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Abstract: By using the analysis methods and the properties of Chebyshev polynomials of the first
kind, this paper studies certain symmetry sums of the Legendre polynomials, and gives some new
and interesting identities and inequalities for them, thus improving certain existing results.
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1. Introduction

For any integer n ≥ 0, the Legendre polynomials {Pn(x)} are defined as follows:

Pn(x) =
2n− 1

n
xPn−1(x)− n− 1

n
Pn−2(x)

for all n ≥ 2, with P0(x) = 1 and P1(x) = x, see [1,2] for more information.
The first few terms of Pn(x) are P2(x) = 1

2
(
3x2 − 1

)
, P3(x) = 1

2
(
5x3 − 3x

)
,

P4(x) = 1
8
(
35x4 − 30x2 + 3

)
, P5(x) = 1

8
(
63x5 − 70x3 + 15x

)
, · · · .

In fact, the general term of Pn(x) is given by the formula

Pn(x) =
1
2n ·

[ n
2 ]

∑
k=0

(−1)k · (2n− 2k)!
k! · (n− k)! · (n− 2k)!

· xn−2k,

where [y] denotes the greatest integer less than or equal to y.
It is clear that Pn(x) is an orthogonal polynomial (see [1,2]). That is,

∫ 1

−1
Pm(x)Pn(x)dx =

 0, if m 6= n;
2

2n + 1
, if m = n.

The generating function of Pn(x) is

1√
1− 2xt + t2

=
∞

∑
n=0

Pn(x) · tn, |x| ≤ 1, |t| < 1. (1)

These polynomials play a vital role in the study of function orthogonality and approximation
theory, as a result, some scholars have dedicated themselves to studying their various natures and
obtained a series of meaningful research results. The studies that are concerned with this content can
be found in [1–20]. Recently, Shen Shimeng and Chen Li [3] give certain symmetry sums of Pn(x),
and proved the following result:
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For any positive integer k and integer n ≥ 0, one has the identity

(2k− 1)!! ∑
a1+a2+···+a2k+1=n

Pa1(x)Pa2(x) · · · Pa2k+1(x)

=
k

∑
j=1

C(k, j)
n

∑
i=0

(n + k + 1− i− j)!
(n− i)!

·
(i+j+k−2

i )

xk−1+i+j · Pn+k+1−i−j(x),

where (2k− 1)!! = (2k− 1) · (2k− 3) · · · 3 · 1, and C(k, i) is a recurrence sequence defined by C(k, 1) = 1,
C(k + 1, k + 1) = (2k− 1)!! and C(k + 1, i + 1) = C(k, i + 1) + (k− 1 + i) · C(k, i) for all 1 ≤ i ≤ k− 1.

The calculation formula for the sum of Legendre polynomials given above is virtually a linear
combination of some Pn(x), and the coefficients C(k, i) are very regular. However, the result is in the
form of a recursive formula, in other words, especially when k is relatively large, the formula is not
actually easy to use for calculating specific values.

In an early paper, Zhou Yalan and Wang Xia [4] obtained some special cases with k = 3 and
k = 5. It is even harder to calculate their exact values for the general positive integer k, especially if k is
large enough.

Naturally, we want to ask a question: Is there a more concise and specific formula for the
calculation of the above problems? This is the starting point of this paper. We used the different
methods to come up with additional simpler identities. It is equal to saying that we have used the
analysis method and the properties of the first kind of Chebyshev polynomials, thereby establishing
the symmetry of the Legendre polynomial and symmetry relationship with the first kind of Chebyshev
polynomial, and proved the following three results:

Theorem 1. For any integers k ≥ 1 and n ≥ 0, we have the identity

∑
a1+a2+···+ak=n

Pa1(x) · Pa2(x) · · · Pak (x) =
n

∑
i=0

< k
2 >i

i!
·
< k

2 >n−i

(n− i)!
· Tn−2i(x),

where < x >0= 1, < x >k= x(x + 1)(x + 2) · · · (x + k− 1) for all integers k ≥ 1, and Tn(x) = T−n(x) =
1
2

((
x +
√

x2 − 1
)n

+
(

x +
√

x2 − 1
)n)

denotes Chebyshev polynomials of the first kind.

Theorem 2. Let q > 1 is an integer, χ is any primitive character mod q. Then for any integers k ≥ 1 and
n ≥ 0, we have the inequality∣∣∣∣∣ ∑

a1+a2+···+ak=n

q

∑
a=1

χ(a)Pa1

(
cos

2πa
q

)
· Pa2

(
cos

2πa
q

)
· · · Pak

(
cos

2πa
q

)∣∣∣∣∣
≤ √q ·

(
n + k− 1

k− 1

)
.

Theorem 3. For any integer n ≥ 0 with 2 - n, we have the identity

∫ π
2

− π
2

(
∑

a1+a2+···+ak=n
Pa1 (sin θ) · Pa2 (sin θ) · · · Pak (sin θ)

)2

dθ

= 2π ·
[ n

2 ]

∑
i=0

(
< k

2 >i

i!
·
< k

2 >n−i

(n− i)!

)2

;

If n = 2m, then we have
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∫ π
2

− π
2

(
∑

a1+a2+···+ak=n
Pa1 (sin θ) · Pa2 (sin θ) · · · Pak (sin θ)

)2

dθ

= 2π ·
m

∑
i=0

(
< k

2 >i

i!
·
< k

2 >2m−i

(2m− i)!

)2

− π ·
(
< k

2 >m

m!

)4

.

Essentially, the main result of this paper is Theorem 1, which not only reveals the profound
properties of Legendre polynomials and Chebyshev polynomials, but also greatly simplifies the
calculation of the symmetry sum of Legendre polynomials in practice. We can replace the calculation of
the symmetric sum of the Legendre polynomial with the first single Chebyshev polynomial calculation,
which can greatly simplify the calculation of the symmetric sum.

Theorem 2 gives an upper bound estimate of the character sum of Legendre polynomials.
Theorem 3 reveals the orthogonality of the symmetry sum of Legendre polynomials, which is a
generalization of the orthogonality of functions. Of course, Theorems 2 and 3 can also be seen as the
direct application of Theorem 1 in analytical number theory and the orthogonality of functions. This is
of great significance in analytic number theory, and it has also made new contributions to the study of
Gaussian sums.

In fact if we taking k = 1, and note that the identity < 1
2>h
h! = 1

4h · (2h
h ), then from our theorems we

may immediately deduce the following three corollaries.

Corollary 1. For any integer n ≥ 0, we have the identity

Pn(x) =
1
4n

n

∑
i=0

(
2i
i

)(
2n− 2i

n− i

)
· Tn−2i(x),

where Tn(x) denotes Chebyshev polynomials of the first kind.

Corollary 2. Let q > 1 is an integer, χ is any primitive character modq. Then for any integer n ≥ 0, we have
the inequality ∣∣∣∣∣ q

∑
a=1

χ(a)Pn

(
cos

2πa
q

)∣∣∣∣∣ ≤ √q.

Corollary 3. For any integer n ≥ 0 with 2 - n, we have the identity

∫ π
2

− π
2

P2
n (sin θ) dθ =

2π

42n

[ n
2 ]

∑
i=0

(
2i
i

)2(2n− 2i
n− i

)2
;

If n = 2m, then we have the identity

∫ π
2

− π
2

P2
n (sin θ) dθ =

2π

42n

[ n
2 ]

∑
i=0

(
2i
i

)2(2n− 2i
n− i

)2
− π

42n ·
(

2m
m

)4
.

2. Proofs of the Theorems

In this section, we will directly prove the main results in this paper by by means of the properties
of characteristic roots.

Proof of Theorem 1. First we prove Theorem 1. Let α = x +
√

x2 − 1 and β = x −
√

x2 − 1 be two
characteristic roots of the characteristic equation λ2 − 2xλ + 1 = 0. Then from the definition and
properties of Chebyshev polynomials Tn(x) of the first kind, we have
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Tn(x) = T−n(x) =
1
2
(αn + βn) , n ≥ 0.

For any positive integer k, combining properties of power series and Formula (1) we have
the identity (

1√
1− 2xt + t2

)k
=

1

(1− 2xt + t2)
k
2
=

1

(1− αt)
k
2 (1− βt)

k
2

=
∞

∑
n=0

(
∑

a1+a2+···+ak=n
Pa1(x) · Pa2(x) · Pa3(x) · · · Pak (x)

)
· tn. (2)

At the same time, we focus on the power series

1

(1− x)
k
2
=

∞

∑
n=0

< k
2 >n

n!
· xn, |x| < 1, (3)

where < x >0= 1, < x >h= x(x + 1)(x + 2) · · · (x + h− 1) for all integers h ≥ 1.
So for any positive integer k, note that α · β = 1, from (3) and the symmetry properties of α and β

we have (
1√

1− 2xt + t2

)k
=

1

(1− αt)
k
2 (1− βt)

k
2

=

(
∞

∑
n=0

< k
2 >n

n!
· αn · tn

)(
∞

∑
n=0

< k
2 >n

n!
· βn · tn

)

=
∞

∑
n=0

(
n

∑
i=0

< k
2 >i

i!
·
< k

2 >n−i

(n− i)!
· αi · βn−i

)
· tn

=
∞

∑
n=0

(
n

∑
i=0

< k
2 >i

i!
·
< k

2 >n−i

(n− i)!
· βn−2i

)
· tn

=
∞

∑
n=0

(
n

∑
i=0

< k
2 >i

i!
·
< k

2 >n−i

(n− i)!
· αn−2i

)
· tn

=
∞

∑
n=0

(
n

∑
i=0

< k
2 >i

i!
·
< k

2 >n−i

(n− i)!
· 1

2

(
αn−2i + βn−2i

))
· tn

=
∞

∑
n=0

(
n

∑
i=0

< k
2 >i

i!
·
< k

2 >n−i

(n− i)!
· Tn−2i(x)

)
· tn. (4)

Combining (2) and (4), and then by comparing the coefficients on both sides of the power series,
we can find

∑
a1+a2+···+ak=n

Pa1(x) · Pa2(x) · · · Pak (x) =
n

∑
i=0

< k
2 >i

i!
·
< k

2 >n−i

(n− i)!
· Tn−2i(x).

This proves Theorem 1.

Proof of Theorem 2. The proof of Theorem 2 is next. Let q > 1 be any integer, χ denotes any primitive
character mod q. Then from Theorem 1 with x = cos

(
2πa

q

)
and the identity Tn (cos θ) = cos(nθ),

we have
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∑
a1+a2+···+ak=n

q

∑
a=1

χ(a)Pa1

(
cos

2πa
q

)
· Pa2

(
cos

2πa
q

)
· · · Pak

(
cos

2πa
q

)

=
n

∑
i=0

< k
2 >i

i!
·
< k

2 >n−i

(n− i)!
·

q

∑
a=1

χ(a) · cos
(

2πa(n− 2i)
q

)

=
1
2

n

∑
i=0

< k
2 >i

i!
·
< k

2 >n−i

(n− i)!
·

q

∑
a=1

χ(a)
(

e
(

a(n− 2i)
q

)
+ e

(
−a(n− 2i)

q

))

=
τ(χ)

2

n

∑
i=0

< k
2 >i

i!
·
< k

2 >n−i

(n− i)!
· (χ(n− 2i) + χ (−(n− 2i))) , (5)

where e(y) = e2πiy, and
q

∑
a=1

χ(a)e
(

na
q

)
= χ(n)τ(χ).

Note that for any primitive character χ mod q, from the properties of Gauss sums, we have
|τ(χ)| = √q, and for any positive integer k ≥ 1, we have

1
(1− x)k =

∞

∑
n=0

(
n + k− 1

k− 1

)
· xn =

1

(1− x)
k
2
· 1

(1− x)
k
2

=
∞

∑
n=0

(
n

∑
i=0

< k
2 >i

i!
·
< k

2 >n−i

(n− i)!

)
· xn

or (
n + k− 1

k− 1

)
=

n

∑
i=0

< k
2 >i

i!
·
< k

2 >n−i

(n− i)!
. (6)

Combining (5) and (6), there will be an estimation formula immediately deduced∣∣∣∣∣ ∑
a1+a2+···+ak=n

q

∑
a=1

χ(a)Pa1

(
cos

2πa
q

)
· Pa2

(
cos

2πa
q

)
· · · Pak

(
cos

2πa
q

)∣∣∣∣∣
=

√
q

2
·
∣∣∣∣∣ n

∑
i=0

< k
2 >i

i!
·
< k

2 >n−i

(n− i)!
· [χ(n− 2i) + χ (−(n− 2i))]

∣∣∣∣∣
≤ √q ·

n

∑
i=0

< k
2 >i

i!
·
< k

2 >n−i

(n− i)!
=
√

q ·
(

n + k− 1
k− 1

)
.

Theorem 2 is proven completely.

Proof of Theorem 3. We prove Theorem 3 below. From the orthogonality of Chebyshev polynomials
of the first kind we know that

∫ 1

−1

Tm(x)Tn(x)√
1− x2

dx =


0, if m 6= n;
π

2
, if m = n > 0,

π, if m = n = 0.

(7)

If integer n ≥ 1 with 2 - n, then for any integer 0 ≤ i ≤ n, we have n − 2i 6= 0, note that
Tn(x) = T−n(x), so from (7) and Theorem 1 we have
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∫ 1

−1

1√
1− x2

(
∑

a1+a2+···+ak=n
Pa1(x) · Pa2(x) · · · Pak (x)

)2

dx

=
∫ 1

−1

1√
1− x2

(
n

∑
i=0

< k
2 >i

i!
·
< k

2 >n−i

(n− i)!
· Tn−2i(x)

)2

dx

= 4
∫ 1

−1

1√
1− x2

[ n
2 ]

∑
i=0

< k
2 >i

i!
·
< k

2 >n−i

(n− i)!
· Tn−2i(x)

2

dx

= 2π ·
[ n

2 ]

∑
i=0

(
< k

2 >i

i!
·
< k

2 >n−i

(n− i)!

)2

. (8)

For n = 2m, if n− 2i = 0, then i = m. So from (7), Theorem 1 and the methods of proving (8)
we have

∫ 1

−1

1√
1− x2

(
∑

a1+a2+···+ak=n
Pa1(x) · Pa2(x) · · · Pak (x)

)2

dx

=
∫ 1

−1

1√
1− x2

(< k
2 >m

m!

)2

+ 2
m−1

∑
i=0

< k
2 >i

i!
·
< k

2 >2m−i

(2m− i)!
· T2m−2i(x)

2

dx

= π ·
(
< k

2 >m

m!

)4

+ 2π ·
m−1

∑
i=0

(
< k

2 >i

i!
·
< k

2 >n−i

(n− i)!

)2

= 2π ·
m

∑
i=0

(
< k

2 >i

i!
·
< k

2 >2m−i

(2m− i)!

)2

− π ·
(
< k

2 >m

m!

)4

. (9)

Let x = sin θ, then we have

∫ 1

−1

1√
1− x2

(
∑

a1+a2+···+ak=n
Pa1(x) · Pa2(x) · · · Pak (x)

)2

dx

=
∫ π

2

− π
2

(
∑

a1+a2+···+ak=n
Pa1 (sin θ) · Pa2 (sin θ) · · · Pak (sin θ)

)2

dθ. (10)

Now Theorem 3 follows from (8), (9), and (10).

3. Conclusions

Three theorems and three inferences are the main results in the paper. Theorem 1 gives proof of
the symmetry of Legendre polynomials and the symmetry relationship with Chebyshev polynomials
of the first kind. This conclusion also improves the early results in [4], and also gives us a different
representation for the result in [3]. Theorem 2 obtained an inequality involving Dirichlet characters
and Legendre polynomials; this is actually a new contribution to the study of Legendre polynomials
and character sums mod q. Theorem 3 established an integral identity involving the symmetry sums
of the Legendre polynomials. The three corollaries are some special cases of our three theorems for
k = 1, and can not only enrich the research content of the Legendre polynomials, but also promote its
research development.
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