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Abstract: Neutrosophic cubic sets (NCSs) can express complex multi-attribute decision-making
(MADM) problems with its interval and single-valued neutrosophic numbers simultaneously.
The weighted arithmetic average (WAA) and geometric average (WGA) operators are common
aggregation operators for handling MADM problems. However, the neutrosophic cubic weighted
arithmetic average (NCWAA) and neutrosophic cubic geometric weighted average (NCWGA)
operators may result in some unreasonable aggregated values in some cases. In order to overcome
the drawbacks of the NCWAA and NCWGA, this paper developed a new neutrosophic cubic
hybrid weighted arithmetic and geometric aggregation (NCHWAGA) operator and investigates
its suitability and effectiveness. Then, we established a MADM method based on the NCHWAGA
operator. Finally, a MADM problem with neutrosophic cubic information was provided to illustrate
the application and effectiveness of the proposed method.

Keywords: weighted geometric operator; weighted average operator; neutrosophic cubic sets;
multi-attribute decision-making (MADM); neutrosophic cubic hybrid weighted arithmetic and
geometric aggregation operator (NCHWAGA)

1. Introduction

Zadeh [1] proposed the classic fuzzy set to describe fuzzy problems with the membership degree
in the closed interval [0,1]. Atanassov [2] presented the concept of the intuitionistic fuzzy set (IFS) to
express fuzzy problems by the membership function and non-membership function. Smarandache [3]
defined neutrosophic logic and introduced neutrosophic sets (NSs) to describe fuzzy problems by
the truth, falsity, and indeterminacy membership functions. For easy engineering applications,
some subclasses of NSs are defined. Wang et al. developed interval neutrosophic sets (INSs) [4]
and single-valued neutrosophic sets (SVNSs) [5]. Ye presented simplified neutrosophic sets (SNSs) [6].
Wang et al. also presented multi-valued neutrosophic sets (MVNSs) [7]. Since then, INSs, SVNSs, SNSs
and MVNSs have been widely applied in decision-making [8,9], medical diagnoses [10,11], and fault
diagnoses [12,13]. Furthermore, many scholars developed some extension forms of NSs by combining
neutrosophic sets with other sets, such as refined single-valued neutrosophic sets [14], intuitionistic
neutrosophic soft sets [15], single-valued neutrosophic hesitant fuzzy sets [16], and rough neutrosophic
sets [17].

Recently, Ali et al. [18,19] also put forward the concepts of neutrosophic cubic sets (NCSs) by
combining neutrosophic sets with cubic sets, and defined internal and external NCSs. NCSs are
described by two parts simultaneously, where the truth, falsity, and indeterminacy membership
functions can be expressed by an interval value and an exact value simultaneously. Obviously, an NCS
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can be combined by an INS and an SVNS, and it contains much more information than an INS
or an SVNS. Thus, some researchers have applied NCSs in decision-making problems effectively.
Lu et al. [20] studied cosine measures of NCSs to deal with multiple attribute decision-making (MADM)
problems. Banerjee et al. [21] established a grey relational analysis (GRA) method for MADM in NCS
environment. Pramanik et al. [22] investigated a multi-criteria group decision making (MCGDM)
method based on the similarity measure of NCSs. Moreover, aggregation operators have been widely
applied in many MADM problems [23–29], and some aggregation operators have been studied for
MADM problems in an NCS environment. Shi et al. [30] developed Dombi aggregation operators of
NCSs for MADM. Zhan et al. [31] also proposed the neutrosophic cubic weighted arithmetic average
(NCWAA) and neutrosophic cubic geometric weighted average (NCWGA) operators by extending the
WAA and WGA operators to NCSs. However, the aforementioned NCWAA and NCWGA operators
may cause some unreasonable results in some cases. In order to overcome the shortcomings of the
NCWAA and NCWGA operators, this paper developed a new neutrosophic cubic hybrid weighted
arithmetic and geometric aggregation (NCHWAGA) operator and analyzed its effectiveness for MADM
by numerical examples. The main advantage of the proposed NCHWAGA operator can overcome
the shortcomings of the existing NCWAA and NCWGA operators in some situations and obtain the
moderate aggregation values.

The rest of the paper is organized as follows. Section 2 briefly introduces some basic concepts of
NCSs and analyzes the shortcomings of the NCWAA and NCWGA operators. Then, Section 3 presents
the NCHWAGA operator and investigated its properties. We establish a MADM approach based on
the NCHWAGA operator in Section 4. Subsequently, Section 5 provides numerical examples with
neutrosophic cubic information to demonstrate the application and effectiveness of the developed
approach. Finally, Section 6 presents conclusions and possible future research.

2. Preliminaries

Some basic concepts and ranking methods of NCSs were introduced in this section.

Definition 1. [19,32] Let
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L(x), Tc

U(x)] ⊆ [0, 1], Vc(x) =
[Vc

L(x), Vc
U(x)] ⊆ [0, 1], and Fc(x) = [Fc

L(x), Fc
U(x)] ⊆ [0, 1] for x ∈
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Symmetry 2018, 10, x FOR PEER REVIEW  2 of 12 

 

or an SVNS. Thus, some researchers have applied NCSs in decision-making problems effectively. Lu 
et al. [20] studied cosine measures of NCSs to deal with multiple attribute decision-making (MADM) 
problems. Banerjee et al. [21] established a grey relational analysis (GRA) method for MADM in NCS 
environment. Pramanik et al. [22] investigated a multi-criteria group decision making (MCGDM) 
method based on the similarity measure of NCSs. Moreover, aggregation operators have been 
widely applied in many MADM problems [23–29], and some aggregation operators have been 
studied for MADM problems in an NCS environment. Shi et al. [30] developed Dombi aggregation 
operators of NCSs for MADM. Zhan et al. [31] also proposed the neutrosophic cubic weighted 
arithmetic average (NCWAA) and neutrosophic cubic geometric weighted average (NCWGA) 
operators by extending the WAA and WGA operators to NCSs. However, the aforementioned 
NCWAA and NCWGA operators may cause some unreasonable results in some cases. In order to 
overcome the shortcomings of the NCWAA and NCWGA operators, this paper developed a new 
neutrosophic cubic hybrid weighted arithmetic and geometric aggregation (NCHWAGA) operator 
and analyzed its effectiveness for MADM by numerical examples. The main advantage of the 
proposed NCHWAGA operator can overcome the shortcomings of the existing NCWAA and 
NCWGA operators in some situations and obtain the moderate aggregation values. 

The rest of the paper is organized as follows. Section 2 briefly introduces some basic concepts of 
NCSs and analyzes the shortcomings of the NCWAA and NCWGA operators. Then, Section 3 
presents the NCHWAGA operator and investigated its properties. We establish a MADM approach 
based on the NCHWAGA operator in Section 4. Subsequently, Section 5 provides numerical 
examples with neutrosophic cubic information to demonstrate the application and effectiveness of 
the developed approach. Finally, Section 6 presents conclusions and possible future research. 

2. Preliminaries  

Some basic concepts and ranking methods of NCSs were introduced in this section. 
Definition 1. [19,32] Let 𝓩    be a universal set. A NCS G in 𝓩 is denoted as follows:  

G = {x, < Tc(x), Vc(x), Fc(x) >, < tc(x), vc(x), fc(x)> | x ∈ 𝓩}, 
where < Tc(x), Vc(x), Fc(x) > is an INS [4] in 𝓩, and the intervals ( ) [ ( ), ( )]L U

c cc T x TT xx =  
L U[0,1], [ ( ), ( )] [0,) 1( ]c cc V x V xV x⊆ ⊆= , and L U[ ( ), ( )] [0,( ) 1] c ccF F x F xx ⊆=  for x ∈ 𝓩 represent 

respectively the truth, indeterminacy, and falsity membership functions; then < tc(x), vc(x), fc(x) > is an SVNS 
[3,5] in 𝓩, and tc(x), vc(x), fc(x) ∈ [0,1] for x ∈ 𝓩 represent the truth, indeterminacy, and falsity membership 
functions, respectively.  

Then, we called a basic element (x, < Tc(x), Vc(x), Fc(x) >, < tc(x), vc(x), fc(x) >) in an NCS G a 
neutrosophic cubic number (NCN) [20]; for convenience, we denoted it as 

L U L U L U( [ , ], [ , ], [ , ] , , , )T T V V F F vg t f= <> >< , where t, v, f ∈ [0,1] and 
L U L U L U[ , ], [ , ], [ , ] [0,1]T T V V F F ⊆  satisfy the condition U U U0 + + 3T V F≤ ≤  and 0 ≤ t + v + f ≤ 3.  

Then, an NCS G = {x, < Tc(x), Vc(x), Fc(x) >, < tc(x), vc(x), fc(x) > | x ∈ 𝓩} is called an internal NCS if 
( )L

cT x  ≤ tc(x) ≤ ( )U
cT x , ( )L

cV x  ≤ vc(x) ≤ ( )U
cV x , and ( )L

cF x  ≤ fc(x) ≤ ( )U
cF x  for x ∈ 𝓩 ; and an NCS G 

is called an external NCS if tc(x) ∉ ( ( ), ( ))L U
c cT x T x , vc(x) ∉ ( ( ), ( ))L U

c cV x V x , and fc(x) 
∉ ( ( ), ( )) L U

c cF x F x for x ∈ 𝓩 [18,19]. 

Let L U L U L U
1 1 1 1 1 1 11 11 ( [ , ], [ , ], [ , ] , , , ) Tg tT V V F F v f>= < ><  and 22

L ( [ ,g T= <  
U L U L U

2 2 2 2 2 2 22], [ , ], [ , ] , , , )T V V F vtF f> ><  be two NCNs, then there are following operational laws: 

( )1 1
L U U L L U

1 1 1 1 1 1 1 1( [ , ], [ 1 , 1 ], [ , ] , , 1 , )C F F V V T T tg vf< − − ><= − >(1)  (complement of g1); 

L L L L U U U U L L U U L L U U
1 2 1 2 1 2 1 2

1 2

1 2 1 2 1 2 1 1 1 2

1 2 1 2 1 2

(2) ( [ + , +  ], [ , ], [ ,  ] ,
                        , 

 
);

g g T T T T T T T T V V V V F F F F
t t t t ,v v f f

⊕ = − − >
−

<
>< +

 

L L U L L L L U U U U L L L L U
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 1 1 1

U U U
2 1 2 1 2 1 2 11 2 1 22

(3) ( [ ,  ], [ + , ], [ ,
]

 
, , );

Ug g T T T T V V V V V V V V F F F F F
F F F t f f f ft ,v v v v

⊗ = − + − + −

+ − + −>

<

− >< +
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Then, we called a basic element (x, < Tc(x), Vc(x), Fc(x) >, < tc(x), vc(x), fc(x) >) in an
NCS G a neutrosophic cubic number (NCN) [20]; for convenience, we denoted it as g = (<

[TL, TU], [VL, VU], [FL, FU] >,< t, v, f >), where t, v, f ∈ [0,1] and [TL, TU], [VL, VU], [FL, FU] ⊆
[0, 1] satisfy the condition 0 ≤ TU + VU + FU ≤ 3 and 0 ≤ t + v + f ≤ 3.

Then, an NCS G = {x, < Tc(x), Vc(x), Fc(x) >, < tc(x), vc(x), fc(x) > | x ∈
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(2) ( [ + , +  ], [ , ], [ ,  ] ,
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g g T T T T T T T T V V V V F F F F
t t t t ,v v f f
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<
>< +

 

L L U L L L L U U U U L L L L U
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 1 1 1

U U U
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(3) ( [ ,  ], [ + , ], [ ,
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Ug g T T T T V V V V V V V V F F F F F
F F F t f f f ft ,v v v v

⊗ = − + − + −

+ − + −>

<
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L(x), Vc
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L L L L U U U U L L U U L L U U
1 2 1 2 1 2 1 2

1 2

1 2 1 2 1 2 1 1 1 2

1 2 1 2 1 2
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[18,19].
Let g1 = (< [T1

L, T1
U], [V1

L, V1
U], [F1

L, F1
U] >,< t1, v1, f1 >) and g2 = (< [T2

L,
T2

U], [V2
L, V2

U], [F2
L, F2

U] >,< t2, v2, f2 >) be two NCNs, then there are following operational laws:

(1) (g1)
C = ( < [F1

L, F1
U], [1 − V1

U, 1 − V1
L], [T1

L, T1
U] >,< f1, 1 − v1, t1 >)

(complement of g1);

(2)
g1 ⊕ g2 = (< [T1

L + T2
L − T1

LT2
L, T1

U + T2
U − T1

UT2
U ], [V1

LV2
L, V1

UV2
U],

[F1
LF1

L, F1
UF2

U] >,< t1 + t2 − t1t2, v1v2, f1 f2 > );
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(3)
g1 ⊗ g2 = (< [T1

LT2
L, T1

UT2
U ], [V1

L + V2
L −V1

LV2
L, V1

U + V2
U −V1

UV2
U],

[F1
L + F1

L − F1
LF1

L, F1
U+F2

U − F1
UF2

U] >,< t1t2, v1 + v2 − v1v2, f1 + f2 − f1 f2 >);

(4) λg1 = (< [1− (1− T1
L)λ, 1− (1− T1

U)λ ], [(V1
L)λ, (V1

U)
λ
], [(F1

L)λ, (F1
U)

λ
] >,

< 1− (1−t1)
λ, (v1)

λ, ( f1)
λ > ) for λ > 0;

(5) (g1)
λ = (< [(T1

L)
λ

, (T1
U)

λ
], [ 1− (1−V1

L)
λ

, 1− (1−V1
U)

λ
], 1− (1− F1

L)
λ

,

1− (1− F1
U)

λ
] >,< (t1)

λ, 1− (1− v1)
λ, 1− (1− f1)

λ > ) for λ > 0;

For any NCN g = (< [TL, TU], [VL, VU], [FL, FU] >,< t, v, f >), its score and accuracy
functions [33] can be defined as follows:

Ψ(x) = [(4 + TL + TU −VL −VU − FL − FU) + (2 + t− v− f )]/9 (1)

Γ(x) = [(TL + TU − FL − FU) + (t− f )]/3 (2)

Based on the functions Ψ(x) and Γ(x), two NCNs can be compared and ranked by definition
as follows:

Definition 2. [33] Let g1 = (< [T1
L, T1

U], [V1
L, V1

U], [F1
L, F1

U] >,< t1, v1, f1 >) and g2 =

[T2
L, T2

U], [V2
L, V2

U], [F2
L, F2

U] >,< t2, v2, f2 >) be two NCNs, then their comparative relations are
defined as follows:

(i) If Ψ(g1) > Ψ(g2), then g1 � g2;
(ii) If Ψ(g1) = Ψ(g2) and Γ(g1) > Γ(g2), then g1 � g2;
(iii) If Ψ(g1) = Ψ(g2) and Γ(g1) = Γ(g2), then g1 ~ g2.

Assume that gi = ( < [Ti
L, Ti

U], [Vi
L, Vi

U], [Fi
L, Fi

U] >,< ti, vi, fi >) (i = 1, 2, . . . , n) be a
collection of NCNs. Then the NCWAA and NCWGA are provided, respectively, as follows [31]:

NCWAA (g1, g2, . . . , gn)

=
n

∑
i=1

ξigi =


〈 [

1−
n
∏
i=1

(
1− TL

i
)ξi , 1−

n
∏
i=1

(
1− TU

i
)ξi

]
,
[

n
∏
i=1

(
VL

i
)ξi ,

n
∏
i=1

(
VU

i
)ξi

]
,[

n
∏
i=1

(
FL

i
)ξi ,

n
∏
i=1

(
FU

i
)ξi

] 〉
,

〈
1−

n
∏
i=1

(1− ti)
ξi ,

n
∏
i=1

(vi)
ξi ,

n
∏
i=1

( fi)
ξi

〉

 (3)

NCWGA (g1, g2, . . . , gn)

=
n

∏
i=1

gξi
i =


〈 [

n
∏
i=1

(
TL

i
)ξi ,

n
∏
i=1

(
TU

i
)ξi

]
,
[

1−
n
∏
i=1

(1 −VL
i
)ξi , 1−

n
∏
i=1

(1 −VU
i
)ξi

]
,[

1−
n
∏
i=1

(1 − FL
i
)ξi , 1−

n
∏
i=1

(1 − FU
i
)ξi

] 〉
,

〈
n
∏
i=1

(ti)
ξi , 1−

n
∏
i=1

(1 − vi)
ξi , 1−

n
∏
i=1

(1 − fi)
ξi

〉

 (4)

where ζi ∈ (i = 1, 2, . . . , n), satisfying ∑n
i=1 ξi = 1.

Although the above-weighted average and geometric operators were used for multi-criteria
decision making [31], some unreasonable results are implied in the following two cases.

Case 1. Let g1 = (< [0.001, 0.002], [0, 0], [0, 0] >, <0.001, 0, 0 >) and g2 = (< [0, 1], [0, 0], [0, 0] >, <1, 0, 0 >)
be two NCNs, with their weights ζ1 = 0.9 and ζ2 = 0.1, respectively.

Then, by Equations (3) and (4), NCWAA (g1, g2) = (< [0.001, 1], [0, 0], [0, 0] >, <1, 0, 0 >) and
NCWGA (g1, g2) = (< [0, 0.004], [0, 0], [0, 0] >, <0.002, 0, 0 >).
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Case 2. Also take two NCNs g1 = (< [0.001, 0.002], [0, 0], [0, 0] >, <0.001, 0, 0 >) and g2 = (< [0, 1], [0, 0],
[0, 0] >, <1, 0, 0 >) with their weights ζ1 = 0.1 and ζ2 = 0.9, respectively.

Then, by Equation (3) and (4), NCWAA (g1, g2) = (< [0, 1], [0, 0], [0, 0] >, <1, 0, 0 >) and NCWGA
(g1, g2) = (< [0, 0.537], [0, 0], [0, 0] >, <0.501, 0, 0 >).

The above aggregated results indicate that the aggregated values of NCWAA (g1, g2) operator tend
to the maximum value, while the aggregated results of NCWGA (g1, g2) operator tend to the maximum
weight value. It is obvious that the NCWAA and NCWGA operators may cause unreasonable results
of NCNs in some cases. In order to overcome the drawbacks, it is necessary to improve the NCWAA
and NCWGA operators provided in [31]. Hence, in the next section, a new NCHWAGA is proposed
by extending the hybrid arithmetic and geometric aggregation operators presented in [34,35].

3. Hybrid Arithmetic and Geometric Aggregation Operators of NCNs

In this section, we present the NCHWAGA operator and investigated its properties.

3.1. NCHWAGA Operator

Definition 3. Let gi =
(
<
[
Ti

L, Ti
U], [Vi

L, Vi
U], [Fi

L, Fi
U] >,< ti, vi, fi >

)
(i = 1, 2, . . . , n) be a

collection of NCNs. Then, the NCHWAGA operator is defined by:

NCHWAGA(g1, g2, . . . , gn) =

(
n

∑
i=1

ξigi

)ρ( n

∏
i=1

gξi
i

)(1−ρ)

(5)

where ρ ∈ [0, 1]; and ζi (i = 1, 2, . . . , n) is the weight of gi (i = 1, 2, . . . , n), satisfying ζi ∈ [0, 1] and
∑n

i=1 ξi = 1.

Theorem 1. Let gi =
(
<
[
Ti

L, Ti
U], [Vi

L, Vi
U], [Fi

L, Fi
U] >,< ti, vi, fi >

)
(i = 1, 2, . . . , n) be a collection

of NCNs, and ζi (i = 1, 2, . . . , n) be the corresponding weight of gi (i = 1, 2, . . . , n), satisfying ζi ∈ [0, 1] and
∑n

i=1 ξi = 1. Then, the aggregated value of the NCHWAGA operator is also an NCN, which can be calculated by:

NCHWAGA(g1, g2, . . . , gn) =

(
n
∑

i=1
ξigi

)ρ( n
∏
i=1

gξi
i

)(1−ρ)

=



〈
[(

1−
n
∏
i=1

(
1− TL

i
)ξi

)ρ( n
∏
i=1

(
TL

i
)ξi

)(1−ρ)

,
(

1−
n
∏
i=1

(
1− TU

i
)ξi

)ρ( n
∏
i=1

(
TU

i
)ξi

)(1−ρ)
]

,[
1−

(
1−

n
∏
i=1

(
VL

i
)ξi

)ρ( n
∏
i=1

(
1−VL

i
)ξi

)(1−ρ)

, 1−
(

1−
n
∏
i=1

(
VU

i
)ξi

)ρ( n
∏
i=1

(
1−VU

i
)ξi

)(1−ρ)
]

,[
1−

(
1−

n
∏
i=1

(
FL

i
)ξi

)ρ( n
∏
i=1

(
1− FL

i
)ξi

)(1−ρ)

, 1−
(

1−
n
∏
i=1

(
FU

i
)ξi

)ρ( n
∏
i=1

(
1− FU

i
)ξi

)(1−ρ)
]

〉

〈(
1−

n
∏
i=1

(1− ti)
ξi

)ρ( n
∏
i=1

(ti)
ξi

)(1−ρ)

, 1−
(

1−
n
∏
i=1

(vi)
ξi

)ρ( n
∏
i=1

(1− vi)
ξi

)(1−ρ)

, 1−
(

1−
n
∏
i=1

( fi)
ξi

)ρ( n
∏
i=1

(1− fi)
ξi

)(1−ρ)
〉



(6)

Proof. Based on the operational laws of NCNs in Section 2 and the NCWAA and NCWGA, we can
obtain the following result:

NCHWAGA(g1, g2, . . . , gn) =

(
n
∑

i=1
ξigi

)ρ( n
∏
i=1

gξi
i

)(1−ρ)

=


〈 [

1−
n
∏
i=1

(
1− TL

i
)ξi , 1−

n
∏
i=1

(
1− TU

i
)ξi

]
,
[

n
∏
i=1

(
VL

i
)ξi ,

n
∏
i=1

(
VU

i
)ξi

]
,[

n
∏
i=1

(
FL

i
)ξi ,

n
∏
i=1

(
FU

i
)ξi

] 〉
,

〈
1−

n
∏
i=1

(1− ti)
ξi ,

n
∏
i=1

(vi)
ξi ,

n
∏
i=1

( fi)
ξi

〉



ρ

×


〈 [

n
∏
i=1

(
TL

i
)ξi ,

n
∏
i=1

(
TU

i
)ξi

]
,
[

1−
n
∏
i=1

(1 −VL
i
)ξi , 1−

n
∏
i=1

(1 −VU
i
)ξi

]
,[

1−
n
∏
i=1

(1 − FL
i
)ξi , 1−

n
∏
i=1

(1 − FU
i
)ξi

] 〉
,

〈
n
∏
i=1

(ti)
ξi , 1−

n
∏
i=1

(1 − vi)
ξi , 1−

n
∏
i=1

(1 − fi)
ξi

〉



(1−ρ)
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=



〈
[(

1−
n
∏
i=1

(
1− TL

i
)ξi

)ρ

,
(

1−
n
∏
i=1

(
1− TU

i
)ξi

)ρ]
,[

1−
(

1−
n
∏
i=1

(
VL

i
)ξi

)ρ

, 1−
(

1−
n
∏
i=1

(
VU

i
)ξi

)ρ]
,[

1−
(

1−
n
∏
i=1

(
FL

i
)ξi

)ρ

, 1−
(

1−
n
∏
i=1

(
FU

i
)ξi
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∏
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∏
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∏
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The proof is finished. Hence, Theorem 1 is true. �

Let gi =
(
<
[
Ti

L, Ti
U], [Vi

L, Vi
U], [Fi

L, Fi
U] >,< ti, vi, fi >

)
(i = 1, 2, . . . , n) be a collection of

NCNs. Corresponding to the properties of the NCWAA and NCWGA operators [31], the NCNHWAGA
operator also satisfies these properties:
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(i) Idempotency: If gi= g for i = 1, 2, . . . , n, then NCHWAGA (g1, g2, . . . , gn) = g.
(ii) Boundedness: If gmin= min (g1, g2, . . . , gn) and gmax= max (g1, g2, . . . , gn) for i = 1, 2, . . . , n,

then gmin ≤ NCHWAGA (g1, g2, . . . , gn) ≤ gmax.
(iii) Monotonicity: If gi ≤ gi

* for i = 1, 2, . . . , n, then NCHWAGA (g1, g2, . . . , gn) ≤ NCHWAGA
(g1

*, g2
*, . . . , gn

*).

For different values of ρ ∈ [0, 1], we can discuss the families of the NCHWAGA operator in some
special cases as follows:

(i) The NCHWAGA operator reduces to the NCWAA operator [31] if ρ = 1.
(ii) The NCHWAGA operator reduces to the NCWGA operator [31] if ρ = 0.
(iii) The NCHWAGA operator is the mean of the NCWAA and NCWGA operators [31] if ρ = 0.5.

3.2. Numerical Example

We still consider the above two numerical examples in Section 2 to demonstrate the effectiveness
of the presented NCHWAGA operator. Generally taking ρ = 0.5, we calculate aggregated values of the
NCHWAGA operator.

For Case 1: Let two NCNs g1 = (< [0.001, 0.002], [0, 0], [0, 0] >, <0.001, 0, 0 >) and g2 = (< [0, 1], [0, 0],
[0, 0] >, <1, 0, 0 >) with their weights ζ1 = 0.9 and ζ2 = 0.1, by Equation (6), we obtain NCHWAGA (g1, g2) =
(< [0, 0.061], [0, 0], [0, 0] >, <0.045, 0, 0 >), which is between NCWAA (g1, g2) = (< [0.001, 1], [0, 0], [0, 0] >,
<1, 0, 0 >) and NCWGA (g1, g2) = (< [0, 0.004], [0, 0], [0, 0] >, <0.002, 0, 0 >).

For Case 2: Also take two NCNs g1 = (< [0.001, 0.002], [0, 0], [0, 0] >, <0.001, 0, 0 >) and g2 = (< [0, 1],
[0, 0], [0, 0] >, <1, 0, 0 >) with their weights ζ1 = 0.1 and ζ2 = 0.9, then, by Equation (6), we get NCHWAGA
(g1, g2) = (< [0, 0.733], [0, 0], [0, 0] >, <0.708, 0, 0 >), which is between NCWAA (g1, g2) = (< [0, 1], [0, 0],
[0, 0] >, <1, 0, 0 >) and NCWGA (g1, g2) = (< [0, 0.537], [0, 0], [0, 0] >, <0.501, 0, 0 >).

In the above two cases, we can obtain the moderate values by the NCHWAGA operator.
Obviously, the NCHWAGA operator can overcome the drawbacks of the NCWAA and NCWGA
provided in Reference [31].

4. MADM Method Using the NCHWAGA Operator

In this section, we provide a MADM method based on the NCHWAGA operator to deal with
neutrosophic cubic information.

In a MADM problem, assume that G = {G1, G2, . . . , Gk} is a set of k alternatives and P = {P1, P2,
. . . , Pn} is a set of attributes. Suppose that the weight vector of P is ωP = {ωP1 , ωP2 , . . . , ωPn } with
ωPj ∈ [0, 1] and ∑n

j=1 ωPj = 1. The evaluation value of an alternative Gi under an attribute Pj can be
expressed using an NCN gij = (< [TL

ij , TU
Ij ], [V

L
ij , VU

ij ], [F
L
ij , FU

ij ] >,< tij, vij, fij >) (i = 1, 2, . . . , k;

j = 1, 2, . . . , n), where [TL
ij , TU

ij ], [V
L
ij , VU

ij ], [F
L
ij , FU

ij ] ⊆ [0, 1], and tij, vij, fij ∈ [0, 1]. Then, we can
construct a decision matrix G = (gij)k×n with the NCN information, and provide the following MADM
procedures based on the proposed NCHWAGA operator:

Step 1. Calculate the aggregated value of gi for each alternative Gi (i = 1, 2, . . . , k) using the
NCHWAGA operator:

gi = NCHWAGA(gi1, gi2, . . . , gin) =

(
n
∑

j=1
ωpj gij

)ρ(
n
∏
j=1

g
ωp j
ij

)(1−ρ)

=



〈
(1−

n
∏
j=1

(
1− TL

ij

)ωpj

)ρ(
n
∏
j=1

(
TL

ij

)ωpj

)(1−ρ)

,

(
1−

n
∏
j=1

(
1− TU

i
)ωpj

)ρ(
n
∏
j=1

(
TU

ij

)ωpj

)(1−ρ)
 ,1−

(
1−

n
∏
j=1

(
VL

ij

)ωpj

)ρ(
n
∏
j=1

(
1−VL

ij

)ωpj

)(1−ρ)

, 1−
(

1−
n
∏
j=1

(
VU

ij

)ωpj

)ρ(
n
∏
j=1

(
1−VU

ij

)ωpj

)(1−ρ)
 ,1−

(
1−

n
∏
j=1

(
FL

ij

)ωpj

)ρ(
n
∏
j=1

(
1− FL

ij

)ωpj

)(1−ρ)

, 1−
(

1−
n
∏
j=1

(
FU

j

)ωpj

)ρ(
n
∏
j=1

(
1− FU

ij

)ωpj

)(1−ρ)


〉

〈(
1−

n
∏
j=1

(
1− tij

)ωpj

)ρ(
n
∏
j=1

(
tij
)ωpj

)(1−ρ)

, 1−
(

1−
n
∏
j=1

(
vij
)ωpj

)ρ(
n
∏
j=1

(
1− vij

)ωpj

)(1−ρ)

, 1−
(

1−
n
∏
j=1

(
fij
)ωpj

)ρ(
n
∏
j=1

(
1− fij

)ωpj

)(1−ρ)〉



(7)
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where ωPj ∈ [0, 1] and ∑n
j=1 ωPj = 1 for j = 1, 2, . . . , n.

Step 2. Obtain the score values of Ψ(x) (the accuracy degrees of Γ(x) if necessary) of the collective NCN
gi (i = 1, 2, . . . , k) by Equations (1) and (2).
Step 3. Rank all the alternatives corresponding to the values of Ψ(x) and Γ(x), and select the best one(s)
based on the largest value.
Step 4. End.

5. Illustrative Example and Comparison Analysis

This section introduces an illustrative example adapted from Reference [20] to demonstrate the
application of the above MADM method. A company wants to invest some money in one of the four
possible alternatives Gi (i = 1, 2, 3, 4). G1, G2, G3 and G4 represent a textile company, an automobile
company, a computer company, and a software company, respectively. The four alternatives need to be
evaluated according to the three attributes Pj (j = 1, 2, 3). P1, P2 and P3 represent respectively the risk,
the growth, and the environmental impact. Corresponding to the three attributes, the weight vector is
ωP = (0.32, 0.38, 0.3). When the decision maker evaluates the four alternatives Gi (i = 1, 2, 3, 4) based
on the three attributes Pj (j = 1, 2, 3) with the NCN information, the decision matrix can be established
as shown in Table 1.

Table 1. The decision matrix with the neutrosophic cubic number (NCN) information.

Alternative Attribute (P1) Attribute (P2) Attribute (P3)

G1
(< [0.5, 0.6], [0.1, 0.3],

[0.2, 0.4]>, <0.2, 0.6, 0.3>)
(< [0.5, 0.6], [0.1, 0.3],

[0.2, 0.4]>, <0.2, 0.6, 0.3>)
(< [0.6, 0.8], [0.2, 0.3],

[0.1, 0.2]>, <0.7, 0.2, 0.1>)

G2
(< [0.6, 0.8], [0.1, 0.2],

[0.2, 0.3]>, <0.7, 0.1, 0.2>)
(< [0.6, 0.7], [0.1, 0.2],

[0.2, 0.3]>, <0.6, 0.3, 0.4>)
(< [0.6, 0.7], [0.3, 0.4],

[0.1, 0.2]>, <0.7, 0.4, 0.2>)

G3
(< [0.4, 0.6], [0.2, 0.3],

[0.1, 0.3]>, <0.6, 0.2, 0.2>)
(< [0.5, 0.6], [0.2, 0.3],

[0.3, 0.4]>, <0.6, 0.3, 0.4>)
(< [0.5, 0.7], [0.2, 0.3],

[0.3, 0.4]>, <0.6, 0.2, 0.3>)

G4
(< [0.7, 0.8], [0.1, 0.2],

[0.1, 0.2]>, <0.8, 0.1, 0.2>)
(< [0.6, 0.7], [0.1, 0.2],

[0.1, 0.3]>, <0.7, 0.1, 0.2>)
(< [0.6, 0.7], [0.3, 0.4],

[0.2, 0.3]>, <0.7, 0.3, 0.2>)

Then, we apply the NCHWAGA operator to handle the MADM problem as follows:

Step 1. By Equation (7) for ρ = 0.5, we calculate the aggregated value of the collective NCN gi for the
each alternative Gi (i = 1, 2, 3, 4) as follows:

g1 = (< [0.5302, 0.6645], [0.1272, 0.3000], [0.1669, 0.3355] >, <0.3430, 0.4709, 0.2306>)
g2 = (< [0.6000, 0.7335], [0.1523, 0.2563], [0.1669, 0.2685] >, <0.6628, 0.2525, 0.2346>)
g3 = (< [0.4677, 0.6307], [0.2000, 0.3000], [0.2264, 0.3672] >, <0.6000, 0.2365, 0.3025>)
g4 = (< [0.6328, 0.7335], [0.1523, 0.2563], [0.1272, 0.2665] >, <0.7335, 0.1523, 0.2000>)

Step 2. By Equation (1), we calculate the score values of Ψ(gi) for the alternatives Gi (i = 1, 2, 3, 4) as
the follows:

Ψ(g1) = 0.6563, Ψ(g2) = 0.7405, Ψ(g3) = 0.6740, Ψ(g4) = 0.7717.

Step 3. According to Ψ(g4) > Ψ(g2) > Ψ(g3) > Ψ(g1), the ranking of the alternatives is G4 � G2 � G3 �
G1. So, the alternative G4 is the best one.

Compared with the MADM method introduced in Reference [20], Table 2 lists the decision results
based on the NCHWAGA operator and cosine similarity measures of the NCSs. Obviously, the best
alternatives and the ranking orders based on the NCHWAGA operator proposed in this paper are the
same as in Reference [20].

For further relative comparison, Table 3 lists the MADM results using the NCHWAGA operator
proposed in this paper and the NCWAA and NCWGA operators provided in Reference [31],
respectively. The results listed in Table 3 show that the aggregated values of the NCHWAGA operator
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tend to the moderate values between the aggregated results of the NCWAA and NCWGA operators.
Then, the ranking orders based on the NCHWAGA operator have little difference with the NCWAA
and NCWGA operators. However, the best alternative given in all the MADM methods is identical.
Furthermore, the results in Table 3 also show that the aggregated values of the NCHWAGA operator
tend to moderate values between the aggregated values of the NCWAA and NCWGA operators in [31].
Therefore, the NCHWAGA operator can overcome the drawbacks of the NCWAA and NCWGA
operators, and it is more effective and more suitable than the NCWAA and NCWGA operators to
handle MADM problems under a neutrosophic cubic environment in some cases.

Table 2. Decision results based on the neutrosophic cubic hybrid weighted arithmetic and geometric
aggregation (NCHWAGA) operator and cosine similarity measures.

MADM Method Score Values
(Cosine Measures Value) Ranking Order The Best

Alternative

NCHWAGA (ρ = 0.5) 0.6563, 0.7405, 0.6740, 0.7717 G4 � G2 � G1 � G3 G4
Cosine Measure Sw1 [20] 0.9564, 0.9855, 0.9596, 0.9945 G4 � G2 � G1 � G3 G4
Cosine Measure Sw2 [20] 0.9769, 0.9944, 0.9795, 0.9972 G4 � G2 � G1 � G3 G4
Cosine Measure Sw3 [20] 0.9892, 0.9959, 0.9897, 0.9989 G4 � G2 � G1 � G3 G4

Table 3. Decision results based on different aggregation operators.

Aggregation
Operator Aggregated Result Score Value Ranking Order The Best

Alternative

NCHWAGA
(ρ = 0.5)

g1 = (< [0.5302, 0.6645], [0.1272, 0.3000],
[0.1669, 0.3355] >, < 0.3430, 0.4709, 0.2306 >) Ψ(g1) = 0.6563

G4 � G2 � G1 � G3 G4g2 = (< [0.6000, 0.7335], [0.1523, 0.2563],
[0.1669, 0.2685] >, <0.6628, 0.2525, 0.2346>) Ψ(g2) = 0.7405

g3 = (< [0.4677, 0.6307], [0.2000, 0.3000],
[0.2264, 0.3672] >, <0.6000, 0.2365, 0.3025>) Ψ(g3) = 0.6740

g4 = (< [0.6328, 0.7335], [0.1523, 0.2563],
[0.1272, 0.2665] >, <0.7335, 0.1523, 0.2000>) Ψ(g4) = 0.7717

NCWAA [31]

g1 = (< [0.5324, 0.6751], [ 0.1231, 0.3000],
[0.1625, 0.3249] >, < 0.4039, 0.4315, 0.2158 >), Ψ(g1) = 0.6726

G4 � G2 � G3 � G1 G4g2 = (< [0.6000, 0.7365], [0.1390, 0.2462],
[0.1625, 0.2656] >, <0.6653, 0.2301, 0.2114>) Ψ(g2) = 0.7497

g3 = (< [0.4700, 0.6331], [0.2000, 0.3000],
[0.2111, 0.3648] >, <0.6000, 0.2333, 0.2939>) Ψ(g3) = 0.6778

g4 = (< [0.6352, 0.7365], [0.1390, 0.2462],
[0.1231, 0.2635] >, <0.7365, 0.1390, 0.2000>) Ψ(g4) = 0.7775

NCWGA [31]

g1 = (< [0.5281, 0.6541], [ 0.1312, 0.3000],
[0.1712, 0.3459] >, < 0.2912, 0.5075, 0.2452 >) Ψ(g1) = 0.6414

G4 � G2 � G3 � G1 G4g2 = (< [0.6000, 0.7306], [0.1654, 0.2661],
[0.1712, 0.2714] >, <0.6602, 0.2757, 0.2571>) Ψ(g2) = 0.7315

g3 = (< [0.4655, 0.6284], [0.2000, 0.3000],
[0.2414, 0.3697] >, <0.6000, 0.2396, 0.3110>) Ψ(g3) = 0.6703

g4 = (< [0.6303, 0.7306], [0.1654, 0.2661],
[0.1312, 0.2694] >, <0.7306, 0.1654, 0.2000>) Ψ(g4) = 0.7660

6. Conclusions

This paper developed the NCHWAGA operator of NCSs and investigated its properties. The main
advantage of the proposed NCHWAGA operator can overcome the drawbacks implied by the
existing NCWAA and NCWGA operators [31] in some cases and reach the moderate aggregated
values. Then, the MADM method based on the NCHWAGA operator was established under an
NCS environment. Finally, we provided an illustrative example to demonstrate the application of
the established MADM method. By comparison, we found that the developed MADM method
was more effective and more suitable to solve decision-making problems with neutrosophic cubic
information in some cases. In the real world, a refined neutrosophic set [14] is very suitable to express
complex problems of decision-making, since it can be described by its refined types of sub-truths,
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sub-indeterminacies, and sub-falsities. Therefore, we shall further extend the NCHWAGA operator
to neutrosophic refined cubic sets for MADM by using the refined neutrosophic sets. In addition,
the proposed method will be also extended to neutrosophic cubic oversets/undersets/offsets using
the neutrosophic overset/underset/offset [36] in the future.
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Abbreviations

GRA Grey relational analysis
INSs Interval neutrosophic sets
MADM Multi-attribute decision-making
MCGDM Multi-criteria group decision making
MVNSs Multi-valued neutrosophic sets
NCHWAGA Neutrosophic cubic hybrid weighted arithmetic and geometric aggregation
NCSs Neutrosophic cubic sets
NCWAA Neutrosophic cubic weighted arithmetic average
NCWGA Neutrosophic cubic geometric weighted average
SNSs Simplified neutrosophic sets
SVNSs Single-valued neutrosophic sets
WAA Weighted arithmetic average
WGA Geometric average
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