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Abstract: This study defines a new linear differential operator via the Hadamard product between
a q-hypergeometric function and Mittag–Leffler function. The application of the linear differential
operator generates a new subclass of meromorphic function. Additionally, the study explores various
properties and features, such as convex properties, distortion, growth, coefficient inequality and radii
of starlikeness. Finally, the work discusses closure theorems and extreme points.
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1. Introduction

Let Σ denote the class of functions of the form

f (z) = z−1 +
∞

∑
j=1

ajzj, (1)

which are analytic in the punctured open unit disk U∗ = {z : z ∈ C, 0 < |z| < 1} = U/{0}.
Let Σ∗(ρ) and Σk(ρ) denote the subclasses of Σ that are meromorphically starlike functions of

order ρ and meromorphically convex functions of order ρ respectively. Analytically, a function f of the
form (1) is in the class Σ∗(ρ) if it satisfies

Re

{
− z f

′
(z)

f (z)

}
> ρ (z ∈ U∗),

and f ∈ Σk(ρ) if satisfies

Re

{
−
(

1 +
z f
′′
(z)

f ′(z)

)}
> ρ (z ∈ U∗).

The Hadamard product for two functions f ∈ Σ, defined by (1) and

g(z) = z−1 +
∞

∑
j=1

bjzj,

is given by

f (z) ∗ g(z) = z−1 +
∞

∑
j=1

ajbjzj. (2)
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For the two functions f (z) and g(z) analytic in U, we say that f (z) is subordinate to g(z), written
f ≺ g or f (z) ≺ g(z) (z ∈ U), if there exists a Schwarz function w(z) in U with w(0) = 0 and |w(z)| < 1
(z ∈ U), such that f (z) = g(w(z)), (z ∈ U).

For complex parameters ai, bk, q (i = 1, ..., l, k = 1, ..., r, bk ∈ C \ {0,−1,−2, ...}) the basic
hypergeometric function (or q-hypergeometric function) lΨr(z) is defined by:

lΨr(a1, ..., al ; b1, ...., br; q, z) =
∞

∑
j=0

(a1, q)j...(al , q)j

(q, q)j(b1, q)j...(br, q)j
×
[
(−1)jq(

j
2)
]1+r−l

zj, (3)

with ( j
2) = j(j− 1)/2, where q 6= 0 when l > r + 1 (l, r ∈ N0 = N ∪ {0},N = {1, 2, ...}), and (a, q)j is

the q-analogue of the Pochhammer symbol (a)j defined by:

(a, q)j =

{
(1− a)(1− aq)(1− aq2)...(1− aqj−1), j = 1, 2, 3, ....,
1, j = 0.

The hypergeometric series defined by (3) was initially introduced by Heine in 1846 and referred
to as the Heines series. More details on q-theory are available in [1–3] for readers to refer to.

It is clear that

lim
q→1−

[
lΨr(qa1 , ..., qal ; qb1 , ...., qbr ; q, (q− 1)1+r−lz)

]
=l Fr(a1, ..., al ; b1, ...., br; z),

where l Fr(a1, ..., al ; b1, ...., br; z) represents the generalised hypergeometric function (as shown in [4]).
Riemann, Gauss, Euler and others have conducted extensive studies of hypergeometric functions

some hundreds years ago. The focus on this area is based mostly on the structural beauty and
distinctive applications that this theory has, which include dynamic systems, mathematical physics,
numeric analysis and combinatorics. Based on this, hypergeometric functions are utilised in various
disciplines and this includes geometric function theory. One example that can be associated with
the hypergeometric functions is the well-known Dziok–Srivastava operator [5,6] defined via the
Hadamard product.

Now for z ∈ U, |q| < 1, and l = r + 1, the q-hypergeometric function defined in (3) takes the
following form:

lΨr(a1, ..., al ; b1, ...., br; q, z) =
∞

∑
j=0

(a1, q)j...(al , q)j

(q, q)j(b1, q)j...(br, q)j
zj, (4)

which converges absolutely in the open unit disk U.
In reference to the function lΨr(a1, ..., al ; b1, ...., br; q, z) for meromorphic functions f ∈ Σ that

consist of functions in the form of (1), (see Aldweby and Darus [7], Murugusundaramoorthy and
Janani [8]), as illustrated below, have recently introduced the q-analogue of the Liu–Srivastava operator

lΥr(a1, ..., al ; b1, ..., br; q, z) f (z) = z−1
lΨr(a1, ..., al ; b1, ..., br; q, z) ∗ f (z)

= z−1 +
∞

∑
j=1

∏l
i=1(ai, q)j+1

(q, q)j+1 ∏r
k=1(bk, q)j+1

ajzj. (5)

For convenience, we write

lΥr(a1, ..., al ; b1, ..., br; q, z) f (z) =l Υr(ai, bk; q, z) f (z).
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Before going further, we state the well-known Mittag–Leffler function Eα(z), put forward by
Mittag–Leffler [9,10], as well as Wiman’s generalisation [11] Eα,β(z) given respectively as follows:

Eα(z) =
∞

∑
j=0

zj

Γ(αj + 1)
, (6)

and

Eα,β(z) =
∞

∑
j=0

zj

Γ(αj + β)
, (7)

where α, β ∈ C , Re(α) > 0 and Re(β) > 0.
There has been a growing focus on Mittag–Leffler-type functions in recent years based on the

growth of possibilities for their application for probability, applied problems, statistical and distribution
theory, among others. Further information about how the Mittag–Leffler functions are being utilised
can be found in [12–18]. In most of our work related to Mittag–Leffler functions, we study the geometric
properties, such as the convexity, close-to-convexity and starlikeness. Recent studies on the Eα,β(z)
Mittag–Leffler function can be seen in [19]. Additionally, Ref. [20] presents findings related to partial
sums for Eα,β(z).

The function given by (7) is not within the class Σ. Based on this, the function is then normalised
as follows:

Ωα,β(z) = z−1Γ(β)Eα,β(z)

= z−1 +
∞

∑
j=1

Γ(β)

Γ(α(j + 1) + β)
zj. (8)

Having use of the function Ωα,β(z) given by (8), a new operator Dα,m
β [al , br, λ] : Σ→ Σ is defined,

in terms of Hadamard product, as follows:

Dα,0
β [al , br, λ] f (z) =l Υr(ai, bk; q, z) f (z) ∗Ωα,β(z),

Dα,1
β [al , br, λ] f (z) = (1− λ)(lΥr(ai, bk; q, z) f (z) ∗Ωα,β(z)) + λz(lΥr(ai, bk; q, z) f (z) ∗Ωα,β(z))

′
,

:

Dα,m
β [al , br, λ] f (z) = Dα,1

β (Dα,m−1
β [al , br, λ] f (z)). (9)

If f ∈ Σ, then from (9) we deduce that

Dα,m
β [al , br, λ] f (z) = z−1 +

∞

∑
j=1

[1 + (j− 1)λ]m∇(j+1,α,β)(al , br)ajzj, (10)

where

∇(j+1,α,β)(al , br) =
∏l

i=1(ai, q)j+1

(q, q)j+1 ∏r
k=1(bk, q)j+1

(
Γ(β)

Γ(α(j + 1) + β)

)
. (11)

Remark 1. It can be seen that, when specialising the parameters λ, l, r, m, α, β, q, a1, .., al and b1, ..., br, it is
observed that the defined operator Dα,m

β [al , br, λ] f (z) leads to various operators. Examples are presented for
further illustration.

• For λ = 1, l = 1, r = 0, β = 1, α = 0, a1 = q and q → 1 we get the operator Im f (z) studied by
El–Ashwah and Aouf [21].

• For m = 0, α = 0, β = 1, ai = qai , bk = qbk , ai > 0, bk > 0, (i = 1, ..., l; k = 1, .., r, l = r + 1) and
q→ 1 we get the operatorHl,r[ai, bk] f (z) which was investigated by Liu and Srivastava [22].



Symmetry 2019, 11, 210 4 of 11

• For m = 0, l = 2, r = 1, β = 1, α = 0, a2 = q and q → 1 we get the operator N [a1, b1] f (z) studied by
Liu and Srivastava [23].

• For m = 0, l = 1, r = 0, β = 1, α = 0, a1 = λ + 1 and q → 1 we get the operator Dλ f (z) =

(1/z(1 − z)λ+1) ∗ f (z) (λ > −1) was introduced by Ganigi and Uralegaddi [24], and then it was
generalised by Yang [25].

A range of meromorphic function subclasses have been explored by, for example,
Challab et al. [26], Elrifai et al. [27], Lashin [28], Liu and Srivastava [22] and others. These works have
inspired our introduction of the new subclass T m

α,β(al , br, λ; D, H, d) of Σ, which involves the operator
Dα,m

β [al , br, λ] f (z), and is shown as follows:

Definition 1. For −1 ≤ H < D ≤ 1, the function f ∈ Σ is in the class T m
α,β(al , br, λ; D, H, d) if it satisfies

the inequality

1− 1
d

 z(Dα,m
β [al , br, λ] f (z))

′

Dα,m
β [al , br, λ] f (z)

+ 1

 ≺ 1 + Dz
1 + Hz

, (12)

or, equivalently, to: ∣∣∣∣∣∣∣∣∣∣∣

z(Dα,m
β [al , br, λ] f (z))

′

Dα,m
β [al , br, λ] f (z)

+ 1

H
z(Dα,m

β [al , br, λ] f (z))
′

Dα,m
β [al , br, λ] f (z)

+ [(D− H)d + H]

∣∣∣∣∣∣∣∣∣∣∣
< 1 (13)

Let Σ∗ denote the subclass of Σ consisting of functions of the form:

f (z) = z−1 +
∞

∑
j=1
|aj|zj. (14)

Now, we define the class T m,∗
α,β (al , br, λ; D, H, d) by

T m,∗
α,β (al , br, λ; D, H, d) = T m

α,β(al , br, λ; D, H, d) ∩ Σ∗.

2. Main Result

This section presents work to acquire sufficient conditions in which (14) gives the function f
within the class T m,∗

α,β (al , br, λ; D, H, d), as well as demonstrates that this condition is required for
functions which belong to this class. In addition, linear combinations, growth and distortion bounds,
closure theorems and extreme points are presented for the class T m,∗

α,β (al , br, λ; D, H, d).
In our first theorem, we begin with the necessary and sufficient conditions for functions f in

T m,∗
α,β (al , br, λ; D, H, d).

Theorem 1. Let the function f (z) be of the form (14). Then the function f (z) ∈ T m,∗
α,β (al , br, λ; D, H, d) if and

only if

∞

∑
j=1

[(j + 1)(1− H)− |d|(D− H)] [1 + (j− 1)λ]m∇(j+1,α,β)(al , br)|aj| ≤ |d|(D− H). (15)
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Proof. Suppose that the inequality (15) holds true, we obtain∣∣∣∣∣∣∣∣∣∣∣

z(Dα,m
β [al , br, λ] f (z))

′

Dα,m
β [al , br, λ] f (z)

+ 1

H
z(Dα,m

β [al , br, λ] f (z))
′

Dα,m
β [al , br, λ] f (z)

+ [(D− H)d + H]

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
z(Dα,m

β [al , br, λ] f (z))
′
+Dα,m

β [al , br, λ] f (z)

Hz(Dα,m
β [al , br, λ] f (z))′ + [d(D− H) + H]Dα,m

β [al , br, λ] f (z)

∣∣∣∣∣∣
=

∣∣∣∣∣ ∑∞
j=1(j + 1) [1 + (j− 1)λ]m∇(j+1,α,β)(al , br)|aj|zj+1

d(D− H) + ∑∞
j=1 [H(j + 1) + d(D− H)] [1 + (j− 1)λ]m∇(j+1,α,β)(al , br)|aj|zj+1

∣∣∣∣∣
< 1 (z ∈ U∗).

Then, by the maximum modulus theorem, we have f (z) ∈ T m,∗
α,β (al , br, λ; D, H, d).

Conversely, assume that f (z) is in the class T m,∗
α,β (al , br, λ; D, H, d) with f (z) of the form (14),

then we find from (13) that∣∣∣∣∣∣
z(Dα,m

β [al , br, λ] f (z))
′
+Dα,m

β [al , br, λ] f (z)

Hz(Dα,m
β [al , br, λ] f (z))′ + [d(D− H) + H]Dα,m

β [al , br, λ] f (z)

∣∣∣∣∣∣
=

∣∣∣∣∣ ∑∞
j=1(j + 1) [1 + (j− 1)λ]m∇(j+1,α,β)(al , br)|aj|zj+1

d(D− H) + ∑∞
j=1 [H(j + 1) + d(D− H)] [1 + (j− 1)λ]m∇(j+1,α,β)(al , br)|aj|zj+1

∣∣∣∣∣
< 1,

(16)

since the above inequality is genuine for all z ∈ U∗, choose values of z on the real axis. After clearing
the denominator in (16) and letting z→ 1− through real values, we get

∞

∑
j=1

[(j + 1)(1− H)− |d|(D− H)] [1 + (j− 1)λ]m∇(j+1,α,β)(al , br)|aj| ≤ |d|(D− H).

Thus, we obtain the desired inequality (15) of Theorem 1.

Corollary 1. If the function f of the form (14) is in the class T m,∗
α,β (al , br, λ; D, H, d) then

|aj| ≤
|d|(D− H)

[(j + 1)(1− H)− |d|(D− H)] [1 + (j− 1)λ]m∇(j+1,α,β)(al , br)
(j ≥ 1),

the result is sharp for the function

f (z) = z−1 +
|d|(D− H)

[(j + 1)(1− H)− |d|(D− H)] [1 + (j− 1)λ]m∇(j+1,α,β)(al , br)
zj (j ≥ 1). (17)

Growth and distortion bounds for functions belonging to the class T m,∗
α,β (al , br, λ; D, H, d) will be

given in the following result:
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Theorem 2. If a function f given by (14) is in the class T m,∗
α,β (al , br, λ; D, H, d) then for |z| = r, we have:

1
r
− |d|(D− H)

[2(1− H)− |d|(D− H)]∇(2,α,β)(al , br)
r ≤ | f (z)| ≤ 1

r
+

|d|(D− H)

[2(1− H)− |d|(D− H)]∇(2,α,β)(al , br)
r,

and

1
r2 −

|d|(D− H)

[2(1− B)− |d|(D− H)]∇(2,α,β)(al , br)
≤ | f ′ (z)| ≤ 1

r2 +
|d|(D− H)

[2(1− H)− |d|(D− H)]∇(2,α,β)(al , br)
.

Proof. By Theorem 1,

[2(1− H)− |d|(D− H)]∇(2,α,β)(al , br)
∞

∑
j=1
|aj|

≤
∞

∑
j=1

[(j + 1)(1− H)− |d|(D− H)] [1 + (j− 1)λ]m∇(j+1,α,β)(al , br)|aj| ≤ |d|(D− H),

which yields:
∞

∑
j=1
|aj| ≤

|d|(D− H)

[2(1− H)− |d|(D− H)]∇(2,α,β)(al , br)
.

Therefore,

| f (z)| ≤ 1
|z| + |z|

∞

∑
j=1
|aj| ≤

1
|z| +

|d|(D− H)

[2(1− H)− |d|(D− H)]∇(2,α,β)(al , br)
|z|,

and

| f (z)| ≥ 1
|z| − |z|

∞

∑
j=1
|aj| ≥

1
|z| −

|d|(D− H)

[2(1− H)− |d|(D− H)]∇(2,α,β)(al .br)
|z|.

Now, by differentiating both sides of (14) with respect to z, we get:

| f ′(z)| ≤ 1
|z|2 +

∞

∑
j=1
|aj| ≤

1
|z|2 +

|d|(D− H)

[2(1− H)− |d|(D− H)]∇(2,α,β)(al , br)
,

and

| f ′(z)| ≥ 1
|z|2 −

∞

∑
j=1
|aj| ≥

1
|z|2 −

|d|(D− H)

[2(1− H)− |d|(D− H)]∇(2,α,β)(al , br)
.

Next, we determine the radii of meromorphic starlikeness and convexity of order ρ for functions
in the class T m,∗

α,β (al , br, λ; D, H, d).

Theorem 3. Let the function f given by (14) be in the class T m,∗
α,β (al , br, λ; D, H, d). Thus, we have:

(i) f is meromorphically starlike of order ρ in the disc |z| < r1, that is

Re

{
− z f

′
(z)

f (z)

}
> ρ (|z| < r1, 0 ≤ ρ < 1),

where

r1 = inf
j≥1

{
(1− ρ) [(j + 1)(1− H)− |d|(D− H)] [1 + (j− 1)λ]m∇(j+1,α,β)(al , br)

|d|(D− H)(j + ρ)

} 1
j+1

. (18)
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(ii) f is meromorphically convex of order ρ in the disc |z| < r2, that is

Re

{
−
(

1 +
z f
′′
(z)

f ′(z)

)}
> ρ (|z| < r2, 0 ≤ ρ < 1),

where

r2 = inf
j≥1

{
(1− ρ) [(j + 1)(1− H)− |d|(D− H)] [1 + (j− 1)λ]m∇(j+1,α,β)(al , br)

j|d|(D− H)(j + ρ)

} 1
j+1

. (19)

Proof. (i) From the definition (14), we can get:∣∣∣∣∣∣∣∣∣
z f
′
(z)

f (z)
+ 1

z f
′
(z)

f (z)
− 1 + 2ρ

∣∣∣∣∣∣∣∣∣ ≤
∑∞

j=1(j + 1)|aj||z|j+1

2(1− ρ)−∑∞
j=1(j− 1 + 2ρ)|aj||z|j+1 .

Then, we have: ∣∣∣∣∣∣∣∣∣
z f
′
(z)

f (z)
+ 1

z f
′
(z)

f (z)
− 1 + 2ρ

∣∣∣∣∣∣∣∣∣ ≤ 1 (0 ≤ ρ < 1),

if
∞

∑
j=1

(
j + ρ

1− ρ

)
|aj||z|j+1 ≤ 1. (20)

Thus, by Theorem 1, the inequality (20) will be true if(
j + ρ

1− ρ

)
|z|j+1 ≤

[(j + 1)(1− H)− |d|(D− H)] [1 + (j− 1)λ]m∇(j+1,α,β)(al , br)

|d|(D− H)
,

then

|z| ≤
{
(1− ρ) [(j + 1)(1− H)− |d|(D− H)] [1 + (j− 1)λ]m∇(j+1,α,β)(al , br)

|d|(D− H)(j + ρ)

} 1
j+1

.

The last inequality leads us immediately to the disc |z| < r1, where r1 is given by (18).
(ii) In order to prove the second affirmation of Theorem 3, we find from (14) that:∣∣∣∣∣∣∣∣∣

2 +
z f
′′
(z)

f ′(z)
z f
′′
(z)

f ′(z)
+ 2ρ

∣∣∣∣∣∣∣∣∣ ≤
∑∞

j=1 j(j + 1)|aj||z|j+1

2(1− ρ)−∑∞
j=1 j(j− 1 + 2ρ)|aj||z|j+1 .

Thus, we have the desired inequality:∣∣∣∣∣∣∣∣∣
2 +

z f
′′
(z)

f ′(z)
z f
′′
(z)

f ′(z)
+ 2ρ

∣∣∣∣∣∣∣∣∣ ≤ 1 (0 ≤ ρ < 1),

if
∞

∑
j=1

j
(

j + ρ

1− ρ

)
|aj||z|j+1 ≤ 1. (21)
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Thus, by Theorem 1, the inequality (21) will be true if

j
(

j + ρ

1− ρ

)
|z|j+1 ≤

[(j + 1)(1− H)− |d|(D− H)] [1 + (j− 1)λ]m∇(j+1,α,β)(al , br)

|d|(D− H)
,

then

|z| ≤
{
(1− ρ) [(j + 1)(1− H)− |d|(D− H)] [1 + (j− 1)λ]m∇(j+1,α,β)(al , br)

j|d|(D− H)(j + ρ)

} 1
j+1

.

The last inequality readily yields the disc |z| < r2, where r2 is given by (19).

The closure theorems and extreme points of the class T m,∗
α,β (al , br, λ; D, H, d) will now

be determined.

Theorem 4. The class T m,∗
α,β (al , br, λ; D, H, d) is closed under convex linear combinations.

Proof. Assume that the functions

fi(z) = z−1 +
∞

∑
j=1
|aj,i|zj (i = 1, 2),

are in T m,∗
α,β (al , br, λ; D, H, d). It suffices to show that the function h defined by

h(z) = (1− c) f1(z) + c f2(z) (0 ≤ c ≤ 1),

is in the class T m,∗
α,β (al , br, λ; D, H, d), since

h(z) = z−1 +
∞

∑
j=1

[
(1− c)|aj,1|+ c|aj,2|

]
zj (0 ≤ c ≤ 1).

In view of Theorem 1, we have:

∞

∑
j=1

[(j + 1)(1− H)− |d|(D− H)] [1 + (j− 1)λ]m∇(j+1,α,β) ·
{
(1− c)|aj,1|+ c|aj,2|

}
= (1− c)

∞

∑
j=1

[(j + 1)(1− H)− |d|(D− H)] [1 + (j− 1)λ]m∇(j+1,α,β)|aj,1|

+ c
∞

∑
j=1

[(j + 1)(1− H)− |d|(D− H)] [1 + (j− 1)λ]m∇(j+1,α,β)|aj,2|

≤ (1− c)|d|(D− H) + c|d|(D− H) = |d|(D− H),

which shows that h(z) ∈ T m,∗
α,β (al , br, λ; D, H, d).

Theorem 5. Let fo(z) =
1
z

and

f j(z) =
1
z
+

|d|(D− H)

[(j + 1)(1− H)− |d|(D− H)] [1 + (j− 1)λ]m∇(j+1,α,β)
zj (j ≥ 1).

Then f ∈ T m,∗
α,β (al , br, λ; D, H, d) if and only if it can be expressed in the form

f (z) =
∞

∑
j=0

νj f j(z), (22)



Symmetry 2019, 11, 210 9 of 11

where

νj ≥ 0 and
∞

∑
j=0

νj = 1.

Proof. Let the function f (z) be expressed in the form given by (22), then

f (z) = z−1 +
∞

∑
j=1

νj
|d|(D− H)

[(j + 1)(1− H)− |d|(D− H)] [1 + (j− 1)λ]m∇(j+1,α,β)
zj

and for this function, we have:

∞

∑
j=1

[(j + 1)(1− H)− |d|(D− H)] [1 + (j− 1)λ]m∇(j+1,α,β)(al , br)

× νj
|d|(D− H)

[(j + 1)(1− H)− |d|(D− H)] [1 + (j− 1)λ]m∇(j+1,α,β)

=
∞

∑
j=1

νj|d|(D− H) = |d|(D− H)(1− ν0) ≤ |d|(D− H)

The condition (15) is satisfied. Thus, f ∈ T m,∗
α,β (al , br, λ; D, H, d)

Conversely, we suppose that f ∈ T m,∗
α,β (al , br, λ; D, H, d), since

|aj| ≤
|d|(D− H)

[(j + 1)(1− H)− |d|(D− H)] [1 + (j− 1)λ]m∇(j+1,α,β)
(j ≥ 1),

we set

νj =
[(j + 1)(1− H)− |d|(D− H)] [1 + (j− 1)λ]m∇(j+1,α,β)

|d|(D− H)
|aj|, (j ≥ 1),

and

ν0 = 1−
∞

∑
j=1

νj,

so it follows that

f (z) =
∞

∑
j=0

νj f j(z).

This completes the assertion of Theorem 5.

3. Conclusions

Studying the theory of analytical functions has been an area of concern for many researchers.
A more specific field is the study of inequalities in complex analysis. Literature review indicates lots of
studies based on the classes of analytical functions. The interplay of geometry and analysis represents
a very important aspect in complex function theory study. This rapid growth is directly linked to the
relation that exists between analytical structure and geometric behaviour. Motivated by this approach,
in the current study, we have introduced a new meromorphic function subclass which is related to
both the Mittag–Leffler function and q-hypergeometric function, and we have obtained sufficient and
necessary conditions in relation to this subclass. Linear combinations, distortion theory and other
properties are also explored. For further research we could study the certain classes related to functions
with respect to symmetric points associated with hypergeometric and Mittag–Leffler functions.
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