision making through similarity measure
based on point operators. Int. J. Intell. Syst. 2018, 33, 1731-1744. [CrossRef]

Pérez-Dominguez, L.; Rodriguez-Picén, L.A.; Alvarado-Iniesta, A.; Cruz, D.L.; Xu, Z. MOORA under
Pythagorean Fuzzy Set for Multiple Criteria Decision Making. Complexity 2018, 2018, 2602376. [CrossRef]
Thirumalai, C.; Chandhini, S.A.; Vaishnavi, M. Analysing the concrete compressive strength using Pearson
and Spearman. In Proceedings of the International Conference on Electronics, Communication and Aerospace
Technology, Coimbatore, India, 20-22 April 2017; pp. 215-218. [CrossRef]

Gauthier, T.D. Detecting trends using spearman’s rank correlation coefficient. Environ. Forensics 2001, 2,
359-362. [CrossRef]

Angeles, L. SAS and SPSS macros to calculate standardized Cronbach’s alpha using the upper bound of the
phi coefficient for dichotomous items. Behav. Res. Methods 2007, 39, 71-81.

Tacobucci, D.; Duhachek, A. Advancing Alpha: Measuring Reliability with Confidence. J. Consum. Psychol.
2003, 13, 478-487. [CrossRef]

Gliem, J.A.; Gliem, R.R. Calculating, Interpreting, and Reporting Cronbach’s Alpha Reliability Coefficient for
Likert-Type Scales. In Proceedings of the 2003 Midwest Research to Practice Conference in Adult, Continuing,
and Community Education, Columbus, OH, USA, 8-10 October 2003; pp. 82-88.

Ziemba, P.; Becker, J. Analysis of the Digital Divide Using Fuzzy Forecasting. Symmetry 2019, 11, 166.
[CrossRef]

® © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.1002/int.21880
http://dx.doi.org/10.1155/2015/746572
http://dx.doi.org/10.1007/s41066-018-0093-6
http://dx.doi.org/10.1142/S021962201830001X
http://dx.doi.org/10.1515/acsc-2017-0024
http://dx.doi.org/10.1109/ACCESS.2018.2817551
http://dx.doi.org/10.1016/j.asoc.2017.06.034
http://dx.doi.org/10.1002/int.21994
http://dx.doi.org/10.1155/2018/2602376
http://dx.doi.org/10.1109/ICECA.2017.8212799
http://dx.doi.org/10.1006/enfo.2001.0061
http://dx.doi.org/10.1207/S15327663JCP1304_14
http://dx.doi.org/10.3390/sym11020166
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Preliminaries 
	Pythagorean Fuzzy Set (PFS) 
	Dimensional Analysis (DA) 

	Methodology 
	Numerical Illustration 
	Sensitivity Analysis 
	Comparative Analysis 
	Results 

	Conclusions 
	References

