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Abstract: The univariate power-normal distribution is quite useful for modeling many types of real
data. On the other hand, multivariate extensions of this univariate distribution are not common in the
statistic literature, mainly skewed multivariate extensions that can be bimodal, for example. In this
paper, based on the univariate power-normal distribution, we extend the univariate power-normal
distribution to the multivariate setup. Structural properties of the new multivariate distributions
are established. We consider the maximum likelihood method to estimate the unknown parameters,
and the observed and expected Fisher information matrices are also derived. Monte Carlo simulation
results indicate that the maximum likelihood approach is quite effective to estimate the model
parameters. An empirical application of the proposed multivariate distribution to real data is
provided for illustrative purposes.

Keywords: distribution theory; maximum likelihood estimation; multivariate models; parametric
inference; skewed distributions

1. Introduction

Asymmetric univariate distributions that can be used for explaining real data which are not
adequately fitted by the usual normal distribution were studied in Azzalini [1], Fernández and Steel [2],
Mudholkar and Hutson [3], Durrans [4], Pewsey et al. [5], and Martínez-Flórez et al. [6], among others.
In particular, Azzalini [1] has considered a general structure for asymmetric distributions in the
univariate setting, which is given by

ϕA(z; λ) = 2 f (z)G(λz), z ∈ R, (1)

where λ ∈ R controls the amount of asymmetry in the distribution, f is a symmetric (around zero)
probability density function (PDF), and G is an absolutely continuous cumulative distribution function
(CDF). The special case f = φ and G = Φ corresponds to the well-known skew-normal (SN)
distribution, where φ and Φ are the PDF and CDF of the standard normal distribution, respectively.
We have that ϕA(z; λ = 0) = f (z). The skew-normal distribution have been extensively studied in the
statistic literature. To mention a few, but not limited to, the reader is referred to Henze [7], Chiogna [8],
Pewsey [9], Gómez et al. [10], and Gómez et al. [11], among many others. Another important reference
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regarding univariate asymmetric distributions is the work of Durrans [4], who introduced the fractional
order statistics distribution with PDF given by

ϕD(z; α) = α f (z){F(z)}α−1, z ∈ R,

where α > 0 is a shape parameter that controls the amount of asymmetry in the distribution, F is
an absolutely continuous CDF, and f = dF is the corresponding PDF. The special case F = Φ
corresponds to the well-known power-normal (PN) distribution (Gupta and Gupta [12]). Note also that
ϕD(z; α = 1) = f (z). It is worth emphasizing that the fractional order statistics distribution studied
by Durrans [4] is very flexible and, in addition, the corresponding expected Fisher information is not
singular at α = 0. On the other hand, the expected Fisher information matrix for the SN distribution
introduced by Azzalini [1] is singular at λ = 0. Therefore, the fractional order statistics distribution
has this interesting advantage in relation to the SN distribution.

The univariate models previously mentioned are only adequate for fitting unimodal data.
A univariate bimodal distribution was introduced in Bolfarine et al. [13], whose PDF is given by

ϕB(z; α, β) = 2αcα f (z) {F(|z|)}α−1 G(βz), z ∈ R,

where α > 0, β ∈ R, F is an absolutely continuous CDF with PDF f = dF symmetric around zero,
G is an absolutely continuous CDF which is symmetric around zero, and cα = 2α−1/(2α − 1) is the
normalizing constant. In particular, if F = G = Φ, then we have the univariate asymmetric bimodal
power-normal (ABPN) distribution. We use the notation ABPN(β, α) to refer to this univariate
asymmetric bimodal distribution. It follows that the ABPN distribution is bimodal for α > 1,
and unimodal otherwise. Additionally, β = 0 leads to a symmetric (around zero) bimodal distribution,
and we use the notation BPN(α) to refer to this univariate symmetric bimodal distribution. Note also
that ϕB(z; α = 1, β) = 2 f (z)G(βz) and hence the ABPN distribution reduces to the PDF in (1) when
α = 1. Also, ϕB(z; α = 1, β = 1) = f (z).

In this paper, we generalize the univariate ABPN distribution to the multivariate setting by using
the approach in Arnold et al. [14]. The new multivariate distributions we propose are quite flexible and
therefore can be very useful in analyzing many types of multivariate real data which occurs frequently
in practice. Additionally, maximum likelihood (ML) estimation is implemented, and (observed
and expected) Fisher information matrices are derived. Finally, extensions to multivariate elliptical
scenarios are also discussed. It is worth emphasizing that an important claim to introduce new
multivariate distributions relies on the fact that the practitioners will have new multivariate models
to use in multivariate settings. Additionally, the formulae related with the new multivariate models
are manageable and with the use of modern computer resources and its numerical capabilities,
the proposed multivariate models may prove to be an useful addition to the arsenal of applied
statisticians. We hope that the new multivariate distributions introduced in this paper may serve as
alternative multivariate models to some well-known multivariate models available in the statistical
literature as, for example, the multivariate SN distribution [15], and the conditional multivariate SN
distribution [14], among others. We also hope that the new multivariate models may work better
(at least in terms of model fitting) than some multivariate distributions available in the literature in
certain practical situations, although it cannot always be guaranteed.

The paper is organized as follows. Section 2 presents a short revision of existing asymmetric
multivariate models, which are used to fit unimodal data. In Section 3, we consider the symmetric
multivariate PN extension with possible bimodality. ML estimation is also implemented in this
section. Section 4 is devoted to the study of the asymmetric multivariate PN model with extension
implemented to the location-scale situation. ML estimation is also considered in this section. Real data
application is presented in Section 5. The real data illustration shows that the new multivariate
distribution can be better in terms of model fitting than unimodal alternative multivariate models for
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analyzing multivariate data. Multivariate extension of the univariate PN model in the elliptical context
is considered in Section 6. In Section 7 some concluding remarks are provided.

2. Multivariate Skew Models

In the last two decades, statistical literature has given great emphasis on multivariate extensions
of the SN model. Important extensions are the multivariate SN distributions (Azzalini and Dalla
Valle, [15]), the conditionally specified multivariate SN distribution (Arnold et al. [14]), and the
multivariate alpha-power model (Martínez-Flórez et al. [6]), among others. The multivariate SN
distribution has been studied by several authors, including Azzalini and Capitanio [16], Gupta and
Huang [17], Gupta et al. [18], and Genton [19]. Extensions of this model have been the subject of
study in Arrellano-Valle and Azzalini [20,21], Arellano-Valle and Genton [22], Gupta and Chen [23],
and Gupta and Chang [24]. The d-dimensional SN PDF can be expressed as

2φd(x− µ; Ω)Φ(λ′ω−1(x− µ)), x ∈ Rd,

where φd(x − µ; Ω) is the joint PDF of a multivariate normal distribution, Ω is a d × d positive
definite variance-covariance matrix, µ ∈ Rd is the location parameter, λ ∈ Rd is a parameter vector
which controls skewness, and ω = diag{ω1, . . . , ωd} is a diagonal matrix composed by the standard
deviations from the variance-covariance matrix Ω. We use the notation SNd(µ, Ω, λ) to refer to this
distribution; see Azzalini and Capitanio [25] for more details about multivariate SN models. Another
useful multivariate model based on conditional SN distributions was studied in Arnold et al. [14],
whose joint PDF takes the form

2

[
d

∏
j=1

1
ωj

φ

(
xj − µj

ωj

)]
Φ

(
λ

d

∏
j=1

(
xj − µj

ωj

))
, x ∈ Rd,

where µj ∈ R and ωj > 0 (for j = 1, . . . , d) are location and scale parameters, respectively, and λ

is a shape parameter. We use the notation SNCd(µ, ω, λ) to refer to this distribution. Similarly to
the univariate setting, the expected Fisher information matrix for the multivariate SN distribution
is singular at λ = 0d, where 0k denotes a k-vector of zeros. On the other hand, expected Fisher
information matrix for the conditional multivariate SN distribution is not singular at λ = 0.

3. The Symmetric Multivariate PN Distribution

The multivariate SNd(µ, Ω, λ) and SNCd(µ, ω, λ) models presented in Section 2 are alternative
models to the multivariate normal distribution for fitting multivariate asymmetric data.
However, these multivariate distributions are only adequate for fitting unimodal data. Therefore, it is
interesting to develop new multivariate models (and simple as well) that are able to adequately fit
data with possible bimodality.

3.1. The New Model

Initially, we define the symmetric multivariate PN (MBPN) distribution, whose joint PDF is
given by

f (x; α) = φd(x)
d

∏
j=1

αjcαj{Φ(|xj|)}αj−1, x ∈ Rd,

where φd(x) := φd(x; Id) is the joint PDF of a d-dimensional multivariate normal distribution with
standardized marginals, Id is the identity matrix of order d, α = (α1, . . . , αd)

′ is the d-vector of shape
parameters, and cαj = 2αj−1/(2αj − 1) is a normalizing constant. We use the notation MBPNd(α) to
refer to this new multivariate distribution. We have the following proposition.

Proposition 1. Let X = (X1, . . . , Xd)
′ ∼ MBPNd(α). We have that
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1. Xj ∼ BPN(αj) for j = 1, . . . , d.
2. The joint PDF of X is symmetric.
3. The product moment of X is

E(Xr1
1 Xr2

2 ...Xrd
d ) =

0, if any rj is odd,

2∑d
j=1 rj ∏d

j=1 E(X
rj
j+), if all rj are even,

where E(X
rj
j+) is the moment of the positive part of Xj ∼ BPN(αj).

4. The joint PDF of X is multimodal if αj > 1 for j = 1, . . . , d.

Let d = 2 and hence we have the bivariate BPN model. Thus, differentiating f (x; α) with respect
to xj for j = 1, 2 and equating to zero, we obtain

αj − 1 =
|xj|Φ(|xj|)

φ(xj)
, j = 1, 2. (2)

If 0 < αj < 1 in (2), then there is no solution. Moreover, for αj = 1 the bivariate normal distribution
has solution xj = 0, and for αj > 1 we obtain two solutions: xj = −(αj − 1)φ(xj)/Φ(−xj) for xj < 0,
and xj = (αj − 1)φ(xj)/Φ(xj) for xj ≥ 0. For these solutions we have the determinant

D =

∣∣∣∣∣∣∣∣∣
∂2 f
∂x2

1

∂2 f
∂x2∂x1

∂2 f
∂x1∂x2

∂2 f
∂x2

2

∣∣∣∣∣∣∣∣∣ ,

where f := f (x; α). Evaluating D at the critical points it follows that
D > 0 and

∂2 f
∂x2

1
> 0, for α1 ≤ 1 and α2 ≤ 1,

D > 0 and
∂2 f
∂x2

1
< 0, for α1 > 1 or α2 > 1,

and so we conclude that the joint bivariate PDF is bimodal if α1 > 1 or α2 > 1.

3.2. Inference

We consider the ML procedure to estimate the parameter vector α ∈ Rd of the MBPNd(α)

distribution. Let x1 = (x11, . . . , x1d)
′, . . ., xn = (xn1, . . . , xnd)

′ be an observed sample of size n from
X = (X1, . . . , Xd)

′ ∼ MBPNd(α). The log-likelihood function takes the form

`(α) = n
d

∑
j=1

[log(αj) + log(cαj)] +
n

∑
i=1

d

∑
j=1

log(φ(xij))

+
n

∑
i=1

d

∑
j=1

(αj − 1)log(Φ(|xij|)).

The ML estimate α̂ = (α̂1, . . . , α̂d)
′ of α = (α1, . . . , αd)

′ is obtained by maximizing the
log-likelihood function `(α) with respect to α. The maximization can be performed, for example,
in the R software (R Core Team [26]) by using the optim(...) function. The partial derivatives of the
log-likelihood function with respect to the model parameters become

∂`(α)

∂αj
=

n
αj
− n log 2

2αj − 1
+

n

∑
i=1

log(Φ(|xij|)), j = 1, . . . , d.
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The ML estimate α̂ = (α̂1, . . . , α̂d)
′ can also be obtained by solving simultaneously the nonlinear

system of equations ∂`(α)/∂αj = 0 for j = 1, . . . , d, which has no closed-form and, hence, the ML
estimates need to be obtained through a numerical maximization of the log-likelihood function using
nonlinear optimization algorithms.

Since the new MBPN distribution corresponds to a regular ML problem, we have that the
standard asymptotics apply; that is, the ML estimators of the model parameters are asymptotically
normal, asymptotically unbiased and have asymptotic variance-covariance matrix given by the inverse
of the expected Fisher information matrix. Let Σ(α) be the expected Fisher information matrix.
So, when n is large and under some mild regularity conditions (Cox and Hinkley [27]), we have that√

n(α̂− α)
a∼ Nd(0d, Σ(α)−1), where a∼means approximately distributed. It can be shown that

Σ(α) = diag
{

α−2
1 − 2α1(2α1 − 1)−2(log 2)2, . . . , α−2

d − 2αd(2αd − 1)−2(log 2)2
}

.

Therefore, we immediately observe that the parameters αj’s are globally orthogonal (Cox and
Reid [28]). The above asymptotic normal distribution can be used to construct approximate confidence
intervals (CI) for the model parameters. Let 0 < ϑ < 1/2 be the significance level. The asymptotic
CI of αj given by α̂j ±Φ−1(1− ϑ/2) se(α̂j) for j = 1, . . . , d, with asymptotic coverage of 100(1− ϑ)%.
Here, se(·) is the square root of the diagonal element of Σ(α)−1 corresponding to each parameter
(i.e., the asymptotic standard error), and Φ−1(·) denotes the standard normal quantile function.

3.3. A Short Simulation Study

We conduct Monte Carlo simulation experiments in order to explore the performance of the
ML method in estimating the MBPNd(α) model parameters in finite-samples in the bivariate case
(i.e., d = 2). Parameter values to generate the data are α1 = 0.5, 1.5 and 2.5, and α2 = 0.25, 2.5 and 4.75.
Sample sizes considered were n = 50, 250, 500 and 1500. In this study, 10,000 random samples were
generated for each sample size. To generate random variates from (X1, X2)

′ ∼MBPN2(α) distribution,
we generate two independent uniform random variables, say U1 ∼ U(0, 1) and U2 ∼ U(0, 1), such that

(U1i, U2i) =


U1 < 1/2 and U2 < 1/2,

U1 < 1/2 and U2 ≥ 1/2,

U1 ≥ 1/2 and U2 < 1/2,

U1 ≥ 1/2 and U2 ≥ 1/2,

for i = 1, . . . , n, leading to the following relation

(X1i, X2i) =



(
−Φ−1 (1− 2(1− 2−α1)U1)

1/α1 ,−Φ−1 (1− 2(1− 2−α2)U2)
1/α2

)
,(

−Φ−1 (1− 2(1− 2−α1)U1)
1/α1 , Φ−1 (2−α2(2(2α2 − 1)(U2 − 2−1)) + 1

)1/α2
)

,(
Φ−1 (2−α1(2(2α1 − 1)(U1 − 2−1)) + 1

)1/α1 ,−Φ−1 (1− 2(1− 2−α2)U2)
1/α2

)
,(

Φ−1 (2−α1(2(2α1 − 1)(U1 − 2−1)) + 1
)1/α1 , Φ−1 (2−α2(2(2α2 − 1)(U2 − 2−1)) + 1

)1/α2
)

.

The ML estimates are evaluated by considering the following quantities: the empirical mean,
and squared root of the mean squared error (

√
MSE), which are computed from 10,000 Monte Carlo

replications. All simulations were performed using the R language with the optimization of the
log-likelihood function obtained by using the optim(...) function. From Tables 1 and 2, it is evident
that the performance of the ML estimators of the MBPN model parameters is good; that is, they are very
close to the true parameter values in all cases, and the

√
MSE decreases as the sample size increases,

as expected, since the ML estimators are consistent. In short, the numerical results provide a clear
indication that the ML method can be used quite effectively to estimate the MBPN model parameters.
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Table 1. Empirical mean.

α̂1 α̂2

α1 α2 n = 50 n = 250 n = 500 n = 1500 n = 50 n = 250 n = 500 n = 1500

0.25 0.5914 0.5416 0.5201 0.5158 0.5286 0.3117 0.2644 0.2462
0.5 2.5 0.5776 0.5501 0.5328 0.5180 2.5586 2.5168 2.4898 2.4932

4.75 0.5932 0.5571 0.5386 0.5226 4.8880 4.7870 4.7658 4.7476

0.25 1.5205 1.5172 1.5123 1.5048 0.5386 0.3188 0.2675 0.2465
1.5 2.5 1.5551 1.5156 1.5083 1.5058 2.5399 2.5151 2.5067 2.5046

4.75 1.5492 1.5200 1.5131 1.5119 4.8714 4.7635 4.7601 4.7526

0.25 2.5295 2.5212 2.5108 2.5093 0.5439 0.2921 0.2740 0.2497
2.5 2.5 2.5234 2.5207 2.5174 2.5078 2.5258 2.5071 2.5063 2.5054

4.75 2.5300 2.4895 2.5027 2.5008 4.7690 4.7672 4.7608 4.7467

Table 2. Squared root of the mean squared error (
√

MSE).

α̂1 α̂2

α1 α2 n = 50 n = 250 n = 500 n = 1500 n = 50 n = 250 n = 500 n = 1500

0.25 0.5875 0.2920 0.1951 0.1212 0.5204 0.2621 0.1967 0.1274
0.5 2.5 0.5788 0.2910 0.2010 0.1196 0.8049 0.3493 0.2366 0.1381

4.75 0.5689 0.2846 0.1874 0.1091 0.8985 0.4181 0.2827 0.1633

0.25 0.7280 0.3054 0.2272 0.1282 0.5066 0.2632 0.1933 0.1254
1.5 2.5 0.6811 0.3112 0.2146 0.1244 0.7990 0.3535 0.2453 0.1363

4.75 0.7376 0.3048 0.2087 0.1220 0.9571 0.4146 0.2867 0.1655

0.25 0.7814 0.3280 0.2308 0.1291 0.4912 0.2560 0.1994 0.1269
2.5 2.5 0.7382 0.3387 0.2322 0.1339 0.7812 0.3373 0.2445 0.1437

4.75 0.7911 0.3263 0.2348 0.1340 0.9670 0.4077 0.2900 0.1685

3.4. Location-Scale Extension

The joint PDF of the MBPN model in the location-scale context is simply given by

f (x; ξ, η, α) = φd(x− ξ; Λ)
d

∏
j=1

αjcαj

{
Φ

(∣∣∣∣∣ xj − ξ j

ηj

∣∣∣∣∣
)}αj−1

, x ∈ Rd,

where Λ = diag{η1, . . . , ηd} with ηj > 0 (for j = 1, . . . , d) being scale parameters,
and ξ = (ξ1, . . . , ξd)

′ ∈ Rd is a d-vector of location parameters. We shall use the notation
MBPNd(ξ, η, α), where η = (η1, . . . , ηd)

′.

4. The Asymmetric Multivariate PN Model

4.1. The New Model

Although the MBPN model defined in Section 3 can present multimodality, it corresponds to
a symmetric multivariate distribution. An immediate extension for fitting asymmetric (possibly
multimodal) multivariate data is given by the joint PDF

f (x; α, β) = 2φd(x)
d

∏
j=1

αjcαj

{
Φ
(∣∣xj

∣∣)}αj−1 Φ(β′x), x ∈ Rd,

where β = (β1, . . . , βd)
′ ∈ Rd is a parameter vector which controls skewness. The above joint

PDF corresponds to the multivariate extension of the univariate ABPN model, and we shall use
the notation MABPNd(α, β) to refer to this multivariate distribution. Let d = 2 and hence we have
the bivariate ABPN model with parameter vector (α1, α2, β1, β2). Some contour plots of the joint
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bivariate PDF are presented in Figure 1. Note that the joint PDF can take different forms and will
therefore be useful in analyzing bivariate data. Additionally, note that it can be unimodal or bimodal.
According to an anonymous referee, the MABPN distribution has a straightforward utilization within
the errors-in-variables models, especially for an application in calibration; see, for example, [29].
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Figure 1. Contour plots for some parameter values (α1, α2, β1, β2): (0.75, 0.25,−0.85, 2.0) (left),
(0.75, 3.75, 1.85, 2.0) (middle), and (1.5, 2.25, 1.0, 2.5) (right).

We have the following proposition.

Proposition 2. Let X = (X1, . . . , Xd)
′ ∼ MABPNd(α, β). We have that

1. If β = 0d, then the MABPN model reduces to the MBPN model.
2. −X ∼ MABPNd(α,−β).
3. If α = 1d, then the MABPN model reduces to the SNd(0d, Id, β) model, where 1d = (1, . . . , 1)′ is a

d-vector of ones.
4. The product moment of X is given by

E(Xr1
1 Xr2

2 . . . Xrd
d ) =

0, if any rj is odd,

∏d
j=1 E(Y

rj
j ), if all rj are even,

where Yj ∼ BPN(αj) for j = 1, . . . , d.

From Proposition 2, note that even moments of X = (X1, . . . , Xd)
′ ∼ MABPNd(α, β) do not

depend on the parameter vector β. It implies that the correlation coefficient between the random
variables Xj and Xj′ , where j 6= j′ for j, j′ = 1, . . . , d, depends basically on the parameter vector β.
Note that the covariance between Xj and Xj′ , say τ(j, j′), reduces to

τ(j, j′) = E(XjXj′)−E(Xj)E(Xj′) = −E(Xj)E(Xj′),

where E(Xj) and E(Xj′) are computed under the marginal PDF of Xj and Xj′ , respectively.
Therefore, the parameter vector β also governs the correlation. To illustrate it, we compute the
correlation in the bivariate case (i.e., d = 2), where α = (α1, α2)

′ and β = (β1, β2)
′. The parameter

values we consider are α1 = 0.25, 1.75, 3.5, 7.0 and 15, α2 = 0.75, 2.5 and 5.0, β1 = −1.5, 0.0 and 1.5,
and β2 = −2.5, 0.0 and 2.5. Table 3 lists the results for the correlation. Note that if β1 or β2 goes to
zero, independently of the values for α1 and α2, the correlation tends to zero, illustrating the fact that
the parameter vector β = (β1, β2)

′ dominates the dependence between the random variables. It is
interesting to note that values of β1 and β2 with the same sign lead to a negative correlation and
in situations where their signs are opposite, the correlation is positive.
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Table 3. Correlation for the bivariate ABPN distribution.

β1 = −1.5 β1 = 0 β1 = 1.5

α1 α2 β2 = −2.5 β2 = 0 β2 = 2.5 β2 = −2.5 β2 = 0 β2 = 2.5 β2 = −2.5 β2 = 0 β2 = 2.5

0.25 −0.348 0.000 0.350 −0.001 2× 10−4 0.000 0.347 0.000 −0.348
1.75 −0.349 0.001 0.349 0.000 2× 10−4 −0.001 0.345 0.001 −0.348
3.5 0.75 −0.331 0.000 0.333 −0.002 4× 10−4 0.002 0.331 0.000 −0.331
7.0 −0.284 0.001 0.285 0.000 0× 100 0.003 0.280 −0.000 −0.279
15 −0.189 0.002 0.186 −0.000 0× 100 −0.002 0.183 0.002 −0.186

0.25 −0.384 5× 10−4 0.385 −0.000 2× 10−4 −0.001 0.382 0.001 −0.382
1.75 −0.383 −1× 10−4 0.383 0.000 0× 100 −0.002 0.385 −0.001 −0.382
3.5 2.5 −0.369 −1× 10−4 0.367 0.000 3× 10−4 0.001 0.367 −0.001 −0.368
7.0 −0.319 −1× 10−3 0.321 −0.001 4× 10−5 0.002 0.316 −0.001 −0.316
15 −0.223 9× 10−4 0.220 −0.001 6× 10−4 −0.002 0.221 0.002 −0.219

0.25 −0.418 0.001 0.419 −0.000 4× 10−4 −0.000 0.414 −0.002 −0.417
1.75 −0.417 −0.001 0.419 −0.000 3× 10−4 −0.001 0.418 0.001 −0.418
3.5 5.0 −0.401 0.000 0.403 −0.001 1× 10−4 −0.001 0.402 0.003 −0.405
7.0 −0.352 0.001 0.354 −0.002 4× 10−4 −0.001 0.352 −0.001 −0.353
15 −0.255 0.002 0.258 −0.000 6× 10−4 −0.004 0.257 0.001 −0.253

4.2. Location-Scale Extension

The location-scale version of the MABPN model has joint PDF in the form

f (x; ξ, η, α, β) = 2φd(x− ξ, Λ)
d

∏
j=1

αjcαj

{
Φ

(∣∣∣∣∣ xj − ξ j

ηj

∣∣∣∣∣
)}αj−1

Φ
(

β′Λ−1 (x− ξ)
)

, x ∈ Rd,

where the d × d matrix Λ and the d-vector ξ were previously defined. We shall use the notation
MABPNd(ξ, η, α, β) to refer to this location-scale MABPN distribution.

4.3. Inference

Let θ = (ξ′, η′, α′, β′)′ be the parameter vector of interest. The log-likelihood function
for θ, given the observed sample x1 = (x11, . . . , x1d)

′, . . ., xn = (xn1, . . . , xnd)
′ of size n from

X = (X1, . . . , Xd)
′ ∼ MABPNd(θ), is given by

`(θ) = n
d

∑
j=1

[log(αj) + log(cαj)− log(ηj)] +
n

∑
i=1

d

∑
j=1

log(φ(zij))

+
n

∑
i=1

d

∑
j=1

(αj − 1)log(Φ(|zij|)) +
n

∑
i=1

log

(
Φ

(
d

∑
j=1

β jzij

))
,

(3)

where zij = (xij − ξ j)/ηj for i = 1, . . . , n and j = 1, . . . , d. The ML estimate θ̂ = (ξ̂′, η̂′, α̂′, β̂′)′ of
θ = (ξ′, η′, α′, β′)′, where ξ̂ = (ξ̂1, . . . , ξ̂d)

′, η̂ = (η̂1, . . . , η̂d)
′, α̂ = (α̂1, . . . , α̂d)

′ and β̂ = (β̂1, . . . , β̂d)
′,

is obtained by maximizing the log-likelihood function `(θ) with respect to θ by using, for example,
the R function optim(...). The first-order partial derivatives of (3) become (j = 1, . . . , d)

∂`(θ)

∂ξ j
= n

{
zj − (αj − 1)sgn(zj)wj − β jw1j

}
/ηj,

∂`(θ)

∂ηj
= n

{
z2

j − 1− (αj − 1)|zj|wj − β jzjw1j
}

/ηj,

∂`(θ)

∂αj
= n

{
uj + 1/αj − log 2/(2αj − 1)

}
,

∂`(θ)

∂β j
= nzjw1j,
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where uij = log(Φ(|zij|)), wij = φ(|zij|)/Φ(|zij|), w1ij = φ(z1ij)/Φ(z1ij) and z1ij = ∑d
j=1 β jzij for

i = 1, . . . , n and j = 1, . . . , d. We are using the notation uj = n−1 ∑n
i=1 uij, w1j = n−1 ∑n

i=1 w1ij,
|zj|wj = n−1 ∑n

i=1 |zij|wij, and so on. The ML estimates can also be obtained by solving simultaneously
the nonlinear system of equations ∂`(θ)/∂ξ j = 0, ∂`(θ)/∂ηj = 0, ∂`(θ)/∂αj = 0 and ∂`(θ)/∂β j = 0
for j = 1, . . . , d, which has no closed-form and, hence, the ML estimates need to be obtained through a
numerical maximization of the log-likelihood function using nonlinear optimization algorithms.

4.4. Observed Information Matrix

Let H(θ) = −∂2`(θ)/∂θ∂θ> be the 4d× 4d observed information matrix, whose elements are
denoted by kθjθj′

for j, j′ = 1, . . . , d. After some algebraic manipulations, we have that

kξ jξ j = n{1 + (αj − 1)(|zj|wj + w2
j ) + β2

j (z1jw1j + w2
1j)}/η2

j ,

kξ jξ j′
= n β jβ j′(z1jw1j + w2

1j)/ηjηj′ ,

kξ jηj = n
{

2zj + (αj − 1)(sgn(zj)z2
j wj + zjw2

j − sgn(zj)wj)− β jw1j

+ β2
j (zjz1jw1j + zjw2

1j)
}

/η2
j ,

kξ jηj′
= n β jβ j′(zj′z1jw1j + zj′w2

1j)/ηjηj′ , kξ jαj = n sgn(zj)wj/ηj,

kξ j β j = n{w1j − β j(zjz1jw1j + zjw2
1j)}/ηj, kξ j β j′

= −n{β j(zj′z1jw1j + zj′w2
1j)}/ηj,

kηjηj = n
{

3z2
j − 1− (αj − 1)(2|zj|wj − |zj|3wj − z2

j w2
j )− 2β jzjw1j

+ β2
j (z

2
j z1jw1j + z2

j w2
1j)
}

/η2
j ,

kηjηj′ = n β jβ j′(zjzj′z1jw1j + zjzj′w2
1j)/ηjηj′ , kηjαj = n |zj|wj/ηj,

kηj β j = n{zjw1j − β j(z2
j z1jw1j + z2

j w2
1j)}/ηj, kηj β j′

= −nβ j(zjzj′z1jw1j + zjzj′w2
1j)/ηj,

kαjαj = n{α−2
j (2αj − 1)2 − 2αj(log 2)2}/(2αj − 1)2, kβ j β j = n{z2

j z1jw1j + z2
j w2

1j},

kβ j β j′
= n{zjzj′z1jw1j + zjzj′w2

1j}, kξ jαj′
= kηjαj′ = kαjαj′ = kαj β j = kαj β j′

= 0.

4.5. Expected Information Matrix

Let Σ(θ) = E(H(θ)) be the 4d× 4d expected information matrix, and σθjθj′
= E(kθjθj′

) be the
corresponding elements for j, j′ = 1, . . . , d. These elements can be computed by using numerical
procedures. When n is large and under some mild regularity conditions, we have that

√
n(θ̂− θ)

a∼
N4d(0d, Σ(θ)−1). From this asymptotic normal distribution, approximate CIs for the model parameters
are computed in the usual manner. In particular, for αj = 1 and λj = 0 (j = 1, . . . , d), the expected
Fisher information matrix can be expressed as

Σ(θ) =


Λ−1

1 0′d δ0Λ−1 (
√

2/π)Λ−1

0′d 2Λ−1
1 δ1Λ−1 0′d

δ0Λ−1 δ1Λ−1 [1− 2(log 2)2]Id 0′d√
2/π Λ−1 0′d 0′d (2/π) Id

 ,
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where Λ1 = diag{η2
1 , . . . , η2

d}, δr = E(sgn(Zj)Zr
j φ(|Zj|)/Φ(|Zj|)) with Zj ∼ N(0, 1) and r = 0, 1,

and sgn(·) denotes the signum function. After some algebraic manipulations, it can be shown that

|Σ(θ)| = (−1)d
(
4δ2

0
)d

∏d
j=1 η4

j π j
6= 0.

Therefore, the expected Fisher information matrix of the MABPN distribution is nonsingular at
the vicinity of symmetry. This is not the case, however, with the multivariate SN distribution (Azzalini
and Dalla-Valle [15]), whose expected Fisher information matrix is singular at the vicinity of symmetry,
i.e., λ = 0d.

5. Numerical Illustration

In this section, we present an application of the proposed bivariate ABPN distribution to
real data for illustrative purposes. For the sake of comparison, we also consider the bivariate
SN distribution (Azzalini and Dalla Valle [15]), and the conditional bivariate SN distribution
(Arnold et al. [14]). All bivariate distributions were fitted using the location-scale extension.
We shall consider the real data (see, for example, Fisher [30]) corresponding to measurements of
the flowers of fifty plants each of the three species found growing together in the same colony,
namely: Iris-setosa, Iris-versicolor, and Iris-virginica. Two flower measurements are considered: sepal
length, and sepal width. We pooled together, the 50 Iris-setosa data points, the 50 Iris-versicolor
data points and the 50 Iris-virginica data points, to get a total sample size of n = 150; that is,
150 sepal lengths, and 150 sepal widths. The observed value of the Shapiro-Wilk test for multivariate
normality (see Villasenor and González [31]) is 0.9845 (p-value = 0.04). We also compute the
multivariate skewness based on Mardia [32]. The observed value of the multivariate skewness is 0.37
(p-value = 0.055), which clearly suggests the presence of skewness and hence of nonnormality. Hence,
the bivariate normal distribution is not a tenable model for the data under study and an alternative
model that is able to incorporate some degree of asymmetry would probably fit the data better. We now
consider the bivariate SN distribution, the conditional bivariate SN distribution, and the bivariate
ABPN distribution to fit these real data. In order to compare the model fitting of these competing
bivariate distributions, we make use of the Akaike information criterion (AIC). For fitting the bivariate
SN model, we use the R function msn.mle, leading to the following ML estimates (standard errors
in parentheses): µ̂1 = 4.915(0.196), µ̂2 = 3.051(0.196), λ̂1 = 2.554(0.972) and λ̂2 = 0.220(0.279).
The estimated variance-covariance matrix is

Ω̂ =

[
1.543 −0.037
−0.037 0.189

]
.

For the the bivariate SN model, we obtain AIC = 550.56. The ML estimates of the
conditional bivariate SN model parameters (standard errors in parentheses) are: µ̂1 = 5.867(0.065),
µ̂2 = 3.055(0.036), σ̂1 = 0.794(0.043), σ̂2 = 0.438(0.026) and λ̂ = −0.224(0.110). For the the bivariate
conditional SN model, we obtain AIC = 555.10. Also, the ML estimates of the proposed bivariate
ABPN model parameters (standard errors in parentheses) are: ξ̂1 = 5.917(0.051), ξ̂2 = 2.372(0.056),
η̂1 = 0.729(0.050), η̂2 = 0.644(0.041), α̂1 = 2.378(0.605), α̂2 = 3.718(0.845), β̂1 = −0.481(0.300)
and β̂2 = 3.414(0.860). For the the proposed bivariate ABPN model, we have that AIC= 546.80,
which indicates that the proposed bivariate ABPN model outperforms the bivariate SN distribution
and the conditional bivariate SN distribution to model the bivariate data. Finally, Figure 2 displays
the scatter plot of real data and contour levels of the fitted bivariate PDFs. Visual inspection reveals a
satisfactory fit of the bivariate ABPN PDF to the real bivariate data.
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Figure 2. Scatter plot of real data and contour level of the fitted PDFs: (left) bivariate SN distribution,
(middle) conditional SN distribution, and (right) bivariate ABPN distribution.

We would like to point out that there is some uncertainty as to what constitutes a “substantial”
difference in AIC values in practical situations. The empirical evidence scale of [33] uses the AIC
difference Υm = AICm −AICmin over all candidate models, where m = 1, . . . , T, and T denotes the
total number of models considered. The models with values of Υm ∈ [0, 2] have substantial support to
be considered as good as the best approximating model. Two additional measures are then introduced
to provide the “strengths” of each model: the evidence ratio (ERm) and the weight (wm) of model m.
These measures are defined as

ERm =
exp(−Υmin/2)
exp(−Υm/2)

= exp(Υm/2), wm =
exp(−Υm/2)

∑T
m=1 exp(−Υm/2)

,

and Υmin = 0. The values of ERm can be interpreted as the greater likelihood of the best approximating
model with respect to model m, whereas the values of wm can be interpreted as the probability of a
given model being the best approximating model. The values of these measures are given in Table 4.
For example, we conclude from this table that the bivariate ABPN distribution is about 7 and 63 times
more likely to be the best approximating model than the bivariate SN distribution and conditional SN
distribution, respectively. Additionally, the chance of these models with respect to the bivariate ABPN
distribution is also non-existent. The best bivariate ABPN distribution has a weight approximately
0.856; that is, there is (approximately) a 86% chance that it really is the best approximating model
among the current models to describe these data. Notice that, by definition, the strength of evidence in
favor of model i over the model j can be obtained simply by considering wi/wj.

Table 4. Some measures for the fitted models.

Link Model Υm ERm wm

SN 3.76 6.55 0.131
Conditional SN 8.30 63.43 0.013
ABPN 0.00 1.00 0.856

6. Elliptical Family Extension

In the previous sections, the d-dimensional normal distribution played an important role in
deriving the multivariate ABPN distribution. In this section, we extend those results by considering
the elliptical family of distributions. For the case of a random variable (one-dimensional case),
elliptical distributions correspond to all symmetric distributions in R. Specifically, a random variable
X follows an symmetric distribution if its PDF is given by

fX(x) =
c
η

g
(
(x− ξ)2

η2

)
, x ∈ R, (4)
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where g(u) (for u ≥ 0) is a nonnegative real function and corresponds to the kernel of the PDF, and c
is a normalizing constant such that fX(x) is a PDF. We use the notation EC(ξ, η; g) according to (4).
In general, ξ ∈ R is the location parameter and coincides with the mean if the first moment of the
distribution exists, and η > 0 is the scale parameter.

First, we shall introduce a multivariate elliptical PN family of distributions. A random vector
follows a multivariate elliptical PN distribution if its joint PDF is given by

ϕF(x; α) =
d

∏
j=1

αjcαj f j(xj)
{

Fj(|xj|)
}αj−1, x ∈ Rd, (5)

where f j is defined in (4), and Fj corresponds to its CDF for j = 1, . . . , d. Clearly, since f j belongs to
the elliptical family, then it can be easily shown that ϕF(−x; α) = ϕF(x; α) so that ϕF is a symmetric
(around zero) PDF. We use the notation MESF(α) to refer to this distribution. From Lemma 1 of Gupta
and Chang [24], we have the following generalization.

Proposition 3. Let Y = (Y1, . . . , Yd)
′ be a random vector with joint PDF ϕF, and Z = (Z1, . . . , Zd)

′ be a
random vector with absolutely continuous CDF G. Then

ϕGF(x; α, β) = 2
d

∏
j=1

αjcαj f j(xj)
{

Fj(|xj|)
}αj−1G

(
β′x
)

, x ∈ Rd,

is a joint PDF of a random vector X = (X1, . . . , Xd)
′ for any β ∈ Rd.

Proof. We will use the methodology given in Gupta and Chang [24]. Given that ϕF(x; α) ≥ 0 and
G (β′x) ≥ 0 for any x ∈ Rd, it then follows that ϕGF(x; α, β) ≥ 0. Let

h(α, β) =
∫ ∞

−∞
. . .
∫ ∞

−∞
2

d

∏
j=1

αjcαj f j(xj)
{

Fj(|xj|)
}αj−1G

(
β′x
) d

∏
j=1

dxj.

Lebesgue’s dominated convergence theorem implies that

∂h (α, β)

∂βk
=
∫ ∞

−∞
. . .
∫ ∞

−∞
2

d

∏
j=1

αjcαj f j(xj)
{

Fj(|xj|)
}αj−1 ∂G (β′x)

∂βk

d

∏
j=1

dxj

=
∫ ∞

−∞
. . .
∫ ∞

−∞
2xk

d

∏
j=1

αjcαj f j(xj)
{

Fj(|xj|)
}αj−1G′

(
β′x
) d

∏
j=1

dxj.

Moreover, given that 2xk ∏d
j=1 αjcαj f j(xj)

{
Fj(|xj|)

}αj−1G′ (β′x) is an odd function, we have

∂h (α, β)

∂βk
= 0, j = 1, . . . , d.

Therefore, it allows us to conclude that h (α, β) is a constant and, hence, given that h (α, 0) = 1,
we have that ϕGF(x; α, β) is a joint PDF.

The new multivariate distribution defined in Proposition 3 will be denoted by MESSGF(α, β).
We have the following proposition.

Proposition 4. Let X = (X1, . . . , Xd)
′ ∼MESSGF(α, β). We have that

1. If β = 0d, then X = (X1, . . . , Xd)
′ ∼MESF(α).

2. −X ∼MESSGF(α,−β).
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3. For d = 2, regression functions are of linear type

E(Xj|Xj′ = xj′) =
Mj(xj)

Nj′(xj′)
,

where
Mj(xj) =

∫ ∞

−∞

∫ ∞

−∞
xj f j(xj)

{
Fj(|xj|)

}αj−1 G (β1x1 + β2x2) dx1dx2,

Nj(xj) =
∫ ∞

−∞
f j(xj)

{
Fj(|xj|)

}αj−1 G (β1x1 + β2x2) dx1dx2.

The product moment of X = (X1, . . . , Xd)
′ ∼MESSGF(α, β) are provided in the next proposition.

Proposition 5. If X = (X1, . . . , Xd)
′ ∼MESSGF(α, β), then

E[Xr1
1 Xr2

2 . . . Xrd
d ] = E[Yr1

1 Yr2
2 . . . Yrd

d ],

where Y ∼ MESF(α).

Proof. Let X = (X1, . . . , Xd)
′ ∼ MESSGF(α, β) and t = (t1, . . . , td) ∈ Rd. Also, let ψX(t) be the

characteristic function of X. We have that

ψX(t) + ψX(−t) = 2ψY (t) = 2
d

∏
j=1

ψYj(tj),

where Yj ∼ αjcαj f j(yj)(F(|yj|))αj−1 is independent of β. Thus,

∂mψY (t)
∂tr1

1 ∂tr2
2 . . . ∂trd

d
< ∞,

for m = r1 + r2 + · · ·+ rd even, so that

E[Xr1
1 Xr2

2 . . . Xrd
d ] = E[Yr1

1 Yr2
2 . . . Yrd

d ].

The previous result implies that even moments of X do not depend on β, so that

E(Xr1
1 Xr2

2 . . . Xrd
d ) =

0, if any rj is odd,

21+∑d
j=1 rj ∏d

j=1 E(Y
rj
j+), if all rj are even,

where E(Yrj
j+) is the moment of the positive part of the variable Yj as defined before.

6.1. ML Estimation

Let x1 = (x11, . . . , x1d)
′, . . ., xn = (xn1, . . . , xnd)

′ be an observed sample of size n from
X = (X1, . . . , Xd)

′ ∼ MESSGF(ξ, η, α, β). The log-likelihood function takes the form

`(θ) = n
d

∑
j=1

(log(αj) + log(cαj)− log(ηj)) +
n

∑
i=1

d

∑
j=1

log( f j(zij))

+
n

∑
i=1

d

∑
j=1

(αj − 1)log(Fj(|zij|)) +
n

∑
i=1

log

(
G

(
d

∑
j=1

β jzij

))
,
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where zij = (xij − ξ j)/ηj for i = 1, . . . , n and j = 1, . . . , d, and θ = (ξ′, η′, α′, β′)′. The first-order partial
derivatives are given by

∂`(θ)

∂ξ j
= − 1

ηj

{
n

∑
i=1

f ′j (zij)

f j(zij)
+ (αj − 1)

n

∑
i=1

sgn(zij)
f j(|zij|)
Fj(|zij|)

+ β j

n

∑
i=1

G′(z1ij)

G(z1ij)

}
,

∂`(θ)

∂ηj
= − 1

ηj

{
n +

n

∑
i=1

zij
f ′j (zij)

f j(zij)
+ (αj − 1)

n

∑
i=1
|zij|

f j(|zij|)
Fj(|zij|)

+ β j

n

∑
i=1

zij
G′(z1ij)

G(z1ij)

}
,

∂`(θ)

∂αj
=

n
αj
− n log 2

2αj − 1
+

n

∑
i=1

log(Fj(|zij|)),
∂`(θ)

∂β j
=

n

∑
i=1

zij
G′(z1ij)

G(z1ij)
,

where G′(u) = dG(u)/du.

6.2. Expected Information Matrix

Let σξ jξ j , σξ jξ j′
, . . ., σβ j β j be the elements of the expected information matrix.

Also, define U1 = f ′j (Zj)/ f j(Zj), U2 = f ′′j (Zj)/ f j(Zj), W1 = f j(|Zj|)/Fj(|Zj|), W2 = f ′j (|Zj|)/Fj(|Zj|),
K1 = G′(Z1j)/G(Z1j) and K2 = G′′(Z1j)/G(Z1j), where Z1j = ∑d

j=1 β jZj, f ′(u) = d f (u)/du and
f ′′(u) = d2 f (u)/du2. We have

σξ jξ j = {E(U2
1)−E(U2) + (αj − 1)[E(W2

1 )−E(W2)] + β2
j [E(K

2
1)− E(K2)]}/η2

j ,

= {(a02 − a0) + (αj − 1)(b02 − b0) + β2
j (c02 − c0)}/η2

j ,

σξ jξ j′
= β jβ

′
j(c02 − c0)/ηjη

′
j ,

σξ jηj =
{
E(ZjU2

1)−E(ZjU2)−E(U1)− β jE(K1) + β2
j [E(ZjK1)−E(ZjK2)]

+ (αj − 1)[E(ZjW1)−E(ZjW2)−E(sgn(Zj)W1)]
}

/η2
j ,

= {(a12 − a1 − a01) + (αj − 1)(b12 − b1 − d0)− β jc01 + β2
j (c12 − c1)}/η2

j ,

σξ jηj′
= β jβ j′(c12 − c1)/ηjηj′ ,

σξ jαj = {E(sgn(Zj)W1)}/ηj = d0/ηj,

σξ j β j = {E(K1)− β j[E(ZjK2
1)−E(ZjK2)]}/ηj = {c01 − β j(c12 − c1)}/ηj,

σξ j β j′
= −β j{E(Zj′K

2
1)−E(Zj′K2)}/ηj,

σηjηj =

{
− 1− 2E(ZjU1) +E(Z2

j U2
1)−E(Z2

j U2)− 2β jE(ZjK1) + β2
jE(Z2

j K2
1)

− β2
jE(Z2

j K2) + (αj − 1)[E(Z2
j W2

1 )−E(Z2
j W2)− 2E(|Zj|W1)]

}
/η2

j ,

=

{
(a22 − 1− 2a11 − a2) + (αj − 1)(b22 − b2 − 2d1)− 2β jc11

+ β2
j (c22 − c2)

}
/η2

j ,
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σηjηj′ = β jβ j′ [E(ZjZj′K
2
1)−E(ZjZj′K2)]/ηjηj′ ,

σηjαj = E(|Zj|W1)/ηj = d1/ηj,

σηj β j = {E(ZjK1)− β j[E(Z2
j K2

1)−E(Z2
j K2)]}/ηj = {c11 − β j(c22 − c2)}/ηj,

σηj β j′
= −β j[E(ZjZj′K

2
1)−E(ZjZj′K2)]/ηj,

σαjαj = 1/αj − (log 2)22αj /(2αj − 1)2,

σβ j β j = E(Z2
j K1)−E(Z2

j K2) = c22 − c2,

σβ j β j′
= E(ZjZj′K1)−E(ZjZj′K2),

σξ jαj′
= σηjαj′ = σαjαj′ = σαj β j = σαj β j′

= 0,

where ars = E(Zr
j ( f ′j (Zj)/ f j(Zj))

s), ar = E(Zr
j f ′′j (Zj)/ f j(Zj)), brs = E(Zr

j ( f j(|Zj|)/Fj(|Zj|))s),
br = E(Zr

j f ′j (|Zj|)/Fj(|Zj|)), crs = E(Zr
j (G
′
j(Z1j)/Gj(Z1j))

s), cr = E(Zr
j G′′j (Z1j)/Gj(Z1j)) and

dr = E(sgn(Zj)Zr
j f j(|Zj|)/Fj(|Zj|)) for r = 0, 1, 2 and s = 1, 2.

7. Concluding Remarks

The univariate power-normal distribution has been quite useful in the modeling of many
types of real data. On the other hand, extensions of the univariate power-normal distribution
to the multivariate setup have been little explored in the statistic literature. We have proposed
new multivariate power-normal distributions, which are quite simple and can be useful in the
modeling of multivariate data. The new multivariate power-normal distributions are absolutely
continuous distributions. The joint probability density functions of the new multivariate power-normal
distributions do not involve any complicated function and, hence, they can be computed easily.
By employing the frequentist approach, the estimation of the multivariate power-normal distribution
parameters is conducted by the maximum likelihood method. We also provide closed-form
expressions for the observed and expected Fisher information matrices. We illustrate the methodology
developed in this paper by means of an application to real data. We verify through the real data
application that the proposed bivariate power-normal distribution was superior to the well-known
bivariate skew-normal distribution (Azzalini and Dalla Valle [15]), as well as conditional bivariate
skew-normal distribution (Arnold et al. [14]). Finally, it is worth stressing that the formulas related
with the multivariate power-normal distributions are manageable (such as log-likelihood function,
score function, and observed and expected Fisher information matrices, etc), and with the use of
modern computer resources and its numerical capabilities, the proposed multivariate distributions may
prove to be an useful addition to the arsenal of applied statisticians. Finally, we have also introduced
in this paper multivariate PN distributions by considering the elliptical family of distributions, and
discussed some of its properties.
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