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Abstract: A function f analytic in a domain D € C is called p-valent in D, if for every complex
number w, the equation f(z) = w has at most p roots in D, so that there exists a complex number w
such that the equation f(z) = wy has exactly p roots in D. The aim of this paper is to establish some
sufficient conditions for a function analytic in the unit disc ID to be p-valent starlike in D or to be at
most p-valent in . Our results are proved mainly by applying Nunokawa’s lemmas.
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1. Introduction

A function f analytic in a domain D € C s called p-valent in D, if for every complex number w,
the equation f(z) = w has at most p roots in D, so that there exists a complex number wy such that
the equation f(z) = wy has exactly p roots in D. We denote by # the class of functions f which are
holomorphic in the open unit unit D = {z € C: |z| < 1}. Denote by Ay, p € N = {1,2,...}, the class
of functions f € H given by

fz)=2"+ ) a.z", zeD. 1)
n=p+1

Let A = A;. The well known Noshiro-Warschawski univalence condition, (see [1,2]) indicates
that if f is analytic in a convex domain D C C and

Re{ef'(2)} >0, zeD, )

for some real 6, then f is univalent in D. In [3] Ozaki extended the above result by showing that if f of
the form (1) is analytic in a convex domain D and for some real 6 we have

Re{e? P (2)} >0, zeD,
then f is at most p-valent in D. In [4] it was proved thatif f € Ap, p>2,and
( ) 3
’arg{f b (z)}‘ <4 %€ D,

then f is at most p-valent in .

Symmetry 2019, 11, 1417; doi:10.3390/sym11111417 www.mdpi.com/journal /symmetry


http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0003-1204-2286
https://orcid.org/0000-0002-5430-0629
http://dx.doi.org/10.3390/sym11111417
http://www.mdpi.com/journal/symmetry
https://www.mdpi.com/2073-8994/11/11/1417?type=check_update&version=2

Symmetry 2019, 11, 1417 20f8

If f € H satisfies f(0) =0, f'(0) =1 and
zf'(z)
9%{ f(z) } >0, zeD,

then f is said to be starlike with respect to the origin in D and it is denoted by f € S*. It is known that
S* C S, where S denotes the class of all functions in A which are univalent in D. Moreover, let S;,‘
and C) be the subclasses of A, defined as follows

S, {feAp:%e{ij:;S)}>0,zeD},

C, = {f €Ay :zf(z)/p € S;;}.

Sy, is called the class of p-valent starlike functions and C, is called the class of p-valent convex
functions. Note that S§ = §* and C; = C, where §* and C are usual classes of starlike and convex
functions, respectively. A function f € A, is said to be an element of the class K, of p-valent
close-to-convex functions if there exists a function ¢ € C;, for which

sm{gg}m, zeD. 3)

In [5] (Th.1) Umezawa proved the following theorem.

Theorem 1. If f € K}, then f is at most p-valent in D.

Because C, C §; C K}, we have from Theorem 1 that p-valent starlike functions and p-valent
convex functions are at most p-valent in D too.

2. Preliminaries

In this paper we need the following lemmas.

Lemma 1 ([6] (Th.5)). If f € Ay, then for all z € D, we have

») (®)
me{;(f;l)(é))}>o = Vke{l,...,p}: me{M}>0.

Lemma 2 ([7]). Let p be an analytic function in |z| < 1, with p(0) = 1. If there exists a point zy, |z9| < 1,
such that
Re{p(2)} >0 for |z| <[z

and
p(z0) = +ia
for some a > 0, then we have
zop'(z0) _ 2ikarg {p(z0)}
= , 4)
p(zo) T

for somek > (a+a"1)/2 > 1.

Corollary 1. Under the assumptions of Lemma 2, we have from (4)

209/ (20) = —ka < —(a+a a=— (1+p(zo)P) ©)



Symmetry 2019, 11, 1417 30f8

Lemma 3 ([8] (p. 200)). Assume that q(z) is univalent in D, q(ID) is a convex set and F, G are analytic in D.
If

<q(z), zeD, (6)

where G satisfies G(0) = F(0) and

then we have

Here < means the subordination.

Corollary 2. Let « < 1 be real number. If fP=1)(z),¢P=1)(2) are analytic in D, fP~1)(0) = ¢P~1)(0) and

}>zx, zeD,

where g satisfies

then we have

3. Main Results

Theorem 2. Let f,g € Ay. Assume that

8(z)
me{zg’(z)}>ﬁ’ zeD 7)
for some B,0 < B < 1. If
POV 20—
] R G e P ®
then we have )
z
i)‘ie{g(z)}>0, z € D. 9)
Proof. If we put
@=18, 40 =1
T e
then it follows that
f(2) =q(2)g(z), f'(z) =§'(2)q(z) +4'(2)8(2),
and
L8 — 1)+ ¢85 = g+ 2/ 0 22

If there exists a point zg € D, such that

Re{q(z)} >0, (lz] <lzof < 1)
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and
Me {q(z0)} =0,
then by (5), we have
1
209 (20) = Refzoq'(20)} < —5(1+ |9(20)[?) < 0.

This shows that zoq'(zo) is a negative real number. Furthermore, by (4), we have

q(zo)
z0q'(z0) | ~
Then it follows that
f'(z0) ) 8(zo0) . , 8(zo)
=4qg(zp) +z z0)—=—-+~~ = fia+z zZ0) ———,
g’ (z0) 9(z0) + 207 ( O)Zog’(zo) o7 { O)Zog'(zo)

where g(zg) = £ai, a > 0 and (7), (10) give
f'(z0) _ / g(zo0) _ / 8(zo)
e {g’(zo) } - {Zoq (ZO)Zog’(Zo)} = %07 (z0)%e {Zo
< —g(l +4?) <0.

Next, we have

m{f/(ZO) } =Jm {iia +zoq’(zo)g(/zo))} =4a+ zoq’(zo)jm{zf;,'z(oz)o>

g’ (zo0) 08’ (zo

We will consider the four cases:

() arg{q(zo)} = /2 (i.e., g(z0) = ia, a > 0) and TJm {g(ig) } >0,

(i) arg{g(zo)} = /2 (i.e., q(z9) = ia,a > 0) and Jm {g’go; <0,
(ii) arg{q(zo)} = —m/2 (ie., q(z0) = —ia, a > 0) and Jm {g(zg;} >0,
(iv) arg{q(zo)} = —m/2 (i.e., q(z9) = —ia, a > 0) and TJm {{;gg;} <0.

Let us put

Then from the hypothesis, we have

- “1-z €D
and so we have
(@) <p+ (- zeD,
and so )
(GG} = [mESE | < 1 -p 2, zep,

In the case (i) we have arg{q(z9)} = 7/2, g(z0) = ia, a > 0 and

(L) st (L)

40f 8

(10)

(11)

(12)
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Therefore, we have

or{L63) = omfue) ) o s (o 50
Jm

8(z0)
= m—tan~ { s ‘+20‘7 o) ( Og/(zo)) }
8(z0)
~207'(20) (e
8(20)
o o tan- |q(z0)| + zoq’ ZO) Jm og’(zo))
—PBzoq' (20)
g(Zo)
_ 9(z0)|  “™z0(z0)
 Bzoq'( Zo p
Jm 8(,2(0))
> T —t 08 (20 .
- m 5204 (Zo B

Then, by (11) and (12), we have

f'(20) 11, 2(1 =Bzl
rg{g'ég)} - ot 1{l3+(1|20|22)0/3}
= m—tan! {ﬁ(1—1|20|2) {2(1 —B)|zol +1— |202}] .

This contradicts hypothesis (8). In the case (ii) when arg{q(z9)} = 71/2, q(z9) = ia, a > 0, and

s tag ) = 10+l (m {525 ) <0

applying the same method as the above, we have

rg{f/( )} < —m+tan! [1){2(1—/3)|zo|+1—zo|2}}.

8'(z0) B(1 — |zo|?
This is also a contradiction. In the case (iii) when arg{q(zo)} = —7/2, q(z9) = —ia,a > 0, and
1(z0) + 207 (zn) (3 { SE Y o
208’ (20)

and in the case (iv) when arg{q(z0)} = —7/2, q(z9) = —ia, a > 0, and

vt (o f50)) <o

applying the same method as in the proof of case (i) gives

‘arg {;Eig; H > 7 —tan! LB(11|202) {2(1 —B)|zol +1— |zo|2}} .

This is a contradiction. This completes the proof. [

Inequalities (9) and (2) show that the assumptions of Theorem 2 are sufficient for

it
/o g(0) ¢
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to be univalent in D.

Theorem 3. Let F,G € Ap. Assume that there exist a positive integer k,2 < k < pandareal B,0 < p <1,

for which

F®)(z) 121 Bz +1— |z

arg{G(k)(z) < 7T —tan { /3(1—|z|2) }, zeD,
where G satisfies
Gk (2)
Then .
. F"(z)
Vne{l,... k—1}: me{c(n)(z)}m, zeD. (14)

and F € Kp, F is at most p-valent in .

Proof. If we put f = F&~1) and ¢ = G~ in Theorem 2 we immediately obtain
(k=1)
D%{F(z)}>0, z € D. (15)

Then, by Lemma 1, we obtain (14). For n = 1 the condition (14) is of the form

zﬁe{g,(é))}>o, zeD,

where G satisfies (13). Therefore, by Lemma 1 we have also

Re {Z(G;;S)} >0, zeD,

which by (3) implies F € K. By Theorem 1, F is at most p-valentin D. []

Theorem 4. Assume that f € Ay, 2 < p, and that there exists a positive integer k, 2 < k < p for which

zf®) (z
mz{f({l)((z))} > -1, zeD,

then we have

Re {2;22‘75)} >0, zeD,

or f is p-valent starlike in D.

Proof. Let us put
1 zf% V()

f(z) = P k12 fED(z) 71(0) =1. (16)
By (16) we have
@), 0@ e
q1(2) fED(z)  fE2(2)
and so
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By the hypothesis, we have

1—|—§Re{fzf(k)(z)} —%e{qul(z) +(p—k+2)q1(z)} >0, zeD.

k=1)(z) 71(z)
If there exists a point z; € I, such that
Re{q1(z)} >0, (|z[ <|z1] <)

and
Re{q1(z1)} =0,

then by Lemma 2, we have

JanE)) o an@)
" { q1(z1) }_O, 71(z1) th

for some real ky, |k1| > 1. This gives

1+me{2f(k)(21) } :m{21q/1(21) + (P—k+2)q1(zl)} -

FU=1)(z) q1(z1)

It is contrary to inequality (17) and therefore, we have

me{zf(kl)(z)}>sﬁe{ 1 Zf(kl)(z)}:iﬁe{ql(z)}>0, z € D.

E2() p—k+2 [ ()
Next, let us put
_ 1z _
qZ(Z) - p —k+3 f(k73) (Z) ’ QZ(O) =1,
then it follows that
), #EVE )
a(z) 0 fED(z) fEI(z)
and so (k=1) )
2f"(z) _ 25z
1 = —k+3 .
FER) T T EIRG)
By (18) and (19), we have

1+9‘ie{zf(k_1)(z)} :%e{zqé(z) +(pk+3)q2(z)} >0, zeD.

fED(2)
If there exists a point z; € D, such that
Re{g2(2)} >0, (|2 <[z2| <1)

and
Re {g2(z2)} =0,

then by Lemma 2, we have

22q5(22) | 22qy(22) _ .
me{ 72(22) } " q2(z2) =ik

7 of 8

(17)

(18)

(19)

(20)
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for some real ky, |ka| > 1. Then, we have

z (k—1) > /
1+9‘ie{j(j(fk_2)(z(2§>} :%e{zzﬁgﬁ-(p—k—f—?))%(zz)} =0.

It is contrary to (20) and therefore, we have

(k-2)
me{M}zme{<pk+s>qz<z>}>o, z€D.

Applying the same method many times in succession we are able to obtain

me{zf(ka)(z)} >0, me{zf(l(%} >0...,9%e{zf/(z)} >0, zeD

fE4(z) fE=9)(z) f(z)
This shows that f is p-valent starlike in D. [

For some related conditions for starlikeness we refer to our papers [9,10].
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