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Abstract: By using symbolic algebraic computation, we construct a strongly-consistent second-order
finite difference scheme for steady three-dimensional Stokes flow and a Cartesian solution grid.
The scheme has the second order of accuracy and incorporates the pressure Poisson equation.
This equation is the integrability condition for the discrete momentum and continuity equations.
Our algebraic approach to the construction of difference schemes suggested by the second and the
third authors combines the finite volume method, numerical integration, and difference elimination.
We make use of the techniques of the differential and difference Janet/Gröbner bases for performing
related computations. To prove the strong consistency of the generated scheme, we use these bases
to correlate the differential ideal generated by the polynomials in the Stokes equations with the
difference ideal generated by the polynomials in the constructed difference scheme. As this takes
place, our difference scheme is conservative and inherits permutation symmetry of the differential
Stokes flow. For the obtained scheme, we compute the modified differential system and use it to
analyze the scheme’s accuracy.

Keywords: steady Stokes flow; finite difference approximation; difference elimination; computer
algebra; Janet/Gröbner basis; strong consistency; modified equation; symmetry; conservativity

1. Introduction

In this paper, we extend to the three-dimensional case the results of paper [1], where we generated
and studied the strong consistent finite difference scheme for two-dimensional (2D) steady Stokes flow
of an incompressible fluid. For the 3D steady Stokes flow, the governing system of partial differential
equations (PDE) reads: 

F(1) := ux + vy + wz = 0 ,

F(2) := px − 1
Re ∆ u− f (1) = 0 ,

F(3) := py − 1
Re ∆ v− f (2) = 0 ,

F(4) := pz − 1
Re ∆ w− f (3) = 0 .

(1)
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Here, x, y, z are the independent variables; the velocities u, v, and w, the pressure p, and the external
forces f (1), f (2), and f (3) are the dependent variables; the constant Re is the Reynolds number;
and ∆ := ∂xx + ∂yy + ∂zz is the Laplace operator.

Equation (1) approximate the incompressible Navier–Stokes equations:

F(1) := ux + vy + wz = 0 ,

F(2) := px + uux + vuy + wuz − 1
Re ∆ u− f (1) = 0 ,

F(3) := py + uvx + vvy + wvz − 1
Re ∆ v− f (2) = 0 ,

F(4) := pz + uwx + vwy + wwz − 1
Re ∆ w− f (3) = 0 .

(2)

when Re� 1. Under the last condition, the nonlinear inertia terms in Equation (2) can be neglected
(cf. [2], Secttion 22.11). We refer to the book [3] and to the references therein for the fundamental
mathematical theory of the Stokes flow.

Equations (1) and (2) possess the permutational symmetry:

{x, u, f (1)} ←→ {y, v, f (2)} ←→ {z, w, f (3)} . (3)

In our finite difference approximation (FDA) to Equation (1), we want to preserve this symmetry,
and for this purpose, we choose a Cartesian solution grid. Furthermore, as shown by the research
results presented in [4], mimetic discretizations, i.e., such discrete approximations to PDE that mimic
their basic algebraic properties, are more likely to produce highly accurate and stable numerical results.
In addition to the symmetry (3), among the algebraic properties of the PDE (1) to be preserved at
the discrete level, we make sure of the conservativity and strong consistency or s-consistency of FDA.
Conservativity means inheritance at the discrete level of the underlying conservation laws of PDE (1).
The conventional notion of consistency (cf. [5], Chapter 7) provides reduction of the FDA to the original
PDE when the grid spacings tend to zero. In other words, a consistent discretization approximates
PDE. s-consistency is the novel concept introduced in [6,7]. For Stokes flow, it means (see Definition 2)
not only approximation of the equations in PDE by difference equations, but also approximation of
elements in the differential ideal generated by the polynomials in (1) by elements in the difference ideal
(cf. [8], Chapter 2) generated by the polynomials in the FDA to (1). In particular, if the s-consistency
holds, then among the consequences of FDA, i.e., among elements in the ideal it generates, there are
approximants of all integrability conditions (see [9], Chapter 2) for the original PDE.

Thus, our aim is to construct, given a Cartesian grid, a conservative FDA (difference scheme)
to the governing Stokes system (1). The scheme contains a discrete version of the pressure Poisson
equation (integrability condition) and is s-consistent with (1). For this purpose, we use the approach
proposed in [10]. The approach is comprised of the finite volume method, numerical integration, and
difference elimination. For the generated scheme, we apply the algorithmic criterion for verification of
its s-consistency. This criterion was designed in [6] and relates Janet/Gröbner bases of the differential
and difference ideals generated by PDE and FDA. The computational experiments performed in
papers [11,12] with the Navier–Stokes equations revealed a substantially better numerical behavior of
s-consistent schemes than that of s-inconsistent ones.

Equation (1) are linear. It makes construction and analysis of their solutions much easier than in
the case of the Navier–Stokes equations. Besides, one can fully algorithmically generate difference
approximations to Equation (1) and to analyze their s-consistency. To perform computation of
Janet/Gröbner bases, we use two Maple packages implementing the involutive algorithm (cf. [13]):
the package JANET [14] for linear differential systems and the package LDA [15] (linear difference
algebra) for linear difference systems.

Having the difference scheme constructed, we compute a modified differential system of this
FDA, which we refer to as modified Stokes flow, and use it to analyze the order of approximation of the
scheme and its consistency. The method of modified equation suggested in [16] is widely used (see [17],
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Chapter 8 and [18], Section 5.5) in studying difference schemes. The method provides a natural and
unified platform to study such basic properties of the scheme as consistency and stability, order of
approximation, convergence, dissipativity, dispersion, and invariance. However, to our knowledge,
the methods for the computation of modified equations have not been extended yet to non-evolutionary
PDE systems, and in [1], by applying the technique of differential Janet/Gröbner bases to the 2D
steady Stokes flow for the first time, a modified equation was constructed for non-evolutionary system
of PDE.

The present paper is organized as follows. In Section 2, we generate a difference scheme for
Equation (1) by applying the approach of paper [10]. In Section 3, we show that our scheme is s-consistent
and demonstrate the s-inconsistency of another scheme obtained by a tempting compactification of the
constructed scheme. The computation of a 3D modified Stokes system is performed in Section 4. Here,
by the example of the s-inconsistent scheme of Section 3, we show how the modified Stokes system
detects the s-inconsistency. Finally, some concluding remarks are given in Section 5.

2. Algorithmic Generation of the Difference Scheme for Stokes Flow

For this purpose, we choose the Cartesian solution grid with the grid spacing h and apply the
approach of paper [10] to generate a difference scheme for Equation (1).

Step 1. Completion of to involution (we refer to [9] and to the references therein for the theory
of involution). We fix the orderly lexicographic ranking of partial derivatives related to Equation (1)
with:

∂x � ∂y � ∂z , p � u � v � w � f (1) � f (2) � f (3) . (4)

For this ranking, the Maple package JANET [14] outputs the Janet involutive form of Equation (1),
which is the minimal reduced differential Gröbner basis form:

F(1) := ux + vy + wz = 0 ,

F(2) := px − 1
Re

(
uyy + uzz − vxy − wxz

)
− f (1) = 0 ,

F(3) := py − 1
Re
(
vxx + vyy + vzz

)
− f (2) = 0 ,

F(4) := pz − 1
Re
(
wxx + wyy + wzz

)
− f (3) = 0 ,

F(5) := pxx + pyy + pzz − f (1)x − f (2)y − f (3)z = 0 .

(5)

Here, we underlined the leaders, i.e., the highest ranking partial derivatives occurring in
Equation (5). The equation F5 is the pressure Poisson equation. This equation is the integrability
condition for system (1). It can be expressed in terms of the left-hand sides of the equations in (1) as:

F(5) := F(2)
x + F(3)

y + F(4)
z +

1
Re

(
F(1)

yy + F(1)
zz

)
= pxx + pyy + pzz − f (1)x − f (2)y − f (3)z . (6)

Remark 1. The differential polynomial F(2) in Equation (5) is that in Equation (1) reduced modulo the
continuity equation F(1).

Step 2. Conversion into the integral form. We choose the cubic control volume Ω of Figure 1 as
a stencil for difference approximation of the partial derivatives and rewrite equations F(1), F(2), F(3),
and F(4) into the equivalent integral conservation law form.
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‚
∂Ω (u dydz + v dzdx + w dxdy) = 0 ,
‚

∂Ω

[(
p− 1

Re ux

)
dydz− 1

Re uydxdz− 1
Re uzdxdy

]
−
˝

Ω f (1)dxdydz = 0 ,
‚

∂Ω

[
− 1

Re vxdydz +
(

p− 1
Re vy

)
dzdx− 1

Re vzdxdy
]
−
˝

Ω f (2)dxdydz = 0,
‚

∂Ω

[
− 1

Re wxdydz− 1
Re wydxdz +

(
p− 1

Re wz

)
dxdy

]
−
˝

Ω f (3)dxdydz = 0,

(7)

where ∂Ω is the boundary of Ω, and we apply the Gauss–Ostrogradsky formula (8).
˚

Ω

(
Px + Qy + Rz

)
dV =

‹
∂Ω

(P dydz + Q dxdz + R dxdy) (8)

To preserve at the discrete level the symmetry of System (1) under the permutation Equation (3),
we use in Equation (7) the original form of F(2) given in Equation (1) (see Remark 1).

Step 3. Addition of integral relations for derivatives. We add to System (7) the following exact
integral relations:

xj+1´
xj

uxdx = u(xj+1, y, z)− u(xj, y, z) ,
yk+1´
yk

uydy = u(x, yk+1, z)− u(x, yk, z) ,

zl+1´
zl

uzdz = u(x, y, zl+1)− u(x, y, zl) ,
xj+1´
xj

vxdx = v(xj+1, y, z)− v(xj, y, z) ,

yk+1´
yk

vydy = v(x, yk+1, z)− v(x, yk, z) ,
zl+1´
zl

vzdz = v(x, y, zl+1)− v(x, y, zl) ,

xj+1´
xj

wxdx = w(xj+1, y, z)− w(xj, y, z) ,
yk+1´
yk

wydy = w(x, yk+1, z)− w(x, yk, z) ,

zl+1´
zl

wzdz = w(x, y, zl+1)− w(x, y, zl) .

(9)

Here, xj, yk, zl are the points of boundary ∂Ω shown in Figure 1.
Step 4. Numerical evaluation of integrals. Now, to evaluate the integrals in Equation (7),

we apply the midpoint rule for the integrals over ∂Ω, the trapezoidal rule for the integrals in (9),
and approximate the triple integrals over Ω as:

f (1,2,3)
i+1,k+1,l+18h3 .

As a result, we obtain the system (10) of difference equations for the grid functions:

uj, k, l ≈ u(jh, kh, lh) , vj, k, l ≈ v(jh, kh, lh) , wj, k, l ≈ w(jh, kh, lh) ,

pj, k, l ≈ p(jh, kh, lh) , f (1,2,3)
j, k l ≈ f (1,2,3)(jh, kh, lh)

approximating functions:

u(x, y, z), v(x, y, z), w(x, y, z), p(x, y, z), f (1)(x, y, z), f (2)(x, y, z), f (3)(x, y, z)

and for the grid functions approximating their partial derivatives:
ux j, k, l ≈ ux(jh, kh, lh) , uy j, k, l ≈ uy(jh, kh, lh) , uz j, k, l ≈ uz(jh, kh, lh) ,

vx j, k, l ≈ vx(jh, kh, lh) , vy j, k, l ≈ vy(jh, kh, lh) , vz j, k, l ≈ vz(jh, kh, lh) , j, k, l ∈ Z

wx j, k, l ≈ wx(jh, kh, lh) , wy j, k, l ≈ wy(jh, kh, lh) , wz j, k, l ≈ wz(jh, kh, lh) .
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(
uj+2, k+1, l+1 − uj, k+1, l+1

)
4h2 +

(
vj+1, k+2, l+1 − vj+1, k, l+1

)
4h2

+
(

wj+1, k+1, l+2 − wj+1, k+1, l

)
4h2 = 0 ,

− 1
Re

(
uz j+1, k+1, l+2 − uz j+1, k+1, l

)
4h2 − 1

Re

(
uy j+1, k+2, l+1 − uy j+1, k, l+1

)
4h2

+

(
pj+2, k+1, l+1 −

1
Re

ux j+2, k+1, l+1

)
4h2 −

(
pj, k+1, l+1 −

1
Re

ux j, k+1, l+1

)
4h2

− 8 f (1)j+1, k+1, l+1h3 = 0 ,

− 1
Re

(
vz j+1, k+1, l+2 − vz j+1, k+1, l

)
4h2 − 1

Re

(
vx j+2, k+1, l+1 − vx j, k, l+1

)
4h2

+

(
pj+1, k+2, l+1 −

1
Re

vy j+1, k+2, l+1

)
4h2 −

(
pj+1, k, l+1 −

1
Re

vy j+1, k, l+1

)
4h2

− 8 f (2)j+1, k+1, l+1h3 = 0 ,

− 1
Re

(
wx j+2, k+1, l+1 − wx j, k+1, l+1

)
4h2 − 1

Re

(
wy j+1, k+2, l+1 − wy j+1, k, l+1

)
4h2

+

(
pj+1, k+1, l+2 −

1
Re

wz j+1, k+1, l+2

)
4h2 −

(
pj+1, k+1, l −

1
Re

wz j+1, k+1, l

)
4h2

− 8 f (3)j+1, k+1, l+1h3 = 0 ,

ux j+1, k, l + ux j, k, l

2
h− uj+1, k, l + uj, k, l = 0 ,

vx j+1, k, l + vx j, k, l

2
h− vj+1, k, l + vj, k, l = 0 ,

wx j+1, k, l + wx j, k, l

2
h− wj+1, k, l + uj, k, l = 0 ,

uy j, k+1, l + uy j, k, l

2
h− uj, k+1, l + uj, k, l = 0 ,

vy j, k+1, l + vy j, k, l

2
h− vj, k+1, l + vj, k, l = 0 ,

wy j, k+1, l + wy j, k, l

2
h− wj, k+1, l + wj, k, l = 0 ,

uz j, k, l+1 + uz j, k, l

2
h− uj, k, l+1 + uj, k, l = 0 ,

vz j, k, l+1 + vz j, k, l

2
h− vj, k, l+1 + vj, k, l = 0 ,

wz j, k, l+1 + wz j, k, l

2
h− wj, k, l+1 + wj, k, l = 0 ,

(10)

Step 5. Difference elimination of partial derivatives. To eliminate the grid functions
ux, uy, uz, vx, vy, vz, wx, wy, wz, we compute a difference Janet/Gröbner basis form of the set of linear
difference polynomials occurring in the left-hand sides of Equation (10). The computation can be done
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with the Maple package LDA [6] if one selects the orderly lexicographic ranking, which is a difference
analogue of the differential ranking (4) used on Step 1:

σ1 � σ2 � σ3, p � u � v � w � f (1) � f (2) � f (3) (11)

with the right-shift operators σ1, σ2, and σ3 acting as translations, for instance,

σ1 ◦ uj, k, l = uj+1, k l , σ2 ◦ uj, k, l = uj, k+1, l , σ3 ◦ uj, k, l = uj, k, l+1 . (12)

In the output of the LDA, there are four difference polynomials that do not contain the grid
functions ux, uy, uz, vx, vy, vz, wx, wy, wz. These polynomials comprise a difference scheme. Being
interreduced, the obtained scheme does not possess symmetry under the transformation (3). For this
reason, we prefer the following redundant, but conservative and symmetric form of the scheme:

F̃(1) :=
uj+2, k+1, l+1 − uj, k+1, l+1

2h
+

vj+1, k+2, l+1 − vj+1, k, l+1

2h

+
wj+1, k+1, l+2 − vj+1, k+1, l

2h
= 0 ,

F̃(2) :=
pj+2, k+1, l+1 − pj, k+1, l+1

2h
− 1

Re
∆1

(
uj,k,l

)
− f (1)j+1, k+1, l+1 = 0 ,

F̃(3) :=
pj+1, k+2, l+1 − pj+1, k, l+1

2h
− 1

Re
∆1

(
vj,k,l

)
− f (2)j+1, k+1, l+1 = 0 ,

F̃(4) :=
pj+1, k+1, l+2 − pj+1, k+1, l

2h
− 1

Re
∆1

(
wj,k,l

)
− f (3)j+1, k+1, l+1 = 0 ,

F̃(5) := −
f (1)j+3, k+2, l+2 − f (1)j+1, k+2, l+2

2h
−

f (2)j+2, k+3, l+2 − f (2)j+2, k+1, l+2

2h

−
f (3)j+2, k+2, l+3 − f (3)j+2, k+2, l+1

2h
+ ∆2

(
pj,k,l

)
= 0 ,

(13)

where ∆1 and ∆2 are finite difference discretizations of the Laplace operator acting on a grid function
gj, k, l as:

∆1

(
gj, k, l

)
:=

gj+2, k+1, l+1 + gj+1, k+2, l+1 + gj+1, k+1, l+2 − 6gj+1, k+1, l+1

h2

+
gj+1, k, l+1 + gj, k+1, l+1 + gj+1, k+1, l

h2 , (14)

∆2

(
gj, k, l

)
:=

gj+4, k+2, l+2 + gj+2, k+4, l+2 + gj+2, k+2, l+4 − 6gj+2, k+2, l+2

4h2

+
gj+2, k, l+2 + gj, k+2, l+2 + gj+2, k+2, l

4h2 . (15)

Remark 2. It should be noted that Equation F̃(5) in the system (13) can also be obtained from the integral form
of F5 in Equation (5) with the stencil of Figure 1 if one uses the midpoint rule for the surface integration of the
px, py, and pz and for evaluation of the additional integral relations for these derivatives:

xj+2ˆ

xj

pxdx = p(xj+2, y, z)− p(xj, y, z) ,

yk+2ˆ

yk

pydy = p(x, yk+2, z)− p(x, yk, z) ,

zl+2ˆ

zl

pzdz = p(x, y, zl+2)− p(x, y, zl) ,
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whereas the volume integrals of f (1), f (2), and f (3) are evaluated by the trapezoidal rule.

The difference scheme (13) approximates the involutive system (5) and demonstrates the full
correspondence between the differential and difference Janet/Gröbner bases forms of these systems.
Such correspondence is a consequence of our choice of the differential (4) and difference (11) rankings.

j

j + 1

j + 2 k
k + 1

k + 2

l

l + 1

l + 2

Figure 1. Control volume Ω (stencil 3× 3× 3).

3. Consistency Analysis

LetR = Q(Re)[u, v, w, p, f (1), f (2), f (3)] be the ring of differential polynomials over the differential
field of rational functions in parameter Re. We consider the dependent variables of the Stokes flow (1)
as differential indeterminates and their grid approximants as difference indeterminates (cf. [8], Chapter 2).
Respectively, we denote by R̃ = Q(Re, h){u, v, p, f (1), f (2), f (3)} the difference polynomial ring whose
elements are polynomials in the grid functions with the right-shift operators σ1, σ2, and σ3 (see (12)).

We denote by I := 〈F(1), F(2), F(3), F(4)〉 ⊂ R the differential ideal generated by the left-hand
sides of Equation (1) and by Ĩ := 〈F̃(1), F̃(2), F̃(3), F̃(4), F̃(5)〉 ⊂ R̃ the difference ideal generated by the
left-hand sides of Equation (13).

Every element in I vanishes on solutions of the Stokes flow (1), and every element in Ĩ vanishes
on solutions of (13). We refer to elements in I (respectively, in Ĩ) as the consequences of Equation (1)
(respectively, of Equation (13)).

It is clear that to approximate Equation (5), the scheme (13) must be pairwise consistent with
the involutive differential form (5). We call this sort of consistency weak consistency or w-consistency
(cf. [6]). The difference polynomial set {F̃(1), F̃(2), F̃(3), F̃(4), F̃(5)} in Equation (13) is w-consistent with
the differential system (5) since:

F̃(i) −−→
h→0

F(i) (i = 1÷ 5). (16)

Remark 3. It is a universally-adopted notion of consistency for a finite difference discretization of PDE systems
(cf. [5], Chapter 7) and means the reduction of Equation (13) to Equation (5) when the mesh step h goes to zero.

Definition 1. [6] We shall say that a difference equation f̃ = 0, f̃ ∈ R̃ implies the differential equation
f = 0, f ∈ R, and write f̃ B f if the Taylor expansion about a grid point, after clearing denominators containing
h, yields:

f̃ = f · hd + O(hd+1), d ∈ Z≥0 . (17)

The following definition establishes the consistency interrelation between the differential and
difference ideals generated by Equations (1) and (13), respectively. If such a consistency holds, then it
provides a certain inheritance by the difference scheme of the algebraic properties of Stokes flow.
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Definition 2. [7] A finite difference scheme {F̃(1), F̃(2), F̃(3), F̃(4), F̃(5)} to (5) is strongly consistent or
s-consistent with (5) if:

(∀ f̃ ∈ Ĩ) (∃ f ∈ I) [ f̃ B f ] , (18)

Remark 4. It is clear that if the condition (18) holds, then:

f̃
hd −−→h→0

f , (19)

that is, f̃ /hd approximates f . Accordingly, Condition (18) means that, after clearing denominators, each element
of Ĩ approximates an element of I in the sense of (19).

Theorem 1. [7] The s-consistency condition (18) holds if and only if a Gröbner basis G̃ of Ĩ satisfies:

( ∀g̃ ∈ G̃ ) ( ∃ f ∈ I ) [ g̃ B f ] . (20)

Corollary 1. The difference scheme (13) is s-consistent with the Stokes system (5).

Proof. The set of difference polynomials in Equation (13), by its construction, is a Janet/Gröbner
basis of the elimination ideal Ĩ0 ∩ R̃ where Ĩ0 is the difference ideal generated by the polynomials
in Equation (10) (cf. [19], Thm. 2.3.4). The same set is also a Janet/Gröbner basis for the ideal Ĩ and
ranking (11). It is readily verified with the LDA package. Hence, the w-consistency (16) implies
s-consistency.

Remark 5. Generally, given a linear PDE system and its FDA, the s-consistency conditions (20) can be
algorithmically verified by using relevant built-in routines of the Maple packages JANET [14] and LDA [15].

It is clear that w-consistency (16) follows from s-consistency of Equation (13) with Equation (5).
However, the converse is not true, i.e., w-consistency does not imply s-consistency, in general. Thus,
for numerical simulation of the Stokes flow, it is tempting to replace F̃(5) in Equation (13) with a more
compact discretization:

F̃(5)
1 :=∆1

(
pj,k,l

)
−

f (1)j+2, k+1, l+1 − f (1)j, k+1, l+1

2h
−

f (2)j+1, k+2, l+1 − f (2)j+1, k, l+1

2h

−
f (3)j+1, k+1, l+2 − f (3)j+1, k+1, l

2h
= 0 . (21)

This substitution preserves w-consistency since:

F̃(5)
1 B F(5) . (22)

However, as the following Proposition shows, the obtained scheme is not s-consistent.

Proposition 1. The difference scheme {F̃(1), F̃(2), F̃(3), F̃(4), F̃(5)
1 } is s-inconsistent.

Proof. The difference polynomial F̃(5)
1 is irreducible modulo the ideal Ĩ . This can be shown by the

direct computation of the normal form of F̃(5)
1 modulo the Janet basis (13) by using the routine InvReduce

of the Maple package LDA. Hence, the difference polynomial (21) is not an element of the difference
ideal Ĩ generated by the polynomial set in Equation (13).
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It is instructive to perform s-consistency analysis of {F̃(1), F̃(2), F̃(3), F̃(4), F̃(5)
1 }. The Janet/Gröbner

basis of the difference ideal Ĩ := 〈F̃(1), F̃(2), F̃(3), F̃(4), F̃(5)
1 〉 computed with LDA consists of

thirteen elements. Nine of them imply the equations in (5). The remaining elements denoted
by F̃(10), F̃(11), F̃(12), F̃(13) are rather cumbersome difference equations, which imply the following
differential equations: 

F(6) := − f (1)yyyyx − f (1)xxxxx − f (1)zzzzx − f (2)yxxxx − f (2)zzzzy

− f (2)yyyyy − f (3)zyyyy − f (3)zxxxx − f (3)zzzzz = 0 ,

F(7) := f (1)xxx
4 −

f (1)xyy
4 −

f (1)xzz
4 +

f (2)xxy
4 −

f (2)yyy
4 −

f (2)zzy
4 + f (3)xxz

4

− f (3)zzz
4 −

f (3)zyy
4 +

pyyyy
2 + pzzzz

2 +
pyyzz

2 = 0,

(23)

where:
F̃(13) B F(6) and F̃(10), F̃(11), F̃(12) B F(7) .

Since the differential polynomials F(6) and F(7) are irreducible modulo the differential ideal
generated by the differential polynomials in Equation (1), it follows that F(5) and F(6) are not
consequences of the Stokes equations. Therefore, there are solutions to the Stokes equations that
do not satisfy Equation (23).

Remark 6. As a result of s-inconsistency, Equation (23) impose constraints on the external forces, which are
not consequences of the governing differential equations (1).

4. Modified Stokes Flow

To construct a modified equation (cf. [18], Sect. 5.5) for the discrete Stokes flow (13), a numerical
solution of the governing differential system (1), given external forces f (1), f (2), and f (3), should
be considered as a set of continuous differentiable functions {u, v, w, p} whose values at the grid
points satisfy the difference system (13). Since this system describes the differential system (5) only
approximately, one cannot expect that a continuous solution interpolating the grid values exactly
satisfies Equation (5). In fact, it satisfies another set of differential equations, which we call the modified
steady Stokes flow or modified flow for short.

The method of modified differential equation treats the difference equations comprising the
scheme as infinite order differential equations obtained by replacing the various shift operators in the
difference equations by the Taylor series about a grid point. For equations of an evolutionary type,
the next step is to eliminate all derivatives with respect to the evolutionary variable of order greater
than one by their expressions via partial derivatives with respect to the other independent variables.
This step allows obtaining a kind of canonical form of the modified equation. Then, truncation of
the order of the differential representations in the grid steps gives a family of modified equations
(“differential approximations”) of the difference scheme.

As we show here, the fact that the polynomial parts of both differential and difference systems
are Gröbner bases of the ideals, they generate and satisfy the condition (16), which implies the
s-consistency condition (20) and allows developing a constructive procedure for the computation of
the modified flow. Due to the fact that the finite differences in the scheme (13) approximate the partial
derivatives occurring in Equation (5) with accuracy O(h2), it is natural to expect the scheme to have
the second order of accuracy. For this reason, we restrict ourselves to the computation of the second
order modified flow.

The Taylor expansions of the difference polynomials in Equation (13) at the grid point:

(j + 1, k + 1, l + 1) for F̃(1), F̃(2), F̃(3), F̃(4)
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and at the point:
(j + 2, k + 2, l + 2) for F̃(5)

yield: 

F̃(1) := ux + vy + wz +
h2uxxx

6 +
h2vyyy

6 + h2wzzz
6 +O(h4) = 0 ,

F̃(2) := px − 1
Re uxx − 1

Re uyy − 1
Re uzz − f (1) + h2 pxxx

6 − h2uxxxx
12 Re

− h2uyyyy
12 Re −

h2uzzzz
12 Re +O(h4) = 0 ,

F̃(3) := py − 1
Re vxx − 1

Re vyy − 1
Re vzz − f (2) + h2 pyyy

6 − h2vxxxx
12 Re

− h2vyyyy
12 Re −

h2vzzzz
12 Re +O(h4) = 0 ,

F̃(4) := pz − 1
Re wxx − 1

Re wyy − 1
Re wzz − f (3) + h2 pzzz

6 − h2wxxxx
12 Re

− h2wyyyy
12 Re −

h2wzzzz
12 Re +O(h4) = 0 ,

F̃(5) := pxx + pyy + pzz − f (1)x − f (2)y − f (3)z + h2 pxxxx
3 +

h2 pyyyy
3

+ h2 pzzzz
3 − h2 f (1)xxx

6 − h2 f (2)yyy
6 − h2 f (3)zzz

6 +O(h4) = 0 ,

(24)

where we explicitly write the terms of order h2. The calculation of the right-hand sides in Equation (24),
as well as the computation of the expressions given below were performed with the help of the
freely-available Python library SYMPY (http://www.sympy.org/) for symbolic mathematics.

Remark 7. The Taylor expansions of the elements in difference scheme (13) and also those in the scheme
{F̃(1), F̃(2), F̃(3), F̃(4), F̃(5)

1 } over the chosen grid points contain only the even powers of h. The reason is that all
the finite differences occurring in the equations of both schemes are the central difference approximations of the
partial derivatives occurring in (5).

Furthermore, let us reduce the terms of order h2 in the right-hand sides of (24) modulo the
differential Janet/Gröbner basis (13). Such reduction gives us a canonical form of the second order
modified flow. This is because the normal form of a polynomial computed modulo a Gröbner basis
basis is uniquely defined (cf. [19], Section 2.1). The normal form can be computed by means of the
routine InvReduce in the Maple package JANET.

http://www.sympy.org/
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F̃(1) := ux + vy + wz +
h2Re f (2)y

6 + h2Re f (3)z
6 − h2Repyy

6 − h2Repzz
6

+
h2vyzz

6 +
h2vyyy

3 +
h2wyyz

6 + h2wzzz
3 +O(h4) = 0 ,

F̃(2) := px − 1
Re uyy − 1

Re uzz +
1

Re vxy +
1

Re wxz − f (1) + h2 f (1)xx
6

+
h2 f (1)yy

4 + h2 f (1)zz
12 +

h2 f (2)xy
4 + h2 f (3)xz

4 − h2 pxyy
2 − h2 pxzz

3

+
h2uyyyy

6Re +
h2uyyzz

3Re −
h2wxyyz

6Re + h2wxzzz
6Re +O(h4) = 0 ,

F̃(3) := py − 1
Re vxx − 1

Re vyy − 1
Re vzz − f (2) − h2 f (1)xy

12 − h2 f (2)zz
12

+ h2 f (2)xx
12 − h2 f (2)yy

6 − h2 f (3)yz
12 +

h2 pyyy
3 +

h2 pyzz
6 − h2vyyyy

6 Re

− h2vyyzz
6 Re −

h2vzzzz
6 Re +O(h4) = 0 ,

F̃(4) := pz − 1
Re wxx − 1

Re wyy − 1
Re wzz − f (3) − h2 f (1)xz

12 − h2 f (2)yz
12

+ h2 f (3)xx
12 − h2 f (3)zz

6 − h2 f (3)yy
12 +

h2 pyyz
6 + h2 pzzz

3 − h2wzzyy
6 Re

− h2wzzzz
6 Re −

h2wyyyy
6 Re +O(h4) = 0 ,

F̃(5) := pxx + pyy + pzz − f (1)x − f (2)y − f (3)z + h2 f (1)xxx
6 − h2 f (1)zzx

3

− h2 f (1)yyx
3 − h2 f (2)yyy

2 − h2 f (2)yzz
3 +

h2 f (2)xxy
3 − h2 f (3)zzz

2 − h2 f (3)yyz
3

+ h2 f (3)xxz
3 +

2h2 pyyzz
3 +

2h2 pyyyy
3 + 2h2 pzzzz

3 +O(h4) = 0 .

(25)

Thereby, the Taylor expansion of the difference polynomials produces the second order modified
Stokes flow in the form of System (25).

Remark 8. Note that the symmetry of Equation (24) under the swap transformation (3) is not preserved in
Equation (25). The symmetry breaking is a result of the Gröbner reduction and nonsymmetry of the term ordering.

As we know, solutions of Stokes flow (1) satisfy the integrability condition (6), which we rewrite as:

F(2)
x + F(3)

y + F(4)
z +

1
Re

(
F(1)

xx + F(1)
yy + F(1)

zz

)
− F(5) = 0 . (26)

Substitution of the expansions (25) into the equality (26) yields that its left-hand side is equal to
zero for the terms explicitly written in (25). As we show below, this is an implication of the s-consistency
of the scheme.

Proposition 2. A w-consistent difference scheme for involutive Stokes flow (5) is s-consistent only if its Taylor
expansion based on the central-difference formulas for derivatives and reduced modulo system (5), after its
substitution into the left-hand side of Equation (26), vanishes for every order in h2.

Proof. Let G̃ := {G̃(1), G̃(2), G̃(3), G̃(4), G̃(5)} be an s-consistent difference approximation to the set of
differential polynomials F(1), F(2), F(3), F(4), F(5) building up the Janet/Gröbner basis (5). Then, the
w-consistency of G generates the central difference Taylor expansion:

G̃(i) = F(i) +
∞

∑
m=1

h2mr(i)m , r(i)m ∈ Q(Re)[u, v, w, p, f (1), f (2), f (3)] (i = 1 . . . 5) . (27)

We consider the family of difference polynomials whose elements:

G̃(m)
0 := D(m)

1 G̃(2) + D(m)
2 G̃(3) + D(m)

3 G̃(4) − G̃(5) +
1

Re

(
D(m)

1,1 G̃(1) + D(m)
2,2 G̃(1) + D(m)

3,3 G̃(1)
)

(28)
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are indexed by m ∈ N≥1 with the central-difference operators D(m)
1 , D(m)

2 , D(m)
3 , D(m)

1,1 , D(m)
2,2 , D(m)

3,3
approximating the partial differential operators ∂x, ∂y, ∂z, ∂xx, ∂yy, ∂zz with accuracy h2m. It is obvious

that G̃(m)
0 belongs to the perfect difference ideal (cf. [8], Def.2.3.1) generated by G̃:

(∀m ∈ N≥1) [ G̃(m)
0 ∈ JG̃K ] .

The difference operators occurring in (28) are composed of the translations (12). For instance,

D(1)
i :=

σi − σ−1
i

2h
, D(1)

i,i :=
σi − 2 + σ−1

i
h2 , i ∈ {1, 2, 3x}

and:

D(2)
i :=

−σ2
i + 8σi − 8σ−1

i + σ−2
i

12h
, D(2)

i,i :=
−σ2

i + 16σi − 30 + 16σ−1
i − σ−2

i
12h2

with:

σ−1
1 ◦ u(j, k, l) = u(j− 1, k, l), σ−1

2 ◦ u(j, k, l) = u(j, k− 1, l), σ−1
3 ◦ u(j, k, l) = u(j, k, l − 1) ,

etc., and:

σ2
i = σi ◦ σi , σ−2

i = σ−1
i ◦ σ−1

i , i ∈ {1, 2, 3} .

From Equations (27) and (28), we obtain:

G̃(1)
0 = F(2)

x + F(3)
y + F(4)

z +
1

Re

(
F(1)

xx + F(1)
yy + F(1)

zz

)
− F(5) +O(h2) ,

⇒ F(2)
x + F(3)

y + F(4)
z +

1
Re

(
F(1)

xx + F(1)
yy + F(1)

zz

)
− F(5) = 0 , (29)

G̃(2)
0 = h2

(
∂xr(2)1 + ∂yr(3)1 + ∂zr(4)1 +

1
Re

(
∂xxr(1)1 + ∂yyr(1)1 + ∂zzr(1)1

))
+O(h4)

⇒ ∂xr(2)1 + ∂yr(3)1 + ∂zr(4)1 +
1

Re

(
∂xxr(1)1 + ∂yyr(1)1 + ∂zzr(1)1

)
= 0 , (30)

...

G̃(k)
0 = h2k

(
∂xr(1)k + ∂yr(3)k + ∂zr(4)k +

1
Re

(
∂xxr(1)k + ∂yyr(1)k + ∂zzr(2)k

))
+O(h2k+2)

⇒ ∂xr(2)k + ∂yr(3)k + ∂zr(4)k +
1

Re

(
∂xxr(1)k + ∂yyr(1)k + ∂zzr(2)k

)
= 0. (31)

The implication (30) is a consequence of the fact that the normal form of the differential
polynomial (30) modulo Equation (5), when it is nonzero, is not an element of the differential ideal
generated by the polynomials in (5), which contradicts the s-consistency of G̃. Because of the same
argument, the equality (31) holds for any k.

Corollary 2. Given ranking (11), a w-consistent difference scheme for involutive Stokes flow (5) is s-consistent
if and only if its set of polynomials is a difference Janet/Gröbner basis.
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Proof. “⇐” From our choice of the ranking and the corresponding structure (5) of the differential
Janet/Gröbner basis whose leaders are underlined, it follows that a w-consistent difference scheme
composed of five difference polynomials:

{G̃(1), G̃(2), G̃(3), G̃(4), G̃(5)} (32)

has the only difference S-polynomial of the form (28) approximating the left-hand side of the differential
integrability condition (26). Together with the Taylor expansion (27), the relations (29)–(31) imply the
reduction of S-polynomial (28) to zero modulo the set (32). Thus, the scheme is a Janet/Gröbner basis.

“⇒” If a w-consistent set (32) is a Janet/Gröbner basis, then by Theorem 1, it is s-consistent.

It is instructive to illustrate Proposition 2 and Corollary 2 by the s-inconsistent difference scheme:

{F̃(1)
1 , F̃(2)

1 , F̃(3)
1 , F̃(4)

1 , F̃(5)
1 }

analyzed in Section 3. It has the first four difference equations equal to those in the system (13),
F̃(i)

1 = F̃(i) (i = 1, 2, 3, 4), and F̃(5)
1 given by Equation (21). Because of the distinction of F̃(5)

1 from F̃(5),

the reduced Taylor expansions of equations F̃(1)
1 = 0 and F̃(5)

1 = 0 are different from F̃(1) = 0 and
F̃(5) = 0 in System (25):

F̃(1)
1 := ux + vy + wz +

h2Re f (2)y
6 + h2Re f (3)z

6 − h2Repyy
6 − h2Repzz

6

+
h2vyzz

6 +
h2vyyy

3 +
h2wyyz

6 + h2wzzz
3 +O(h4) = 0

F̃(2)
1 := px − 1

Re uxx − 1
Re uyy − 1

Re uzz − f (1) − h2 f (1)zz
12 − h2 f (1)yy

12

+ h2 f (1)xx
6 +

h2 f (2)xy
12 + h2 f (3)zx

12 − h2uyyzz
6 Re −

h2uzzzz
6 Re

− h2uyyyy
6 Re +O(h4) = 0

F̃(3)
1 := py − 1

Re vxx − 1
Re vyy − 1

Re vzz − f (2) − h2 f (1)xy
12 − h2 f (2)zz

12

+ h2 f (2)xx
12 − h2 f (2)yy

6 − h2 f (3)yz
12 +

h2 pyyy
3 +

h2 pyzz
6 − h2vyyyy

6 Re

− h2vyyzz
6 Re −

h2vzzzz
6 Re +O(h4) = 0 ,

F̃(4)
1 := pz − 1

Re wxx − 1
Re wyy − 1

Re wzz − f (3) − h2 f (1)xz
12 − h2 f (2)yz

12

+ h2 f (3)xx
12 − h2 f (3)zz

6 − h2 f (3)yy
12 +

h2 pyyz
6 + h2 pzzz

3 − h2wzzyy
6 Re

− h2wzzzz
6 Re −

h2wyyyy
6 Re +O(h4) = 0 ,

F̃(5)
1 := pxx + pyy + pzz − f (1)x − f (2)y − f (3)z − h2 f (1)xxx

12 − h2 f (1)xyy
12

− h2 f (1)xzz
12 − h2 f (2)yyy

4 − h2 f (2)zzy
12 +

h2 f (2)xxy
12 − h2 f (3)yyz

12 + h2 f (3)xxz
12

− h2 f (3)zzz
4 +

h2 pyyyy
6 + h2 pzzzz

6 +
h2 pyyzz

6 +O(h4) = 0 .

(33)

The Taylor expansion of F̃i
1 (i = 1 . . . 5) up to the order h4 and substitution into the left-hand side

of (26) give:

h2 f (1)xxx
4
−

h2 f (1)xyy

4
− h2 f (1)xzz

4
+

h2 f (2)xxy

4
−

h2 f (2)yyy

4
−

h2 f (2)zzy

4
+

h2 f (3)xxz
4

− h2 f (3)zzz
4
−

h2 f (3)zyy

4
+

h2 pyyyy

2
+

h2 pzzzz

2
+

h2 pyyzz

2
+O(h4). (34)

Expression (34) contains terms of second order in h. Up to the factor h2, the sum of these terms
coincides with the differential polynomial F(7) in Equation (23). Thus, the presence of the second order
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terms in (34) is intimately related to the s-inconsistency of (33) with the Stokes flow (1). Apparently,
the PDE system (33) cannot be considered as a modified Stokes flow.

5. Conclusions

For the three-dimensional incompressible steady Stokes flow (1) and a Cartesian solution
grid, we applied a computer algebra-based approach suggested in [10] to derive the s-consistent,
conservative and permutationally-invariant difference scheme (13) for which we constructed the
modified Stokes flow (25). The structure of the latter shows that the derived scheme has order O(h2).

Our constructive approach to derivation of the scheme combines the methods of differential and
difference Gröbner bases. The first method applied to the governing system of Stokes equations (1) to
complete this system to the involution form (5) that incorporates the pressure Poisson equation F(4).
The second method allows deriving the difference scheme on the chosen grid by means of difference
elimination and verifying its s-consistency by applying the criterion of Theorem 1. This criterion is
fully algorithmic for linear PDE systems [6].

In addition, we exploited both methods to construct the modified Stokes flow (25). The structure
of the constructed modified flow is determined by the choice of the differential and difference rankings.
We performed computational experiments with several rankings and finally preferred the ranking (4)
for the differential case and (11) for the difference case as the best suited. All the related computations
were done by means of the Maple packages JANET [14] and LDA [15] and the freely-available Python
library SYMPY (http://www.sympy.org/) for symbolic mathematics.

Since our difference scheme (13) is obtained from the four governing equations (1) by constructing
the difference Janet/Gröbner basis (see also Remark 2), we checked with the help of Gröbner bases
whether the difference ideal generated by F̃ := {F̃(2), F̃(3), F̃(4)} contains a difference approximation to
the continuity equation. In the case of the existence of such an approximation, it might be used for the
numerical study of Stokes flow in the velocity-pressure formulation. However, the straightforward
computation with LDA shows that the discrete version of F(1) is not a consequence of F̃. Therefore,
to use the velocity-pressure formulation, one has to add information on the continuity equation to F̃
via the corresponding boundary condition (cf. [20]).
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