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Abstract: A function f analytic in a domain D ∈ C is called p-valent in D, if for every complex
number w, the equation f (z) = w has at most p roots in D, so that there exists a complex number w0

such that the equation f (z) = w0 has exactly p roots in D. The aim of this paper is to establish some
sufficient conditions for a function analytic in the unit disc D to be p-valent starlike in D or to be at
most p-valent in D. Our results are proved mainly by applying Nunokawa’s lemmas.

Keywords: univalent functions; starlike; convex; close-to-conve

MSC: primary 30C45; secondary 30C80

1. Introduction

A function f analytic in a domain D ∈ C is called p-valent in D, if for every complex number w,
the equation f (z) = w has at most p roots in D, so that there exists a complex number w0 such that
the equation f (z) = w0 has exactly p roots in D. We denote by H the class of functions f which are
holomorphic in the open unit unit D = {z ∈ C : |z| < 1}. Denote by Ap, p ∈ N = {1, 2, . . .}, the class
of functions f ∈ H given by

f (z) = zp +
∞

∑
n=p+1

anzn, z ∈ D. (1)

Let A = A1. The well known Noshiro-Warschawski univalence condition, (see [1,2]) indicates
that if f is analytic in a convex domain D ⊂ C and

Re{eiθ f ′(z)} > 0, z ∈ D, (2)

for some real θ, then f is univalent in D. In [3] Ozaki extended the above result by showing that if f of
the form (1) is analytic in a convex domain D and for some real θ we have

Re{eiθ f (p)(z)} > 0, z ∈ D,

then f is at most p-valent in D. In [4] it was proved that if f ∈ Ap, p ≥ 2, and∣∣∣arg{ f (p)(z)}
∣∣∣ < 3π

4
, z ∈ D,

then f is at most p-valent in D.
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If f ∈ H satisfies f (0) = 0, f ′(0) = 1 and

Re

{
z f ′(z)

f (z)

}
> 0, z ∈ D,

then f is said to be starlike with respect to the origin in D and it is denoted by f ∈ S∗. It is known that
S∗ ⊂ S , where S denotes the class of all functions in A which are univalent in D. Moreover, let S∗p
and Cp be the subclasses of Ap defined as follows

S∗p =

{
f ∈ Ap : Re

{
z f ′(z)

f (z)

}
> 0, z ∈ D

}
,

Cp =
{

f ∈ Ap : z f ′(z)/p ∈ S∗p
}

.

S∗p is called the class of p-valent starlike functions and Cp is called the class of p-valent convex
functions. Note that S∗1 = S∗ and C1 = C, where S∗ and C are usual classes of starlike and convex
functions, respectively. A function f ∈ Ap is said to be an element of the class Kp of p-valent
close-to-convex functions if there exists a function g ∈ Cp for which

Re

{
f ′(z)
g′(z)

}
> 0, z ∈ D. (3)

In [5] (Th.1) Umezawa proved the following theorem.

Theorem 1. If f ∈ Kp, then f is at most p-valent in D.

Because Cp ⊂ S∗p ⊂ Kp, we have from Theorem 1 that p-valent starlike functions and p-valent
convex functions are at most p-valent in D too.

2. Preliminaries

In this paper we need the following lemmas.

Lemma 1 ([6] (Th.5)). If f ∈ Ap, then for all z ∈ D, we have

Re

{
z f (p)(z)
f (p−1)(z)

}
> 0 ⇒ ∀k ∈ {1, . . . , p} : Re

{
z f (k)(z)
f (k−1)(z)

}
> 0.

Lemma 2 ([7]). Let p be an analytic function in |z| < 1, with p(0) = 1. If there exists a point z0, |z0| < 1,
such that

Re{p(z)} > 0 f or |z| < |z0|

and
p(z0) = ±ia

for some a > 0, then we have
z0 p′(z0)

p(z0)
=

2ik arg {p(z0)}
π

, (4)

for some k ≥ (a + a−1)/2 ≥ 1.

Corollary 1. Under the assumptions of Lemma 2, we have from (4)

z0 p′(z0) = −ka ≤ −1
2
(a + a−1)a = −1

2

(
1 + |p(z0)|2

)
. (5)
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Lemma 3 ([8] (p. 200)). Assume that q(z) is univalent in D, q(D) is a convex set and F, G are analytic in D.
If

F′(z)
G′(z)

≺ q(z), z ∈ D, (6)

where G satisfies G(0) = F(0) and

Re

{
zG′(z)
G(z)

}
> 0, z ∈ D,

then we have
F(z)
G(z)

≺ q(z), z ∈ D.

Here ≺ means the subordination.

Corollary 2. Let α < 1 be real number. If f (p−1)(z), g(p−1)(z) are analytic in D, f (p−1)(0) = g(p−1)(0) and

Re

{
f (p)(z)
g(p)(z)

}
> α, z ∈ D,

where g satisfies

Re

{
zg(p)(z)

g(p−1)(z)

}
> 0, z ∈ D,

then we have

Re

{
f (p−1)(z)
g(p−1)(z)

}
> α, z ∈ D.

3. Main Results

Theorem 2. Let f , g ∈ Ap. Assume that

Re

{
g(z)

zg′(z)

}
> β, z ∈ D (7)

for some β, 0 < β < 1. If∣∣∣∣arg
{

f ′(z)
g′(z)

}∣∣∣∣ ≤ π − tan−1
{

2(1− β)|z|+ 1− |z|2
β(1− |z|2)

}
, z ∈ D, (8)

then we have

Re

{
f (z)
g(z)

}
> 0, z ∈ D. (9)

Proof. If we put

q(z) =
f (z)
g(z)

, q(0) = 1,

then it follows that
f (z) = q(z)g(z), f ′(z) = g′(z)q(z) + q′(z)g(z),

and
f ′(z)
g′(z)

= q(z) + q′(z)
g(z)
g′(z)

= q(z) + zq′(z)
g(z)

zg′(z)
.

If there exists a point z0 ∈ D, such that

Re {q(z)} > 0, (|z| < |z0| < 1)
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and
Re {q(z0)} = 0,

then by (5), we have

z0q′(z0) = Re{z0q′(z0)} ≤ −
1
2
(1 + |q(z0)|2) < 0. (10)

This shows that z0q′(z0) is a negative real number. Furthermore, by (4), we have∣∣∣∣ q(z0)

z0q′(z0)

∣∣∣∣ ≤ 1. (11)

Then it follows that

f ′(z0)

g′(z0)
= q(z0) + z0q′(z0)

g(z0)

z0g′(z0)
= ±ia + z0q′(z0)

g(z0)

z0g′(z0)
,

where q(z0) = ±ai, a > 0 and (7), (10) give

Re

{
f ′(z0)

g′(z0)

}
= Re

{
z0q′(z0)

g(z0)

z0g′(z0)

}
= z0q′(z0)Re

{
g(z0)

z0g′(z0)

}
< − β

2
(1 + a2) < 0.

Next, we have

Im

{
f ′(z0)

g′(z0)

}
= Im

{
±ia + z0q′(z0)

g(z0)

z0g′(z0)

}
= ±a + z0q′(z0)Im

{
g(z0)

z0g′(z0)

}
.

We will consider the four cases:

(i) arg{q(z0)} = π/2 (i.e., q(z0) = ia, a > 0) and Im
{

f ′(z0)
g′(z0)

}
≥ 0,

(ii) arg{q(z0)} = π/2 (i.e., q(z0) = ia, a > 0) and Im
{

f ′(z0)
g′(z0)

}
< 0,

(iii) arg{q(z0)} = −π/2 (i.e., q(z0) = −ia, a > 0) and Im
{

f ′(z0)
g′(z0)

}
≥ 0,

(iv) arg{q(z0)} = −π/2 (i.e., q(z0) = −ia, a > 0) and Im
{

f ′(z0)
g′(z0)

}
< 0.

Let us put

G(z) =
pg(z)
zg′(z)

, G(0) = 1.

Then from the hypothesis, we have

G(z)− β

1− β
≺ 1 + z

1− z
, z ∈ D,

and so we have
G(z) ≺ β + (1− β)

1 + z
1− z

, z ∈ D,

and so

|Im{G(z)}| =
∣∣∣∣Im pg(z)

zg′(z)

∣∣∣∣ ≤ (1− β)
2|z|

1− |z|2 , z ∈ D. (12)

In the case (i) we have arg{q(z0)} = π/2, q(z0) = ia, a > 0 and

Im

{
f ′(z0)

g′(z0)

}
= |q(z0)|+ z0q′(z0)

(
Im

{
g(z0)

z0g′(z0)

})
≥ 0.



Symmetry 2019, 11, 1417 5 of 8

Therefore, we have

arg
{

f ′(z0)

g′(z0)

}
= arg

[
z0q′(z0)

(
Re

g(z0)

z0g′(z0)

)
+ i
{
|q(z0)|+ z0q′(z0)

(
Im

g(z0)

z0g′(z0)

)}]

= π − tan−1

 |q(z0)|+ z0q′(z0)
(
Im

g(z0)
z0g′(z0)

)
−z0q′(z0)

(
Re

g(z0)
z0g′(z0)

)


> π − tan−1

 |q(z0)|+ z0q′(z0)
(
Im

g(z0)
z0g′(z0)

)
−βz0q′(z0)


= π − tan−1

− |q(z0)|
βz0q′(z0)

−
Im

g(z0)
z0g′(z0)

β


≥ π − tan−1


∣∣∣∣ q(z0)

βz0q′(z0)

∣∣∣∣+
∣∣∣∣∣∣
Im

g(z0)
z0g′(z0)

β

∣∣∣∣∣∣
 .

Then, by (11) and (12), we have

arg
{

f ′(z0)

g′(z0)

}
> π − tan−1

{
1
β
+

2(1− β)|z0|
(1− |z0|2)β

}
= π − tan−1

[
1

β(1− |z0|2)

{
2(1− β)|z0|+ 1− |z0|2

}]
.

This contradicts hypothesis (8). In the case (ii) when arg{q(z0)} = π/2, q(z0) = ia, a > 0, and

arg
{

f ′(z0)

g′(z0)

}
= q(z0) + z0q′(z0)

(
Im

{
g(z0)

z0g′(z0)

})
< 0

applying the same method as the above, we have

arg
{

f ′(z0)

g′(z0)

}
< −π + tan−1

[
1

β(1− |z0|2)

{
2(1− β)|z0|+ 1− |z0|2

}]
.

This is also a contradiction. In the case (iii) when arg{q(z0)} = −π/2, q(z0) = −ia, a > 0, and

q(z0) + z0q′(z0)

(
Im

{
g(z0)

z0g′(z0)

})
> 0

and in the case (iv) when arg{q(z0)} = −π/2, q(z0) = −ia, a > 0, and

q(z0) + z0q′(z0)

(
Im

{
g(z0)

z0g′(z0)

})
< 0,

applying the same method as in the proof of case (i) gives∣∣∣∣arg
{

f ′(z0)

g′(z0)

}∣∣∣∣ > π − tan−1
[

1
β(1− |z0|2)

{
2(1− β)|z0|+ 1− |z0|2

}]
.

This is a contradiction. This completes the proof.

Inequalities (9) and (2) show that the assumptions of Theorem 2 are sufficient for

∫ z

0

f (ζ)
g(ζ)

dζ
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to be univalent in D.

Theorem 3. Let F, G ∈ Ap. Assume that there exist a positive integer k, 2 ≤ k ≤ p and a real β, 0 < β < 1,
for which ∣∣∣∣∣arg

{
F(k)(z)
G(k)(z)

}∣∣∣∣∣ < π − tan−1
{

2(1− β)|z|+ 1− |z|2
β(1− |z|2)

}
, z ∈ D,

where G satisfies

Re

{
G(k−1)(z)
zG(k)(z)

}
> β, z ∈ D. (13)

Then

∀n ∈ {1, . . . , k− 1} : Re

{
F(n)(z)
G(n)(z)

}
> 0, z ∈ D. (14)

and F ∈ Kp, F is at most p-valent in D.

Proof. If we put f = F(k−1) and g = G(k−1) in Theorem 2 we immediately obtain

Re

{
F(k−1)(z)
G(k−1)(z)

}
> 0, z ∈ D. (15)

Then, by Lemma 1, we obtain (14). For n = 1 the condition (14) is of the form

Re

{
F′(z)
G′(z)

}
> 0, z ∈ D,

where G satisfies (13). Therefore, by Lemma 1 we have also

Re

{
zG′(z)
G(z)

}
> 0, z ∈ D,

which by (3) implies F ∈ Kp. By Theorem 1, F is at most p-valent in D.

Theorem 4. Assume that f ∈ Ap, 2 ≤ p, and that there exists a positive integer k, 2 ≤ k ≤ p for which

Re

{
z f (k)(z)
f (k−1)(z)

}
> −1, z ∈ D,

then we have

Re

{
z f ′(z)

f (z)

}
> 0, z ∈ D,

or f is p-valent starlike in D.

Proof. Let us put

q1(z) =
1

p− k + 2
z f (k−1)(z)
f (k−2)(z)

, q1(0) = 1. (16)

By (16) we have
zq′1(z)
q1(z)

= 1 +
z f (k)(z)
f (k−1)(z)

− z f (k−1)(z)
f (k−2)(z)

and so

1 +
z f (k)(z)
f (k−1)(z)

=
zq′1(z)
q1(z)

+ (p− k + 2)q1(z).
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By the hypothesis, we have

1 +Re

{
z f (k)(z)
f (k−1)(z)

}
= Re

{
zq′1(z)
q1(z)

+ (p− k + 2)q1(z)
}

> 0, z ∈ D. (17)

If there exists a point z1 ∈ D, such that

Re {q1(z)} > 0, (|z| < |z1| < 1)

and
Re {q1(z1)} = 0,

then by Lemma 2, we have

Re

{
z1q′1(z1)

q1(z1)

}
= 0,

z1q′1(z1)

q1(z1)
= ik1

for some real k1, |k1| ≥ 1. This gives

1 +Re

{
z f (k)(z1)

f (k−1)(z1)

}
= Re

{
z1q′1(z1)

q1(z1)
+ (p− k + 2)q1(z1)

}
= 0.

It is contrary to inequality (17) and therefore, we have

Re

{
z f (k−1)(z)
f (k−2)(z)

}
> Re

{
1

p− k + 2
z f (k−1)(z)
f (k−2)(z)

}
= Re {q1(z)} > 0, z ∈ D. (18)

Next, let us put

q2(z) =
1

p− k + 3
z f (k−2)(z)
f (k−3)(z)

, q2(0) = 1,

then it follows that
zq′2(z)
q2(z)

= 1 +
z f (k−1)(z)
f (k−2)(z)

− z f (k−2)(z)
f (k−3)(z)

and so

1 +
z f (k−1)(z)
f (k−2)(z)

=
zq′2(z)
q2(z)

+ (p− k + 3)q2(z). (19)

By (18) and (19), we have

1 +Re

{
z f (k−1)(z)
f (k−2)(z)

}
= Re

{
zq′2(z)
q2(z)

+ (p− k + 3)q2(z)
}

> 0, z ∈ D. (20)

If there exists a point z2 ∈ D, such that

Re {q2(z)} > 0, (|z| < |z2| < 1)

and
Re {q2(z2)} = 0,

then by Lemma 2, we have

Re

{
z2q′2(z2)

q2(z2)

}
= 0,

z2q′2(z2)

q2(z2)
= ik2
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for some real k2, |k2| ≥ 1. Then, we have

1 +Re

{
z2 f (k−1)(z2)

f (k−2)(z2)

}
= Re

{
z2q′2(z2)

q2(z2)
+ (p− k + 3)q2(z2)

}
= 0.

It is contrary to (20) and therefore, we have

Re

{
z f (k−2)(z)
f (k−3)(z)

}
= Re {(p− k + 3)q2(z)} > 0, z ∈ D.

Applying the same method many times in succession we are able to obtain

Re

{
z f (k−3)(z)
f (k−4)(z)

}
> 0, Re

{
z f (k−4)(z)
f (k−5)(z)

}
> 0 . . . , Re

{
z f ′(z)

f (z)

}
> 0, z ∈ D

This shows that f is p-valent starlike in D.

For some related conditions for starlikeness we refer to our papers [9,10].
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