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Abstract: In this article, we develop the theory of SAGBI bases in G-algebras and create a criterion
through which we can check if a set of polynomials in a G-algebra is a SAGBI basis or not. Moreover,
we will construct an algorithm to compute SAGBI bases from a subset of polynomials contained in
a subalgebra of a G-algebra.
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1. Introduction

Our interest in the topic of this paper was inspired by the work of Levandovskyy [1]. In [1],
the author developed the concept and computational criterion for computing Gröbner bases in
G-algebra whenever these bases have Poincare-Birkhof-Witt (PBW) bases.

The popular PBW theorem is initially defined in [2] for a special Lie algebra, known as enveloping
algebra over a condition of finite dimension. PBW theorem is one of the most important tools to study
representation theory, theory of algebra, and rings. The notion, G-algebra developed by Apel [3] and
Mora [4]. This algebra is quoted as algebra of solvable types [5–7] and PBW algebras [8]. These are
also nice generalization of commutative algebras and widely used in non-commutative algebraic
geometry [9].

Gordon proposed the idea of Gröbner bases in [10] in 1900 while Gröbner bases for commutative
rings of polynomials over a field K were defined and developed by Buchberger [11] in 1965. The theory
of Gröbner bases in a free associative algebra was developed by Kandri and Rody [5]. Gröbner bases
in G-algebras over a field K were defined by Levandovskyy, he also developed a criterion for the
existence of these bases and gave a method to compute them [1].

It is natural to make analogue of Gröbner bases of ideal in K-subalgebra; this work was done
independently by Robbiano and Sweedler in [12] and Kapur and Madlener in [13]. These bases are
known as SAGBI bases. In [14] Nordbeck developed the concept of SAGBI bases in free associative
algebra and gave a method to compute them.

In this paper, we establish the theory of SAGBI bases in a general G-algebra over a field K; and we
also develop a computational criterion for its construction.

The sketch of this paper is as follows. In Section 2, we briefly describe the concept of a G-algebra
and give some definitions that will be used, including the definition of a SAGBI basis in a G-algebra
(Definition 4). In Section 3, we define the process of subalgebra reduction in a G-algebra and introduce
the concept SAGBI normal form in a G-algebra. Also, we give an algorithm (Algorithm 1) to compute
it and its consequences (Proposition 3.8). Finally, in Section 4, we give a SAGBI bases criterion,
(Theorem 1) which determines whether a given set is a SAGBI basis. Based on this criterion, we give
an algorithm (Algorithm 2) to compute them.
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2. Definitions and Notations

In this section, first, we will introduce G-algebras and then we will review some basic
terminologies related with it. G-algebras are significant in the study of non-commutative algebras.
It has a wide application area. The theory of Gröbner bases are well developed for G-algebras.
The corresponding algorithms are implemented in Singular [15]. Details can be found in [16].

Definition 1. Tn = K〈x1, ..., xn〉 be the free associative K-algebra, generated by {x1, ..., xn} over K. Let cij ∈
K \ {0} and dij, denote the standard polynomials in Tn, where 1 ≤ i < j ≤ n. Consider

A = K〈x1, ..., xn | xji = cij · xixj + dij, 1 ≤ i < j ≤ n〉

A is termed as a G-algebra, if these conditions hold:

1. There exists a monomial well-ordering < on Nn such that

for all i < j, LM(dij) < xixj

2. For all 1 ≤ i < j < k ≤ n, the polynomial

cikcjk · dijxk − xkdij + cjk · xjdik − cij · dikxj + djkxi − cijcik · xidjk

reduces to 0 with respect to the relations of A.

A K-algebra A has a PBW basis, if {xα1
1 xα2

2 · · · x
αn
n }, known as a standard word-set, is a K-basis of A.

Proposition 1 ([1]). Let A be a G-algebra. Then it is an integral domain and has a PBW basis.

Let A = K〈x1, ..., xn | xjxi = cij · xixj + dij, 1 ≤ i < j ≤ n〉 be a G-algebra over the field K. As A
has a PBW basis, we say standard monomial in A appears as xα = xα1

1 xα2
2 · · · x

αn
n of this basis. The set

Mon(A) consist all standard monomials from A, that is,

Mon(A) =
{

xα1
1 xα2

2 · · · x
αn
n | αk ≥ 0

}
.

Now we introduce the notion of a monomial ordering in a G-algebra.

Definition 2. Let A be a G-algebra in n variables.

1. A total ordering < on Mon(A) is called a monomial ordering, if it is a well-ordering on Mon(A) and for
all xα, xβ, xγ ∈ Mon(A) if xα < xβ, then xα+γ < xβ+γ. If < is a monomial ordering on Mon(A) then
< is said to be a monomial ordering on A.

2. As we know, Mon(A) forms a K-basis of A, therefore any non-zero element f in A could be uniquely
written as f = cαxα + g with cα ∈ K \ {0} and xα a monomial. Please note that for any non-zero term
cβxβ of g, we have xβ < xα. The monomial xα ∈ Mon(A) represents the leading monomial of f , denoted
by LM( f ). Here cα ∈ K \ {0} represents the leading coefficient of f , denoted by LC( f ).

3. Let H ⊂ A, the notation K〈H〉A means the subalgebra S of A generated by H. It is the polynomials set in
the H-variables in A.

4. For H ⊂ A, m(H) denotes a monomial in terms of elements of H, we call it H-monomial. For m(H) =

hi1hi2 · · · hit , hij ∈ H we define

LMm(H) = LM (LM(hi1)LM(hi2) · · · LM(hit))
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Also,
LTm(H) = LT (LT(hi1)LT(hi2) · · · LT(hit)) .

Example 1. Consider a subset H = {h1 = x2∂ + 1, h2 = 2x∂− ∂, h3 = x∂} of A = K〈x, ∂ | ∂x = x∂ + 1〉
which is the first Weyl algebra. A monomial m(H) ∈ K〈H〉A is

m(H) = h1h2 = (x2∂ + 1)(2x∂− ∂) = 2x3∂2 − x2∂2 + 2x2∂ + 2x∂− ∂.

Further

LM(h1)LM(h2) = x3∂2 + x2∂ and ,

LMm(H) = LM (LM(h1)LM(h2)) = x3∂2.

3. SAGBI Normal Form in G-Algebras

In this section, first, we define the process of reduction together with SAGBI normal form in
G-algebras, following which we define the concept of SAGBI bases in G-algebra.

Definition 3. Let H and s be a subset and a polynomial in a G-algebra A, respectively. If there exists an
H-monomial m(H), and k ∈ K satisfying LT(km(H)) = LT(s), then we say that

so = s− km(H) (1)

is a one-step s-reduction of s with respect to H. Otherwise, the s-reduction of s with respect to H is s itself.
If we apply the one-step s-reduction process iteratively, we can achieve a special form of s with respect to H (which
cannot be s-reduced further with respect to H), called SAGBI normal form, and write it as, so := SNF(s|H).
For the reader’s convenience, we give an algorithm for its computation.

Remark 1. During the reduction process inside the while loop, LM(s0) is strictly smaller than LM(s) (by
the choice of k and m(H)). Due to well-ordering of >, Algorithm 1 always terminates after a finite number
of sweeps.

Algorithm 1 SNF(s | H)

Require: > a fixed well-ordering on the G-algebra A, H ⊂ A and s ∈ A
Ensure: h ∈ A the SAGBI normal form

so := s
Hso := {km(H) | k ∈ K and LT(km(H)) = LT(so)}
while so 6= 0 and Hso 6= ∅ do

choose km(H) ∈ Hso

so := so − km(H)
Hso := {km(H) | k ∈ K and LT(km(H)) = LT(so)}

return so;

Remark 2. For different choices “km(H)”in the algorithm above, the output of SNF may also be different.

Following is an example of the SAGBI normal form in an enveloping algebra. Tables 1 and 2 in
the above example shows that the SNF of different choices are uncommon. In the next example (see
Tables 3–5) we use second Weyl algebra with all possible choices of the while loop of Algorithm 1.
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Example 2. Let A = Q 〈e, f , h| f e = e f − h, he = eh + 2e, h f = f h− 2 f 〉. Let S be a subalgebra of A
generated by H = {q1, q2, q3} =

{
e2, f , f h + f

}
and g = e2 f h + eh + f , associated with degrevlex ordering

(dp). For the computation of SNF(g | H), we use Algorithm 1.

Table 1. First possible choice—Example 2.

Turn hi Hhi Choose hi+1

i = 0 g {q1q3, q3q1} q1q3 −e2 f + eh + f
i = 1 h1 {q1q2, q2q1} q1q2 eh + f
i = 2 h2 ∅ SNF(g|H) = eh + f

Table 2. Second possible choice—Example 2.

Turn hi Hhi Choose hi+1

i = 0 g {q1q3, q3q1} q3q1 −5e2 f + 2eh2 + 13eh
+10e + f

i = 1 h1 {q1q2, q2q1} q1q2 2eh2 + 13eh
+10e + f

i = 2 h2 ∅ SNF(g|H) = 2eh2

+13eh + 10e + f

Example 3. Let A = Q 〈x1, x2, ∂1, ∂2 | ∂ixi = xi∂i + 1〉, and the subalgebra S in A generated by
H = {p1, p2} =

{
x2

2∂1 − 1, x1∂2 + 1
}

, and a polynomial g = x1∂2
1x4

2∂2 + x1x2
2 + x2

2∂3
1, associated with

degrevlex ordering (dp). For the computation of the SNF(g | H), we use Algorithm 1.

Table 3. First possible choice—Example 3.

Turn hi Hhi Choose hi+1

i = 0 g {p2
1 p2, p2

1 p2 −∂2
1x4

2 − 2∂1x4
2∂2 + ∂3

1x2
2 + 2x1∂1x2

2∂2
p1 p2 p1, p2 p2

1} +x1x2
2 + 2∂1x2

2 + 2x2
2∂2 − x1∂2 − 1

i = 1 h1 {p2
1} p2

1 −2∂1x4
2∂2 + ∂3

1x2
2 + 2x1∂1x2

2∂2+
x1x2

2 + 2x2
2∂2 − x1∂2

i = 2 h2 ∅ SNF(g|H) = −2∂1x4
2∂2 + ∂3

1x2
2+

2x1∂1x2
2∂2 + x1x2

2 + 2x2
2∂2 − x1∂2

Table 4. Second possible choice—Example 3.

Turn hi Hhi Choose hi+1

i = 0 g {p2
1 p2, p1 p2 p1, p1 p2 p1 −2x1∂2

1x3
2 − ∂2

1x4
2 − ∂1x4

2∂2 + ∂3
1x2

2
p2 p2

1} +2x1∂1x2
2∂2 − 2∂1x3

2 + 2x1∂1x2+
x1x2

2 + 2∂1x2
2 + x2

2∂2 − x1∂2 − 1

i = 1 h1 ∅ −2x1∂2
1x3

2 − ∂2
1x4

2 − ∂1x4
2∂2 + ∂3

1x2
2

+2x1∂1x2
2∂2 − 2∂1x3

2 + 2x1∂1x2+
x1x2

2 + 2∂1x2
2 + x2

2∂2 − x1∂2 − 1
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Table 5. Third possible choice—Example 3.

Turn hi Hhi Choose hi+1

i = 0 g {p2
1 p2, p1 p2 p1 p2 p2

1 −4x1∂2
1x3

2 − ∂2
1x4

2 + ∂3
1x2

2+
p2 p2

1} 2x1∂1x2
2∂2 + 4x1∂1x2 + x1x2

2+
2∂1x2

2 − x1∂2 − 1

i = 1 h1 ∅ SNF(g|H) = −4x1∂2
1x3

2 − ∂2
1x4

2+
∂3

1x2
2 + 2x1∂1x2

2∂2 + 4x1∂1x2+
x1x2

2 + 2∂1x2
2 − x1∂2 − 1

Let S be a subalgebra of G-algebra A and H ⊂ S. Our interest lies in the case when SAGBI normal
form so = 0 for s ∈ S. If there is at least one choice of H-monomials such that so = 0, then we say s
reduces weakly over H, and reduces strongly if all possible choices give so = 0.

Definition 4. Let S be a subalgebra of G-algebra A. A subset H ⊂ S is called a SAGBI basis for S if ∀s ∈ S,
s 6= 0, ∃ a H-monomial, m(H) in K〈H〉A such that

LM(s) = LM(m(H)) (2)

The following proposition illustrates that s ∈ K〈H〉A reduces strongly to so = 0 if H is a SAGBI
basis of S.

Proposition 2. Let S be subalgebra of A and H ⊆ S. We assume H to be a SAGBI basis of S, then

1. For each s ∈ A, s ∈ S if and only SNF(s|H) = 0
2. H generates the subalgebra S i.e., S = K〈H〉A.

Proof. 1. First assume SNF(s|H) = 0, then s = ∑ kimi(H) where ki ∈ K and hence s ∈ S.
Conversely, suppose that s ∈ S and SNF(s|H) 6= 0 then it cannot be reduced further i.e.,
LM(SNF (s|H)) 6= LM(m(H)), for any H-monomial m(H) and this contradicts that H is
a SAGBI basis.

2. Follows from (1), s ∈ S if and only if SNF(s|H) = 0, that is, s = ∑ kimi(H) with ki ∈ K, it implies
s ∈ K 〈H〉A. which shows S = K〈H〉A.

4. SAGBI Basis Construction in G-Algebras

For the computation of SAGBI bases in G-algebra, we propose an algorithm and explore some
ingredients that are necessary for this construction. Throughout this section, let A be a G-algebra over
the field K.

Definition 5. Let H ⊆ A and m(H) and m′(H) be H-monomials. The pair (m(H), m′(H)) is
a critical pair of a H if LM(m(H)) = LM(m′(H)). The T-polynomial of critical pair is defined as
T(m(H), m′(H)) = m(H)− km′(H) where k ∈ K such that LT(m(H)) = LT(m′(H)).

Definition 6. Let H be a set of polynomials in A and S = K 〈H〉A be a subalgebra in A. We consider P ∈ S
with the representation P = ∑t

i=1 kimi(H). Then the height of P with respect to this representation is defined as
ht(P) = maxt

i=1{LM(mi(H))}, where the maximum is taken with respect to term ordering in A.

Remark 3. The height is defined for a specific representation of elements of A, not for the elements itself.

Theorem 1. (SAGBI Basis Criterion) Assume H generates S as a subalgebra in A, then H is a SAGBI basis
of S if every T-polynomial of every critical pair of H gives zero SAGBI normal form.
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Proof. Assume H is a SAGBI basis of S. Since every T-polynomial is an element of S = K〈H〉A,
its SAGBI normal form is equal to zero by part (1) of Proposition 2.

Conversely, suppose given 0 6= s ∈ S. It is sufficient to prove that it has a representation
s = ∑t

p=1 kpmp(H), where kp ∈ K and mp(H) ∈ K〈H〉A with LM(s) = ht(∑t
p=1 kpmp(H)).

Let s ∈ S with representation s = ∑t
p=1 kpmp(H) with smallest possible height X among all

possible representations of s in S, that is X = maxt
p=1{LM(mp(H))}. Clearly LM(s) 5 X.

Suppose LM(s) � X i.e., cancellation of terms occur then there exist at least two H-monomials
such that their leading monomial is equal to X. Assume we have only two H-monomials
mi(H), mj(H) in the representation s = ∑t

p=1 kpmp(H) such that LM(mi(H)) = LM(mj(H)) = X.
If T(mi(H), mj(H)) = mi(H)− kmj(H), we can write

s =
t

∑
p=1

kpmp(H)

= ki(mi(H)− kmj(H)) + (k j + kik)mj(H) +
t

∑
p=1,p 6=i,j

kpmp(H)

= kiT(mi(H), mj(H)) + (k j + kik)mj(H) +
t

∑
p=1,p 6=i,j

kpmp(H) (3)

Since T(mi(H), mj(H)) has a zero SAGBI normal form, then this T-polynomial is either zero or
can be written as sum of H-monomials of height LM(T(mi(H), mj(H)) which is less than X. If k j + kik
is equal to zero, then the right-hand side of Equation (3) is a representation of s that has the height less
than X, which contradicts our initial assumption that we had chosen a representation of s that had the
smallest possible height. Otherwise, the height is preserved, but on the right-hand side of Equation (3),
we have only one H-monomial mj(H) such that LM(mj(H)) = X, which is a contradiction as at least
two H-monomials of such type must exist in the representation of s.

Remark 4. The necessary critical pairs used in SAGBI basis testing are those critical pairs
((m(H), m′(H)) which cannot be factor as m(H) = m1(H) · · ·mt(H) , m′(H) = m′1(H) · · ·m′t(H) with
LM mi(H) = LM m′i(H) for all i. The T-polynomial induced by a necessary critical pair is called the necessary
T-polynomial. Since G-algebras are finite factorization domains (Theorem 1.3, [17]), therefore for any critical
pair ((m(H), m′(H)) (possibly not a necessary critical pair), the H-monomials m(H) and m′(H) have finite
irreducible factors. The necessary critical pairs will be formed by these irreducible factors, therefore the zero
SAGBI normal form of T-polynomials induced by necessary critical pairs implies the SAGBI normal form of
T-polynomial of a critical pair ((m(H), m′(H)), will be zero (for details, see proposition 6 of [14]).

Using Remark 4, Theorem 1 can be restated by replacing every critical pair with necessary
critical pairs i.e., a set that generates a subalgebra in a G-algebra is a SAGBI basis if and only if the
T-polynomial of all necessary critical pairs of that set gives zero SAGBI normal form.

The following example illustrates Remark 4.

Example 4. Let A = Q 〈x, ∂ | ∂x = x∂ + 1〉 be the first Weyl algebra. Let S ⊆ A be the subalgebra generated
by H =

{
x2, x∂, ∂2} with x >lex ∂. Let

m(H) = x3∂ + x2∂3 + x2∂2 + x∂4 + x∂, and

m′(H) = x3∂− x2∂3 + x∂4 − ∂6 + 3∂3.
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with LMm(H) = LMm′(H) then (m(H), m′(H)) is not a necessary critical pair because they can be written
in factored form as

m(H) = (x2 + x∂)(x∂ + ∂3) := m1(H)m2(H), and

m′(H) = (x2 + ∂3)(x∂− ∂3) := m′1(H)m′2(H),

with LMmi(H) = LMm′i(H) for i = 1, 2. Please note that (mi(H), m′i(H)) are necessary critical pairs. Also,
observe that

T(m(H), m′(H)) = 2x2∂3 + x2∂2 + x∂ + ∂6 − 3∂3

= (x∂− ∂3)(x∂ + ∂3) + (x2 + ∂3)(2∂3)

= T(m1(H), m′1(H))m2(H) + m′1(H)T(m2(H), m′2(H)).

Since SAGBI normal form of T-polynomials on the right-hand side reduces to zero, therefore the SAGBI
normal form of T(m(H), m′(H)) also vanishes.

Now we give an algorithm based on the SAGBI Basis Criterion to compute SAGBI basis.

Proposition 3. Let H∞ = ∪H, accumulated over a while loop in Algorithm 2. Then H∞ is a SAGBI basis for
K 〈Ho〉A. Furthermore, if K 〈Ho〉A is a finitely generated subalgebra (i.e., Ho is a finite set) and admits a finite
SAGBI basis, then Algorithm 2 stops and yields a finite SAGBI basis for K 〈Ho〉A

Algorithm 2 SAGBI Construction Algorithm
Require: > a fixed well-ordering on the G-algebra A, Ho ⊆ A
Ensure: A SAGBI basis H for K 〈Ho〉A

H = Ho and old H = ∅
while H 6= old Ho do

Compute C = set of all necessary critical pairs of H
D = {T(m(H), m′(H)) : (m(H), m′(H)) ∈ C}
Red= {SNF(p|H) | p ∈ D} \ {0}
old H = H
H = H ∪ Red

return H;

Proof. First, we will prove the correctness of Algorithm 2, despite its termination.

Correctness: Let C∞ = ∪C (accumulated over a while loop). We will show that for any arbitrary
(m(H∞), m′(H∞)) ∈ C∞, for which T-polynomial p = T(m(H∞), m′(H∞)), we have SNF(p |H∞) = 0.

Since m(H∞) and m′(H∞) can always be written in terms of a finite number of elements, hi ∈ H∞.
Also, the sets H are nested, therefore these specific h′is necessarily be in Hno , which is formed
during the execution of a finite number, no, of loops. We can assume that m(H∞) = m(Hno ) and
m′(H∞) = m′(Hno ) which implies p = T(m(Hno ), m′(Hno )). Clearly, either SNF(p |Hno ) = 0 or
SNF(p |Hno+1) = 0. This implies that SNF(p |H∞) = 0, thus, by Theorem 1, H∞ is a SAGBI basis for
K 〈H∞〉A = K 〈Ho〉A.

Termination: Now, we suppose that K 〈Ho〉A has a finite SAGBI basis S. Because H∞ is also a SAGBI
basis for K 〈Ho〉A, then for each s ∈ S, we have the following expression LM(s) = LM(m(H∞)) for
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some H∞-monomial m(H∞).

These H∞-monomials are in terms of finitely many elements of H∞, we represent this
set by Ĥ. Please note that Ĥ is a finite set and m(H∞) = m(Ĥ). Observe that
LM(m(Ĥ)) = LM(m(H∞)) = LM(s) which implies Ĥ is a SAGBI basis of K 〈Ho〉A. The finite set
Ĥ must be a subset of Hno which is produced after a finite number no of loops. Therefore, the set Hno

is a SAGBI basis of K 〈Ho〉A and by Theorem 1 the algorithm will terminate after the next pass.
Now we will prove that Hn0 is finite for any finite input H0. It follows from Remark 4 that for

a finite set H ⊂ A, their exists finitely many irreducible pairs of H-monomials m(H), m′(H) such that
LM(m(H)) = LM(m′(H)). This implies that there exist finitely many necessary critical pairs at each
step in Algorithm 2, i.e., the set C after the while loop is finite at each step, therefore the output of
the while loop should necessarily be finite. Hence starting with a finite set H0 in Algorithm 2 and
completing a strictly finite number of loops n0, each loop produces a finite output. We finally achieve
the output Hno which is a finite SAGBI basis.

We now give examples of SAGBI bases.

Example 5. Let A = Q 〈x, ∂ | ∂x = x∂ + 1〉 be the first Weyl algebra. Let S ⊆ A be the subalgebra
generated by H =

{
p1 = x2, p2 = x∂, p3 = ∂2} with x >lex ∂. Then its necessary critical pairs are

(p1 p3, p2
2),(p1 p3, p3 p1) and (p1 p3, p3 p1) gives T-polynomials that are reduced to zero.

Hence H =
{

p1 = x2, p2 = x∂, p3 = ∂2} is a SAGBI basis.

In the next example we o add some elements to the generating set during the construction of
SAGBI basis.

Example 6. Let A = Q 〈e, f , h | f e = e f − h, he = eh + 2e, h f = f h− 2 f 〉 be an enveloping algebra.
Let S ⊆ A be the subalgebra generated by H =

{
e, h2}. We construct SAGBI basis of S with respect to

the lex ordering.
Let p1 = e, p2 = h2, then for the necessary critical pair (m1(H), m2(H)) where

m1(H) = p2 p1 = eh2 + 4eh + 4e, and

m2(H) = p1 p2 = eh2,

the T-polynomial is T(m1(H), m2(H)) = m1(H)−m2(H) = 4eh + 4e. It is not reduced by elements of H,
so p3 = eh + e and H = {p1, p2, p3}. For the necessary critical pair (m3(H), m4(H)) where

m3(H) = p3
3 = e2h2 + 4e2h + 3e2, and

m4(H) = p2
1 p2 = e2h2,

the T-polynomial is

T(m3(H), m4(H)) = m3(H)−m4(H) = 4e2h + 3e3 = 4p1 p3 + 3p2
1 := g,

and SNF(g |H) = 0 and all T-polynomials of necessary critical pairs give zero SAGBI normal form. Hence
H =

{
e, h2, eh + e

}
is a SAGBI basis.

The next example shows that similar to the commutative case, a SAGBI basis of a subalgebra
could be infinite.
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Example 7. (Infinite SAGBI basis in the enveloping algebra)
Let A = Q 〈e, f , h | f e = e f − h, he = eh + 2e, h f = f h− 2 f 〉. Let S ⊆ A be the subalgebra generated

by H =
{

p1 = h, p2 = e2, p3 = f 2, p4 = e f h
}

. We construct SAGBI basis of S with respect to the
lex ordering.

For the necessary critical pair (m1(H), m2(H)) where

m1(H) = p2 p3 = e2 f 2, and

m2(H) = p3 p2 = e2 f 2 − 4e f h + eh2 + h2 + 2h,

the T-polynomial is

T(m1(H), m2(H)) = m1(H)−m2(H) = 4e f h− eh2 + h2 + 2h =: g1,

and SNF(g1 |H) = eh2 − h2 − 2h =: p5. It is not reduced by elements of H, so H = {p1, p2, p3, p4, p5}.
Continuing in this way we get an infinite SAGBI basis H =

{
h, e2, f 2, e f h, eh2, e f 2, f h2, · · ·

}
.

In this paper, we develop the theory of SAGBI bases in G-Algebras and its corresponding
algorithms. It is useful to understand the structure of subalgebras in a given G-algebra. The theory
of Gröbner bases of ideals of a subalgebra in a polynomial ring, termed as SAGBI-Gröbner basis
was developed by Miller [18]. This work can be evolved into the theory of SAGBI-Gröbner bases in
G-algebras, which illustrate a better significance of ideals in a given subalgebra of a G-algebra.
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