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Abstract: We propose a nonsmooth dynamic system integrating production and inventory where
the items may deteriorate and the demand is stock-dependent. We aim to derive the optimal
production rate. In our first model, backorders are not allowed, while in the second model they are.
Using optimal control, necessary optimality conditions are obtained for general forms of the cost,
demand, and deterioration rates and closed form solutions are derived for specific forms of these
rates. Numerical simulations are presented and sensitivity of the solutions are examined.

Keywords: nonsmooth production inventory systems; item deterioration; backorder; optimal control;
maximum principle

MSC: 90B05

1. Introduction

To take in consideration the nature of the dynamic behavior of inventory–production systems,
many authors have successfully used control theory techniques. However, the literature on the subject
is rather meager. The earliest reference is that of Simon, in [1]. In the absence of deterioration,
some dynamic models have been studied using an optimal control approach. For example, [2] treated
the optimal control of a manufacturing system subject to failure under the assumption of restarting
costs. Riddalls and Bennett, in [3], used a similar technique to cater for batch production costs which,
often, are not included in cumulative production problems. Zhang et al. [4] studied the scheduling
problem of a marketing production system where the demand depended on the status of the market.
Khmelnitsky and Gerchak, in [5], were interested in the solution, using optimal control theory of a
production system with state-dependent demand. Kiesmüller [6] was concerned with the optimal
control of recovery systems and took into account the remanufacturing of used products to reduce
waste. Dobos, in [7], considered reverse logistic systems with customer returns. Finally, Hedjar et al. [8]
investigated, using predictive control, the case of a periodic-review policy with deteriorating items.

In this work, we are interested in some complex, dynamic inventory–production system featuring
many of the characteristics available in the literature. We list these characteristics below:

• System dependent parameters: Taking into account the effect of the system parameters on an
inventory system can lead to an improvement of its performance. The dependence of the demand
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rate on the stock is, without doubt, the dependence that received the most attention, and the
literature on this topic is abundant. Among the most recent references we cite [9–13].

• Item deterioration: The deterioration of stocked items plays an important role in inventory
management. The literature on this subject, again, is immense and an excellent survey, in which
deteriorating inventory systems are thoroughly classified, has been done in [14] and recently
in [13].

• Nonlinear costs: The traditional approach regarding cost parameters is to assume that they are
linear. This assumption is somewhat unrealistic. Nonlinear holding costs have been introduced
by Naddor [15]. Among recent references we suggest [16–19].

• Items backorders: In many real-life situations, demand is not met on time and shortages occur,
the condition that exists when the inventory on hand is not sufficient to cover needs. Shortages
are undesirable because they are quite expensive. However, in certain situations, management
may find it desirable from a cost point of view not only to allow shortages but to plan for them.
This specific shortage is called a backorder. After the exhaustion of inventory, we allow a period
of time over which backorders accumulate to some level. When allowing backorders, we have,
in addition to the usual costs, the additional cost of backordering. For more works on item
backorders, we refer the reader to [18,20,21].

Note that in the case where backorders are allowed, the objective function is nonsmooth
(nondifferentiable). As far as we know, the paper [5] is the only one with such a mathematical
complexity. Our intent here is to extend the state equation in that paper by incorporating item
deterioration. Further, [5] maximizes a linear profit function while we will be minimizing a nonlinear
cost function. Therefore, we propose two models. In the first one, the demand has a general form of a
function of time and of the inventory level. We analysed a deteriorating production inventory system
with holding cost (resp. production cost) taken to be nonlinear functionals of the inventory level
(resp. production rate). Also, the deterioration rate depends, in a general way, on time and inventory
level. In the second model, we extend this first one to a more general model where backorders are
allowed and the shortage is given in terms of on-hand stock. For the proposed models, we use optimal
control techniques to establish an optimal policy. The policy minimizes the total cost of the inventory
and production for the first model. For the second model, we incorporate the shortage cost into the
previous total cost.

The mathematical complexity observed in [5] is due to the state variable which can be either
positive or negative. When it is positive, a holding cost is incurred and when it is negative, a shortage
cost is incurred, rendering the objective function nonsmooth (nondifferentiable). However, they use
linear terms in their objective function. It is well known that when the objective function is linear,
the optimal control is given by a bang function, see [22].

In Section 2, we describe the first inventory model and we attack the solution of the optimal
control problem. In Section 3, we conduct the second model similarly. Various numerical examples
along with sensitivity analysis on the system parameters are given. Section 4 summarizes the paper.

2. Model without Backorders

We propose a firm producing a single item. We assumed that the decision was made on a compact
interval [0, T]. We considered a finite planning horizon because many firms are concerned with short
and/or intermediate term market activities.

For a given unit time t in the interval [0, T], we denoted by I(t) the inventory level, D(t, I(t)) the
demand rate, θ(t, I(t)) the deterioration rate, and h(I(t)) the holding cost rate. We also let K(P(t))
stand for the cost rate corresponding to a production rate P(t). Let ρ ≥ 0 be a constant discount rate.
All functions are assumed to be non-negative.
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For a given T > 0, we considered the optimal control problem to minimize the total
inventory–production costs:

(P)


min

P(t)≥D(t,I(t))+θ(t,I(t))
J(P, I) =

∫ T

0
e−ρt {h(I(t)) + c [P(t)− D(t, I(t))] + K(P(t))} dt

d
dt

I(t) = P(t)− D(t, I(t))− θ(t, I(t)), I(0) = I0, I(T) = IT ,

where c > 0 is the unit cost. The model can be seen as an optimal control problem with one state
variable (I(t)) and one control variable (P(t)). Observe that the demand, at rate D, decreases the
inventory level and the production, at rate P, increases it. Therefore the inventory level I(t) evolves
according to the above state equation. Taking into account the constraint P(t) ≥ D(t, I(t)) + θ(t, I(t)),
we clearly obtained, using the sate equation, that I was nondecreasing and I(t) ≥ I0. Therefore,
shortages are not allowed in this model.

Using the Pontryagin maximum principle [23], the necessary conditions for (P∗, I∗) to be an
optimal solution of problem (P) are that there should exist a constant β, a continuous and piecewise
continuously differentiable function λ and a piecewise continuous function µ (called the adjoint) and
Lagrange multiplier functions, respectively, such that

H(t, I∗(t), P∗(t), λ(t)) ≥ H(t, I∗(t), P(t), λ(t)), for all P(t) ≥ D(t, I∗(t)), (1)

− d
dt

λ(t) =
∂

∂I
L(t, I(t), P(t), λ(t), µ(t)), (2)

I(0) = I0, I(T) = IT λ(T) = β, (3)

∂

∂P
L(t, I(t), P(t), λ(t), µ(t)) = 0, (4)

P(t)− D(t, I(t))− θ(t, I(t)) ≥ 0, µ(t) ≥ 0, µ(t)
[

P(t)− D(t, I(t))− θ(t, I(t))
]
= 0, (5)

where

H(t, I(t), P(t), λ(t)) = −e−ρt
{

h(I(t)) + c [P(t)− D(t, I(t))] + K(P(t))
}
+ λ(t)

{
P(t)− D(t, I(t))− θ(t, I(t))

}
, (6)

is the Hamiltonian function and

L(t, I(t), P(t), λ(t), µ(t)) = H(t, I(t), P(t), λ(t)) + µ(t)
{

P(t)− D(t, I(t))− θ(t, I(t))
}

, (7)

is the Lagrangian function. Rewriting the Equation (2) we obtained

d
dt

λ(t) = e−ρt
[

d
dI

h(I(t))− c
d
dI

D(t, I(t))
]
+ [λ(t) + µ(t)]

[
∂

∂I
D(t, I(t)) +

∂

∂I
θ(t, I(t))

]
. (8)

Equation (4) is equivalent to

λ(t) + µ(t) = e−ρt
[

d
dP

K(P(t)) + c
]

. (9)

Now, consider Equation (5). Then for any t, we distinguished two cases, either we had P(t)−
D(t, I(t))− θ(t, I(t)) = 0 or P(t)− D(t, I(t))− θ(t, I(t)) > 0.
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Case 1: P(t)− D(t, I(t))− θ(t, I(t)) = 0 on some subset S of [0, T]. This means that the firm has to
produce the exact total amount corresponding to the amount consumed plus the amount lost

due to deterioration. In this case
d
dt

I(t) = 0 on S and I∗ is obviously constant on S and

P∗(t) = D(t, I∗(t)) + θ(t, I∗(t)), for all t ∈ S. (10)

Substituting the Equation (9) into Equation (8), we obtained

d
dt

λ(t) = e−ρt
[

d
dI

h(I(t)) + c
∂

∂I
θ(t, I(t)) +

d
dP

K(P(t))
(

∂

∂I
D(t, I(t)) +

∂

∂I
θ(t, I(t))

)]
.

To get an explicit form of λ and β, we integrated the previous differential equation. Then, we
used Equation (9) to derive an explicit form of the Lagrange multiplier function µ. We pointed
out that if the obtained function µ was not nonnegative, then we did not accept the solutions
stated in Equation (10).

Case 2: P(t)− D(t, I(t))− θ(t, I(t)) > 0 for t ∈ [0, T]\S. The firm should produce more than the total
amount corresponding to the amount consumed plus the amount lost due to deterioration,
in order to avoid a shortage situation. In this case, µ(t) = 0 on [0, T]\S, and so the necessary
conditions in Equations (3), (8) and (9) become

d
dt

λ(t) = e−ρt
[

d
dI

h(I(t))− c
d
dI

D(t, I(t))
]
+ λ(t)

[
∂

∂I
D(t, I(t)) +

∂

∂I
θ(t, I(t))

]
,

and

I(0) = I0, I(T) = IT λ(T) = β, λ(t) = e−ρt
[

d
dP

K(P(t)) + c
]

.

Combining the state equation with these equations yields the following second order
differential equation:

d
dt P(t) d2

dP2 K(P(t))−
[
ρ + ∂

∂I D(t, I(t)) + ∂
∂I θ(t, I(t))

] [
d

dP K(P(t)) + c
]
= d

dI h(I(t))− c ∂
∂I D(t, I(t)), (11)

and
I(0) = I0, I(T) = IT c +

d
dP

K(P(T)) = βeρT .

These equations are enough to determine the optimal solution of problem (P). To be able to
push the derivations any further, one needs to have an explicit form for the functions involved.
For illustration purposes, let us assume the following forms for the cost rates

K(P) =
KP2

2
, h(I) =

hI2

2
,

and for the exogenous functions

D(t, I(t)) = d1(t) + d2 I(t), θ(t, I(t)) = θ1(t) + θ2 I(t).

Here K, h, d2, and θ2 are positive constants. For these functions the necessary conditions for
(P∗, I∗) to be an optimal solution of problem (P) become

d2

dt2 I(t)− ρ
d
dt

I(t)−
[

h
K
+ (d2 + θ2)(ρ + d2 + θ2)

]
I(t) = α(t), (12)

with
α(t) = (ρ + d2 + θ2)(d1(t) + θ1(t))−

d
dt

d1(t)−
d
dt

θ1(t) +
cθ2

K
,
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and
I(0) = I0, I(T) = IT . (13)

This is a two-point boundary value problem (PTPBV) that we solved in the next proposition.

Lemma 1. The solution I∗ of (PTPBV) is given by

I∗(t) = a1em1t + a2em2t + Q(t), (14)

and its corresponding P∗ is given by

P∗(t) = a1(m1 + d2 + θ2)em1t + a2(m2 + d2 + θ2)em2t +
d
dt

Q(t) + (d2 + θ2)Q(t) + d1(t) + θ1(t), (15)

where the constants a1, a2, m1, and m2 are unique and given in the proof below, and Q(t) is a particular solution
of Equation (12).

Proof. We used the standard method to solve Equation (12). The characteristic equation is

m2 − ρm−
[

h
K
+ (ρ + d2 + θ2)(d2 + θ2)

]
= 0.

It has two real roots of opposite signs, given by

m1 =
1
2

(
ρ−

√
ρ2 + 4

[
h
K
+ (ρ + d2 + θ2)(d2 + θ2)

])
< 0,

m2 =
1
2

(
ρ +

√
ρ2 + 4

[
h
K
+ (ρ + d2 + θ2)(d2 + θ2)

])
> 0,

and therefore I∗(t) is given by Equation (14). The initial and terminal conditions in Equation (13) are
used to determine the constants a1 and a2 as follows. From the initial condition we had

a1 + a2 + Q(0) = I0,

and from the terminal condition we had

a1em1T + a2em2T + Q(T) = IT .

By putting

b1 = I0 −Q(0),

b2 = IT −Q(T),

we obtained a system of two linear equations in two unknowns which had the following
unique solution

a1 =
b2 − em2Tb1

em1T − em2T ,

a2 =
b1em1T − b2

em1T − em2T .

The expression of P∗ is deduced using the optimal expression of I∗ along with the state
equation.
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From the above analysis we had the following theorem characterizing the optimal solution of (P).

Theorem 1. The optimal solution (P∗, I∗) of (P) has the form given in Equation (10) on S, and the form in
Equations (14) and (15) on [0, T]\S.

Example 1.

1. We illustrated the results obtained by considering a production system with the following characteristics:
planning horizon of length T = 5, initial and terminal inventory levels, I0 = 0, I(T) = 10, unit
costs and discount factor c = h = 0.1, K = 5 and ρ = 0, respectively. The demand rate is such that
d1(t) = sin(t) + 1, d2 = 0.1 and the deterioration rate is such that θ1(t) = e−t, θ2 = 0.1. The optimal
control and state are displayed in Figure 1.
The optimal objective function value is J = 216.67.

2. To assess the effect of the deterioration rate on the value of the optimal objective function, we set θ1 ≡ 0
and varied the value of θ2 from 0.0005 to 0.2560, and we kept all the other parameters as in Example (1).
As shown by Table 1, the resulting optimal cost increases as θ2 increases.

3. Next, we studied the effect of the discount factor on the value of the optimal objective function, we set
θ1 ≡ 0 and varied the value of ρ from 0 to 0.1, and we keep all the other parameters as in Example (1).
As shown by Table 2, the resulting optimal cost increases as ρ increases.

Inventory I(t)

0

2

4

6

8

10

I(t)

0 1 2 3 4 5

time t

Production P(t)

1

2

3

4

5

6

P(t)

1 2 3 4 5

time t

Figure 1. Variations of I∗ and P∗ as functions of time t.

Table 1. Sensitivity of J with respect to θ2.

θ2 0.0005 0.001 0.002 0.004 0.008 0.016 0.032 0.064 0.128 0.256

J 490.49 491.19 492.61 495.45 501.15 512.64 536.02 584.22 685.60 902.52

Table 2. Sensitivity of J with respect to ρ.

ρ 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

J 216.67 664.06 664.36 664.86 665.55 666.42 667.48 668.71 670.11 671.68 673.41

3. Model with Backorders Allowed

We mentioned in the Introduction that a firm may be better off if it plans for backorders. Therefore,
in this section, we extended the previous model by assuming that the firm allows for backorders.
In this case, a holding cost is incurred when the inventory is positive and a shortage cost is incurred
when the inventory is negative. Deterioration, and hence a deterioration cost, happens only when the
inventory is positive. The optimal control problem is restated as follows:
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(Pb)


min
P≥0

J(P, I) =
∫ T

0
e−ρt {h+(I(t)) + g−(I(t)) + c+(I) [P(t)− D(t, I(t))] + K(P(t))

}
dt

d
dt

I(t) = P(t)− D(t, I(t))− θ+(t, I(t)), I(0) = I0, I(T) = IT ,

where the holding, shortage, and deterioration costs are, respectively:

h+(I) =

{
h(I), I > 0,
0, I ≤ 0,

g−(I) =

{
0, I ≥ 0,
−g(I), I < 0,

c+(I) =

{
c, I > 0,
0, I ≤ 0,

and the deterioration rate is

θ+(t, I(t)) =

{
θ(t, I(t)), I > 0,
0, I ≤ 0,

with g(0) = h(0) = 0 and θ(t, 0) = 0, D(t, 0) = P(t), ∀t. The constraint P(t) ≥ D(t, I(t)) + θ(t, I(t))
that we had in the previous model is no longer necessary since we allowed negative values of the
inventory level I(t). Since in case of backorders the objective function is nonsmooth (nondifferentiable),
an extension of Pontryagin maximum principle (see for example [24]) is used to derive the following
necessary conditions for (P∗, I∗) to be an optimal solution of problem (Pb); there exists a constant β

and a continuous and piecewise continuously differentiable function λ such that

∂

∂P
H(t, I(t), P(t), λ(t)) = 0, (16)

− d
dt

λ(t) =
∂

∂I
H(t, I(t), P(t), λ(t)), (17)

I(0) = I0, I(T) = IT , λ(T) = β, (18)

where

H(t, I(t), P(t), λ(t)) =

−e−ρt
{

h+(I(t)) + g−(I(t)) + c+(I) [P(t)− D(t, I(t))] + K(P(t))
}
+ λ(t)

{
P(t)− D(t, I(t))− θ+(t, I(t))

}
.

(19)

Equation (16) is equivalent to

λ(t) =


e−ρt

[
d

dP K(P(t)) + c
]

, I(t) > 0,

e−ρt d
dP K(P(t)), I(t) ≤ 0.

(20)

Equation (17) is equivalent to

− d
dt

λ(t) ∈



{a(t, I(t))} , I(t) > 0,

[b(t, I(t)), a(t, I(t))] , I(t) = 0,

{b(t, I(t))} , I(t) < 0,

(21)

where

a(t, I(t)) = −λ(t)
[

∂

∂I
D(t, I(t)) +

∂

∂I
θ(t, I(t))

]
+ e−ρt

[
c

∂

∂I
D(t, I(t))− d

dI
h(I(t))

]
,
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and
b(t, I(t)) = e−ρt d

dI
g(I(t))− λ(t)

∂

∂I
D(t, I(t)).

We distinguished the following three cases:

Regime 1 : I(t) > 0.

Regime 2 : I(t) = 0.

Regime 3 : I(t) < 0.

As we did in the previous section, we show how computations can be carried out when specific
functions are available. Take, for example, the following cost rates

K(P) =
KP2

2
, h(I) =

hI2

2
, g(I) = gI,

and the following demand and deterioration functions

D(t, I(t)) = d1(t) + d2 I(t), θ(t, I(t)) = θ1(t) + θ2 I(t),

where K, h, g, d2, and θ2 are positive constants and θ1 ≡ 0 on those intervals where I ≡ 0.
Combining Equations (20) and (21) we got the following conditions which were necessary for the
regimes to happen.

When I(t) > 0, we had from the state equation P(t) = d
dt I(t)+ D(t, I(t))+ θ(t, I(t)) and therefore

regime 1 happened only over the time intervals where

d
dt

I(t) + D(t, I(t)) + θ(t, I(t)) ≥ 0 and I(t) > 0.

The optimal control is P(t) = d
dt I(t) + D(t, I(t)) + θ(t, I(t)), where I(t) is the solution of the

following differential equation:

d2

dt2 I(t)− ρ
d
dt

I(t)−
[

h
K
+ (d2 + θ2)(ρ + d2 + θ2)

]
I(t) = α(t), (22)

with
α(t) = (ρ + d2 + θ2)(d1(t) + θ1(t))−

d
dt

d1(t)−
d
dt

θ1(t) +
cθ2

K
.

Regime 2 occurs only over those time intervals where

0 ∈ [a(t), b(t)], (23)

where
a(t) = − d

dt
d1(t) + ρd1(t)− d2d1(t)) +

g
K

,

and
b(t) = − d

dt
d1(t) + ρd1(t)− (θ2 + d2)

[
(θ1(t) + d1(t)) +

c
K

]
.

The optimal control is P(t) = d1(t).

Regime 3 happens only over the time intervals where

d
dt

I(t) + D(t, I(t)) ≥ 0 and I(t) < 0.
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The optimal control is P(t) = d
dt I(t) + D(t, I(t)), where I(t) is the solution of the following

differential equation:

d2

dt2 I(t)− ρ
d
dt

I(t)− [d2(ρ + d2)] I(t) = d1(t)(ρ + d2)−
d
dt

d1(t) +
g
K

. (24)

Solution Approach:

Our approach to determine I∗ depended on the initial and the terminal inventory levels and on
the time intervals where regime 2 arose, if it did.

Scenario 1. Regime 2 arises on intervals: For simplicity we assumed that there was only one subinterval
[t0, t1] ⊂ [0, T] on which 0 ∈ [a(t), b(t)]. In this scenario, there are four cases; I0 < 0 < IT , IT < 0 <

I0, I0, IT > 0, and I0, IT < 0.

Case 1. I0 < 0 < IT : In this case we proceed as follows:

∗ Solve Equation (24) with the boundary conditions I0 < 0 and I(t0) = 0.
∗ Solve Equation (22) with the boundary conditions I(t1) = 0 and IT > 0.
∗ The optimal level I∗ is the function given by the solution of Equation (24) over the interval

[0, t0] and by the solution of Equation (22) on the interval [t1, T], and I∗ ≡ 0 on [t0, t1].

Case 2. IT < 0 < I0. This case is unlikely to happen in practice, but if it does, then we proceed
as follows:

∗ Solve Equation (22) with the boundary conditions I0 > 0 and I(t0) = 0.
∗ Solve Equation (24) with the boundary conditions I(t1) = 0 and IT < 0.
∗ The optimal level I∗ is the function given by the solution of Equation (22) over the interval

[0, t0] and by the solution of Equation (24) on the interval [t1, T], and I∗ ≡ 0 on [t0, t1].

Case 3. I0, IT < 0. In this case we solved Equation (24) twice, once with the boundary conditions
I0 < 0 and I(t0) = 0 and once with the boundary conditions I(t1) = 0 and IT < 0. The optimal
level I∗ is the function given by the solution of Equation (24) over the interval [0, t0] and by the
solution of Equation (24) on the interval [t1, T], and I∗ ≡ 0 on [t0, t1].

Case 4. I0, IT > 0. In this case we proceed as in case 3, using Equation (22) instead of Equation (24).

Scenario 2. Regime 2 does not arise on intervals: As in the previous scenario, we again had to consider
the four cases; I0 < 0 < IT , IT < 0 < I0, I0, IT > 0, and I0, IT < 0.

Case 1. I0 < 0 < IT : For simplicity we assumed that there is only one point t0 ∈ [0, T] with
I(t0) = 0. In this case we proceed as follows:

Step 1.

• Solve Equation (24) with the boundary conditions I0 and I(T), and determine the value
t0 for which I(t0) = 0.

• Solve Equation (22) with the boundary conditions I(t0) = 0 and IT .
• Denote by Î the function given by the solution of Equation (24) over the interval [0, t0]

and by the solution of Equation (22) on the interval [t0, T] and compute Ĵ := J( Î).

Step 2.

• Solve Equation (22) with the boundary conditions I0 and I(T), and determine the value
t0 for which I(t0) = 0.

• Solve Equation (24) with the boundary conditions I(0) = I0 and I(t0) = 0.
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• Denote by Ĩ the function given by the solution of Equation (22) over the interval [0, t0]

and by the solution of Equation (24) on the interval [t0, T] and compute J̃ := J( Ĩ).

Step 3. The optimal level I∗ is the one with the smallest objective function value.

Case 2. IT < 0 < I0. This case is unlikely to happen in practice, but if it does, then we proceed as
in case 1.

Case 3. I0, IT < 0. In this case we solved the differential Equation (24) with the boundary
conditions I0 < 0 and IT < 0.

Case 4. I0, IT > 0. In this case we solved the differential Equation (22) with the boundary
conditions I0 > 0 and IT > 0.

Remark 1. For simplicity we had assumed that there was only one subinterval [t0, t1] ⊂ [0, T] on which
0 ∈ [a(t), b(t)]. This assumption is solely for simplicity of exposition, i.e., the extension to multiple subintervals
for which 0 ∈ [a(t), b(t)] is straightforward, except for notation.

Example 2. Take ρ = 0, g = c = h = 0.1, K = 5, θ2 = 0.1, d2 = 0.1, T = 5, I0 = −10, IT = 5, d1(t) = et,
and θ1 ≡ 0. We can check that 0 6∈ [a(t), b(t)], for all t ∈ [0, T], so that regime 2 does not exist. This is case 1
of scenario 2. Using Maple, we found Ĵ = 20, 632.26 and J̃ = 20, 626.63 and so the optimal solution is the one
obtained in step 2. The graphs of the optimal inventory level I∗ and the optimal production rate P∗ are shown in
Figure 2.
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Figure 2. Variations of I∗ and P∗ as functions of time t.

4. Conclusions

We have considered in this paper two inventory–production systems with deteriorating items
and stock-dependent demand. The first model does not allow backorders while the second does.
The optimal control approach is very effectively used to determine the optimal production rate
in both models. Using Pontryagin maximum principle, we derived in a general framework the
necessary optimality conditions for optimal production rate P∗ and optimal inventory level I∗ . Explicit
expressions of P∗ and I∗ are obtained under assumption of explicit forms of the functionals involved.
Different scenarios and regimes describe the solution approach in the second model. Numerical
examples illustrate the efficiency of the proposed solutions.

This work can be extended in various ways. For example, instead of minimizing the total cost,
one may want to maximize the total profit. Usually these two problems are equivalent and to avoid
this, one may take a unit revenue rate, that is both function of time and of the inventory level, in the
maximization model. Another extension would be to consider an infinite planning horizon. Also, one
may consider the case of multi-item production systems and/or systems with stochastic inventory
levels or stochastic demand rates.
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