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3x,_1+1
2

such that all x, are odd. The 3x + 1 problem asserts that there is an x,, = 1 for all x. Usually, (x, )50

is called the trajectory of x. In this paper, we concentrate on (4, ),>1 and call it the E-sequence of x.

Abstract: For any odd positive integer x, define (x;),50 and (a5 )1 by setting xo = x, x,, =

The idea is that we generalize E-sequences to all infinite sequences (a,),»1 of positive integers and
consider all these generalized E-sequences. We then define (a,,),>1 to be Q)-convergent to x if it is the
E-sequence of x and to be ()-divergent if it is not the E-sequence of any odd positive integer. We prove
a remarkable fact that the ()-divergence of all non-periodic E-sequences implies the periodicity of
(x1)ns0 for all xg. The principal results of this paper are to prove the Q)-divergence of several classes
of non-periodic E-sequences. Especially, we prove that all non-periodic E-sequences (a,),31 with
lim b—n > log, 3 are ()-divergent by using Wendel’s inequality and the Matthews and Watts” formula

n—oo n

3"xgn-1 1 n
Xp = ZTO IT(1+ g), where by, = Y a;. These results present a possible way to prove the periodicity
" k=0 k k=1

of trajectories of all positive integers in the 3x + 1 problem, and we call it the E-sequence approach.

Keywords: 3x + 1 problem; E-sequence approach; ()-divergence of non-periodic
E-sequences; Wendel’s inequality

MSC: 11A99; 11B83

1. Introduction

For any odd positive integer x, define two infinite sequences (xy),50 and (4,),»1 of positive
integers by setting:

Xo=X, Xp= % @
such that x,, is odd for all n e N = {1,2,...}. The 3x + 1 problem asserts that there is n € N such that
x = 1 for all odd positive integers x. For a survey, see [1]. For recent developments, see [2-7].

Usually, (x,),50 is called the trajectory of x. In this paper, we concentrate on (4, ),>1 and call it
the E-sequence of x. The idea is that we generalize E-sequences to all infinite sequences (a;),>1 of
positive integers. Given any generalized E-sequence (4, )31, if it is the E-sequence of the odd positive
integer x, it is called )-convergent to x and denoted by ) —lima, = x; if (a,),51 is not the E-sequence
of any odd positive integer, it is called ()-divergent and denoted by (2 —lima, = co. Subsequently,
these generalized E-sequences are also called E-sequences for simplicity.

The 3x +1 problem in the form (1.1) should be owed to Crandall and Sander et al,
see [8,9]. E-sequences are some variants of Everett’s parity sequences [10] and Terras’ encoding
representations [11]. Everett and Terras focused on finite E-sequences resulting from (1.1). What we are
concerned with is the ()-convergence and ()-divergence of any infinite sequence of positive integers,
i.e., the generalized E-sequences.
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A possible way to prove the 3x + 1 problem was devised by Moller as follows (see [12]):

Conjecture 1. (i) (x)u50 is periodic for all odd positive integers xo;
(ii) (1,1,---) is the unique pure periodic trajectory.

Usually, we can convert one claim about trajectories into the one about E-sequences. As for
E-sequences, we have the following conjecture.

n
Conjecture 2. Let b,= Y a;. Then,
i=1
(i) all non-periodic E-sequences are Q)-divergent;

(ii) every E-sequence (ay) s satisfying 3" > 2% for all n € N is Q-divergent.

Note that Conjecture 2(i) does not hold for some generalizations of the 3x + 1 problem studied by
Moller, Matthews, and Watts in [12,13]; Conjecture 2(ii) implies that there is some n such that 2bn 5 31
in the E-sequence (a,),»1 of every odd positive integer x, which is a conjecture posed by Terras in [11]
about his T-stopping time.

A remarkable fact is that Conjecture 1(i) is a corollary of Conjecture 2(i) by Theorem 3. This means
that the )-divergence of all non-periodic E-sequences implies the periodicity of (x; )51 for all positive
integers x. Then, Conjecture 2(i) is of significance to the study of the 3x + 1 problem. The principal
results of this paper are to prove that several classes of non-periodic E-sequences are ()-divergent.
In particular, we prove that:

_ b
(i) All non-periodic E-sequences (ay,),>1 with lim Zn > log, 3 are ()-divergent.
n—oo

(i)  If (ay)pnp0is 12121112---, where a,, = 2ifn € {21,22, 23 .-} and a,, = 1, otherwise, then Q) —lima,, = oo;
(iii)  Let @ > 1 be an irrational number, and define a,, = [n0] - [(n - 1)0], then Q) - lim a,, = co, where
[a] denotes the integral part of 4 for any real 4.

Note that we prove the above claim (i) by using Wendel’s inequality and the Matthews and

3"xogn-1

Watts’ formula x,, = o IT(1+ 3171:) In addition, it seems that our approach cannot help to prove the
" k=0

conjecture 1(ii) of the unique cycle. For such a topic, see [14].

2. Preliminaries

Let (4,)51 be an E-sequence. In most cases, there is no odd positive integer x such that (a, ), is
the E-sequence of x, i.e., 2 —lima, = co. However, there always exists x € N such that the first n terms
of the E-sequence of x are (a7 ...4a;). Furthermore, for any 1 < u < v < n, there always exists x € N such
that the first v — u + 1 terms of the E-sequence of x are the designated block (a,...a,) of (ay...a,),
which is illustrated as (a7 ...a4,_1)(ay ... ay)(dps1 - - ).

n n-1 .
Definition 1. Define by =0, b, = ¥ a;,B, = ¥ 3" 172k,
i=1 i=0

Clearly, By =1, B, = 3B,,_1 +2%1,2 + B,,, 3 + B,.

3"x + B,

Proposition 1. Let (x,,)»1 and (ay)y>1 be defined as in (1.1). Then x,, = o

Proof. The proof is by a procedure similar to that of Theorem 1.1 in [11] and omitted. [

Proposition 2. Given any positive integer n, there exist two integers x, and xq such that 2% x, —3"xy = B,
1< x, < 3", and 1< xg < 207
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Proof. By gcd(Zb",3") = 1, there exist two integers x,, and xj such that 2bny, — 3"xp=Byand 1< x, <3".

2bny, — B, 2bux
i < 2bn, Thus, xo < 207

Then, x,, < 3" by 3 + B,,. By B, > 1, we have xg = 3 < 3
By 2Ux, - 3"xy = By, we have 2'"x,, = B,(mod3"). Then 2/»-1(2%x, - 1) = 3B,_;(mod3") by
b : 2Mmxy, —1 3x,.1 +1
B, = 2°+1+3B,_1. Thus, 3]2*x, - 1. Define x,_1 = —5 Then, x,_1 € Z, x,, = BT and
3x,p+1 3xg+1

2bn-1x, 1 =B, (mod3"1). Sequentially, define x,,_, ..., x1 such that x,,_q =
Then, x; € Z for all 0 <i < n.

Suppose that xg < 0. We then sequentially have x; <0, ..., x; <0, which contradicts x,, > 1. Thus,
xo21l. O

7 ”/xl_

Zan—l 2“1

Note that the validity of Proposition 2 is dependent on the structure of B,. We formulate the
middle part of the above proof as the following proposition.

.. b . 3XO +1 an_z +1
Proposition 3. Assume that x,,xqg € Z and 2°"x, —3"xy = B,. Define x1 = o Xp_1 = o
3x,_1+1 .
Then, x,, = Tﬂndx,» €Zforall0<i<n

. _ 4 _ _ _ _ i
Definition 2. Forany 1 < u < v, define ;! 1=y, b5 =% aj;, By 220, B! -7, By =3 url  3o-unby 4Ly
i=u
312[75_1 + zbv — v_§:+l 3‘Ufu+lfi2hz_l+i
i=0

U
Then, b = ay, b**' = a, +a,,1, BY = 3+2%, B+l = 32 43.20 4 Dttt BY = 3BY-1 4 pbu =

v i
S 3vinhy, Clearly, b} and B?‘l are the same as by, and By, respectively.
i=u-1

g _ an-u+lpu-2 n-1-vnb,_ 1 RU b n-1
Proposition 4. B, =3 B~ +3 2%u-1B +2%+1 B,

u-2 . n-1 i
Proof. By B{"z =y 34=2-ipbi gnd Bg;% = Yy 3" 1%k we have:
i=0 i=v+1
n-1 . u-2 . 4 . n—1 .
Bn — B{l_l — Z 3}’[—1—12h1’ — Z 311—1—12bi + Z 37!—1—12171' + Z 3n—1—12b,-
i=0 i=0 i=u-1 i=v+1

u-2 . v Lo n-1 L
— 3n—u+1 Z 3”—2—12bi + 37’1—1—"02!7“,1 Z 3'0—1217; + 2b0+1 Z 3}’1—1—12b;+2
i=0 i=u-1 i=v+1

n—u+1pu-2 n-1-vnb,_1 pov b n-1
= gnourlgu=2  gn-l-0pbu1 gu  pbori pii,

O
T . ; u,o 0 bo . uv  _ au-u+l W0 _ po-1
Definition 3. For any 1 < u < v, define two integers x,"" and x| such that 2%ux_” . -3 Xy =By,
o 3xy” +1 3x7 +1
u,v by u,u v—u+1 . uo _ 0 uov _ 1 uoy
1< xy” < 2%, and 1 < Xy 1 <3 . Further, define x;* = o X," = w7 X0, =
u,v
3x, 1 +1
2”2}—1

Clearly, xé’" and x," are the same as x( and x,, in Proposition 2, respectively.

u,o0
o 3xy,0, + 1'

Proposition 5. (i) x° ;= o



Symmetry 2019, 11, 1415 40f 13

kU, 0 u+k-2
3"x," + By

;s uY _
(ii)) ForanyO<k<v-u, X, = 2l}37,11nd
v—u+l1-k.,uo v-1
xu,v _ 3 xk + Bu+k,
v-u+l ~ 4

bv
2%u+k
(i) xf? <xf
(iv) Q-lima, = xifand only if lim,,_, x(l),n =x;

1n _
0 = 00,

(v)  Q-limay, = oo if and only if limy,_, 00 X,
Proof. (i) is from Proposition 3(ii), which is from (i) and Proposition 1.
(iii) By Definition 3, 2lux?  —30-w+lyl? - o=l 2b3”x5;’1};j2 - 3072y l?* 1 = BY. Then,
30yl ? 4+ BS71 = 0(mod 2%v), 37"'”23c6"erl +BY = 0(mod 2% ). Thus, 3v—u+1xg,v+l +BY! =
mod 2 =3B~ 1 2% Hence, x*¥ = x mod 2%%). Therefore, x'* < x! < xp <
0 (mod 2%) by B=3B5~! +2%. H w7 = x*! (mod 2%). Therefore, x{” < x§"*! by 1 < x§°
e w,o+1 hv+1
2% and 1< x;) < 2%u
By (iii), (xtl)’”)@l is increasing, then (iv) and (v) hold trivially. O

Proposition 5(iv) shows that if () —lima, = x, then xM = x for all sufficiently large n.

0
Proposition 5(v) shows the reasonableness of (2 —lima,, = co.

3. Periodic E-Sequences

Definition 4. (i)  (ax)us1 is periodic if there exist two integers
1>0,r>1suchthat ay = ayy, foralln>1;
(ii) 7 is called the period of (ay)p>1;
(i)  (ay---a;) and (apq---ay4,---) are called the non-periodic part and periodic part of (a,)n»1, respectively;
(iv)  (an)us1 is called purely periodic if | = 0 and eventually periodic if > 0;
(v)  The E-sequence is denoted by a1---ajaj -4,

Throughout the remainder of this section, define s = bfﬂ, B, = ij:{_l, and let k > 0 be an integer.

3rk _ zsk

Proposition 6. Let a---a;a;;1-a5, be a periodic E-sequence. Then, By, = 3B, + 2% B, ETRCTE

Proof. By Proposition 4, By, = Bj*/=1 = 37%BI~1 4 grk=rpbigl+r=1,

k—-2r~b [+2r-1 b I+rk—1
3" 72014y Bl:r:—] 4 oo 2014rk—r Bl-‘:{+r(k—l)' By bl+r = bl +s, bl+27 = bl + 25, -,
_ -1 _ [+2r-1 _ _ pl+rk-1 _ .
bisrk—r = by + (k=1)s,By" =By, B[717 == Bl+1+r(k—1) = B,, we have:

Brk+l - 3TkBl + 37’k—72bl Br + 31”(—272[7125 Br Foeeet zblz(k—l)sBr

— 3TkBl + 2b1B7(3rk—720 + 31’]{—2725 Foeee 302(k—1)5)
31’k _ 25k

= 3rkBl + Zb’ BV W

O

Proposition 7. Let ay---ajaj,1---a;, be a periodic E-sequence. By Proposition 2, define two integers xy and
Xyieqy Such that 256+0ix 1 — 3%+ xo = By, 1< xg < 2540 and 1 < x40y < 3™*L. Then, there is a constant
K e N, depending on ay,---,a;,, such that when k > K and,

(i)  if2° >3, thereis tyy; € Z, 0 < typyy < (2° = 37)3! such that
2y - B(2°-37) +2%B, 3%uy+ By
Xo = (25-3)3 Xkl T s gr
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(ii)

Proof.

(ii)

if3" > 25, there is ey € N, 1<ty < (3" = 2°)3! such that

24Py ) - By (37 -2°) - 2B, 3"tk — By
Xg = (37 _25)31 7 Xrk+] = 73r o5 .
3"+yo + B
@) 2° > 3. By x4 = 23(”91 "+ we have 25K4bix 1 = By (mod 3™+, Then,
25k _ark

|
W
2
3
=
+
N
=
o~]
S

25k+biy ) = > 3 (mod 3™*!) by Proposition 6. Thus, (2° -3")2%*bix, ; =
(25 —3M)3B; + (25K~ 36)2b B, (mod (2° - 37)3"™*). Hence, 255+ ((2° - 3" ) x40 — Br) = 3%((2° -
(ZS - 3r)xrk+l - B,

3rk :

2541y = (25 -3")B; - 2% B, (mod (2° -3")3!). Hence X, =

3")B; - 2%B,) (mod (2° - 37)3"8*!). Define u,r,; =

Then, ., € Z and

3rkurk+l + By

25 _ 37’
2P~ B
Yo = 3kl
oty 3 rke + Br b 23"
2y kY
- 3rk+l

3rk25k+blurk+l + 25k+b[ B, - srkBl (25 _ 37’) + 37’k2b1 B, - 25k+b[ B,
- (25 - 3r)3rk+l

25k+biy 4~ By(2°-3") + 201 B,
- (25 —37)3!

3rkurk+l +B, 3rk+l (25 _ 31’)_Br

r

B
=3/(2° - 3")-— < 3/(2°-3").

By X,y = > 3 < 3™+ we have iy, < o o
3 uyyey) + By Br o Br '
By X441 = “s_a >0, we have u,,; > g Since limy._, o, T 0 and w44 € Z, there is a

constant K € N, depending on a4, -+, a;,, such that u,4,; > 0 when k > K.
3%+ xg + By

3" > 25, By Xrk+l = osk+b;

, we have:

2K+01 (37 = 2%)xypepy + By) = 3%((3" = 2°)B; + 2% B,) (mod (3" —2°)3"™+1).

(3" =2°)xy41 + By

7 Then

Define Upleq] =

Upers € 2,251y ) = (37 =2°)B; + 2% B, (mod (3" -2°)3).

3 uyps) - By 25K+ - By (37 -2°) - 2%B, 3% uys) - By
R TAN T Xo = . Since Xy = ————— > 0,

Thus, x4, = (37 - 25)31 3r-2s

B,
then u,,; > T and thus, 1 < ;.

25K+buyy ) - By (3" - 2°) - 2% B, By(3"-2°) +2'B,

By xg = o -2)3 < 2%K+b1 we have iy, < (3" -2%)3! + Skt
B;(3"-2%)+2UB,

Since limy_, o, S5k, = 0 and 1,4, € Z, there is a K € N such that u,,; < (3" -2°)3!

when k > K.

O

Theorem 1. If 3" > 2°, then ay---aja;, 18G4 ,_1814, is Q-divergent.
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250wy - By (3" -2°) -2 By
Proof. By Proposition 7(ii), xg = 3 -2 and u,; 2 1. Then, xg > +o00 as k — oo.

Thus, the E-sequence is ()-divergent. [J

Theorem 2. If ay---aja;,1a;,0a;4 1814, is Q-convergent to x, then (x, )0 is periodic.
Proof. By Theorem 1, 2° > 3". By Proposition 7(i),

2sk+biyy o~ By(2°-3") + 20 B,
(25 -3r)3!

X =

and u,y,; > 0 for all k > K. Since x = x < oo for all sufficiently large k, by Proposition 5(iv), then u,,; = 0.

2biB, — B;(2°-3") B,
(25 -3r)3! 253"

non-periodic part and periodic part are (xgx1---x;) and X;,1---X},,, respectively. [

Thus, xp = and x5, = for all k > 0. Hence, (x)u30 is periodic, and its

Theorem 3. Assume that all non-periodic E-sequence are Q)-divergent. Then, the trajectory of every odd positive
integer is periodic.

Proof. Suppose that x is an odd positive integer, (x,;),50 and (a,),31 are its trajectory and E-sequence,
respectively. Then, Q) -lima, = x. Thus, (a,),51 is periodic by the assumption. Hence, (x),30 is
periodic by Theorem 2. I

4. Non-Periodic E-Sequences
For any real number «, {a} denotes its fractional part. The following lemma is due to Matthews

and Watts (see Lemma 2(b) in [13]). We present its proof for the reader’s convenience.

Lemma 1. Let (a,),»1 be an E-sequence such that Q) -lim a, = xo and (x,)ns0 is unbounded.

Th Tb"<1 3
en, lim —<log, 3.

3xp_1+1 3xp_1+1
Proof. From x, = ————, we have 2%t = ——— Then:
2k Xj

no3xp_q1+1 XO 3xk 1+1 3”3('0

2= []2% = 1] O

k=1 k=1 Xk xl’lk 1 Xn k=1 3Xk 1

Thus:
1

3xk-1

3"xp 1
Xp = 2Tn]!jl(1+ )

which we call the Matthews and Watts’ formula (see Lemma 1(b) in [13]).
Since (x;;)4»1 is unbounded, all x, are distinct. Then:

3”3(?0

H(

Thus:
n

n
0< 1og27n+logxo +kz log(1+ ) <log3" -~ log2" +log xq + Z "
-1

Hence:
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b " 121
log2”" <log3" +log xq + §Z T
Therefore:
by log, xo n
—<log, 3
n S 0822t Ty nlog8 ;
Then:

b,
Tim " < log, .

O

by
Theorem 4. Let (a,) 31 be a non-periodic E-sequence such that lim — > log, 3. Then, Q) - lima, =

n—oo 1

by
Proof. Suppose that () -lima, = x( for some positive integer xy. It follows from Lemma 1 and nhm P

log, 3 that (x,,),»0 is bounded. Then, (x;),50 is periodic. Thus, (a;),>1 is periodic, which contradicts
the non-periodicity of (ay),51. Hence, Q - lima, = co. [

The following lemma is the well known Wendel’s inequality (see [15]). Lemma 3 is a consequence
of an easy calculation.

[(x+s) |
rx) F

Lemma 2. Let x be a positive real number, and let s € (0,1). Then,

(g)r(baﬂ +n+1)

Lemma 3. Let a and b be two integers with a > 1 and a + b. Then, H 1+

i b b :
s (%)F(E+n+1)
Lemma 4. I1 (1+ %) < 1.5n%for alln>1
1<k<3n, k=1,5( mod 6)
Proof. Let 2|n. Then:
h(l NI 9> IR
3(6k+1)" T(Z)r(4+1 r( )2 6
and:
2 1 TRT(5+5) _T(E) n 5.1
H(“ 36k+5)) " s Stz )"
) r(@)r(z“Lg) r(g)
by Wendel’s inequality. Thus,
11 5
I1 1+ = H 1+ 1'1 1+ <
1<k<3n, k=1,5( mod 6)( w = I 3(6]”1)) ( 3(6k+5))
INESNE 2
M(f 7) (f )% 1.4196(L )% < 1515,
I'(5)r(g) 2 3
Let 2 + n. Then:
a4l Iypen o 18 1
2 1 F(e)X(5+15) _T(G) n 2.1
[T O 3™ T <22 3"
k=0 F(g)l”(§+§) r(g)



Symmetry 2019, 11, 1415 8of 13

and
1 TOMGHR) T 1
Do 39 r(Hree+1) ) r(g)(§+§)

by Wendel’s inequality. Thus,

n+l n+l

1+4) = H 1+ H 1+
1<k<3n, k=1,5( mod 6)( %) ( o)) k=0 ( ) <

T(HT(Z) n 1 5
F( (s )(E 5) ( += ) <1.5n

O

Theorem 5. Let 2nx, —3"xy = B, such that 1 < xg < 2,1 < x, < 3", 3 + x0, and xg, -, X,_q are distinct
By

integers. Then, xg > ——————
31(1.5n9 - 1)

Proof. From the Matthews and Watts’ formula and Lemma 4, we have:

an n 1 1
—=]1C I1 1+=) <1.5u5.
3"x0  jq 3xk 1 1<k<3n k=1,5( mod 6) 3k
3"xy + B B
Then, # <1.515. Thus, xg > 7111 O
3"xg 37(1.5n9 1)

Corollary 1. Let 6 > log,3 be an irrational number. Define a, = [nf] - [(n—1)60]. Then, 3 —lim a, = oo

2[(k71)10g2 3] 1

Hlk= 1) 1082 3]

Proof. Let 6 =log,3. Then, % g Y% g Thus,
B, n
T > T — 00, as 1 — oco. Hence, O -lim a, = oo by Theorem 5.
3"(1.5n9 -1) 8(1.5n9 -1)
Let 6 > log, 3. Then, ILI& ; nlg{)lo [HTG = 6 > log, 3. Since 0 is an irrational number, ()1 is
non-periodic. Thus, 3 -lim a, = co by Theorem 4. [
o o on=1 1 1
Lemma 5. Let x and n be two positive integers. Then, (i) kI;IO (1+ m) (zz) 1:10 (1+ e k)) >
n Lon=l 1 3x
1+§forx2n;(zzz) kl;lo(1+3(x—k)) > sx_nforxznzz.
. . . . n-1 1
Proof. (i) The proof is by induction on n. For the base step, let nn = 1, then kl;Io 1+ W) =1+ Fr
n . . n-1 1 n i
1+ e For the induction step, assume that kI;IO (1+ 3G +k)) <1+ v Then, kI:[o (1+ 3r k)) <
n n 1 n n+1 ) .
1+ a)(l + m) =1+ FY 3G + ox(x+11) <1+ P Thus, the inequality holds for all n > 1.

The proof of (ii) is similar to that of (i) and omitted.
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(iii)) Let n = 2. Since 3x-3x-2-3x-3x+2 > 3x-3x-3-3x, then vl > ! .
3x-3(x-1) 3x-2
1 1 1 3x—2+2 2 1 1 3x
Thus 1+ ot oD " avao1) © ar—2 LT ayop Hence ()t snT) > 5y
heref 1 3x
Therefore, kl;IO(1+3(x-k))> Y
n-1 1 3x .
Assume that kl;lo(1+3(x—k)) > o Since (3x-3n+1)(3x—-n-1) > (3x —n)(3x - 3n),
3x(3x -3n) +3x 3x n 1 3x p 1 3x
then (3x-n)(3x-3n) 7 Bx-n-1 Thus, kI;[o(l+3(x—k)) g 3x—n\1+3(x—n)) S 3x-n

3x 3x
(3x -n)(3x-3n) “3x-n-1

Lemma 6. Let2b”xn—3”x0:anuchthatlsx0<2b”,1§xn<3",xi¢xjforallO§i<j£n—1. Then,
. Bn o m. . Bn m. ... Bn m.
(z)37§ngxk>x0foralllskgn—l,(zz)27n<ngxn<xkfora110§k§n—1,(1zz)27n>§zfxn>xifor

B, n
allOsign—l;(iv)g—Zz gifxo>xkforalllsk3n.

Proof. (i) E 20, 11 N
roof. (i) From 3ing kr=10( + B—Xk),we ave:
B, n-1 1 n-1 1
1+ = 1+-—)< 1+ —o).
3”.’)(0 ]g) ( 3xk) ;}0 ( " 3(3(0 + k))
By By n
Then, 1+ —<1+ —by Lemma 5(i). Thus —< =
3n X0 3
. 2bux,  n-1 . 1 N
(ii) From 3y k];[O( +3—xk),we ave:
Zb"xn—Bn n-1 n-1

2bnx,,

T
—H(1+7) 1y g(1+73(x”+k)) 1

n-1

By
Then,1- —"— > 1 (14—
R e N e

1@ n - 1 n
2b " 3x,,  Bxp+n
- nx, n
ence, bn T < 3
+1
(iii) Let n = 1. Then, x1 = > > x. Thus, (3-2")x+1 > 0. Hence, a; = 1. Therefore,

B, B 11 n
b b 2737 3

Let 2. ByL 5(iii h 2y 1 Ta ! 3
X Z n Z . y = + —_— + > .
et x, y Lemma 5(iii), we have iy kHO ( ) kljo ( 3(xn - k)) 3%, -1
2bnx 3x 2bux, - B, 3x B, n
Then, LN " Thus, noon T Hence, S
2bux, - B, 3x,-n 2bnx,, 3x, 2bn = 3
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(iv) By Lemma 5(ii), we have:

B, 2bn x, 1=l

1
+3”x0: 3x0 U( +—)>H( *3 k))>l+i

33(0'

B, n
Then, —> —. O
3" "3
A direct consequence of Lemma 6 is the following theorem, which may imply something unknown.
Theorem 6. Let 2P x,, —3"xg = B, such that 1 < xy <20, 1< x,, < 3", x; % xjforall 0 <i<j<n-1. Then:
B om
(i) 773 implies xj < xq for some1<k<n-1;
o Bnom
(ii) <3 implies xo < xy for some 1 <k < n;
o Bnom )
(iii) 2o < 3 implies x, < x; for some 0 <i<n-1;

By n
(iv) 27”2 gimplies Xp > X for some 0 <k <n-1.

Theorem 7. Let (ay),31 be an E-sequence such that (i) 3" > 2" for all n € N; (ii) there is a constant ¢ > log, 3
such that there are infinitely many distinct pairs (k,1) of positive integers such that | > kc, a1 =---=a; = 1.
Then, Q) —lima,, = o

Proof. It follows from (i) that B,, < 3"n for all n € N by induction on 1. BL;} = 3/ — 2!~k by Proposition 6.

k+1
lel,l 4 Bl 1 3k + Bk71 31 k + Bl 1
Letx;! = =01 1 <x)! <27, 1<x! <3 Then, x;l_iob L xt = B kel
2h 20 ot
Proposition 5(ii). By Bk+1 ik _pl-k 2bis = 2!k, we have Zl‘k(xll’l +1) = 3l_k(x]1’l +1). Thus, x =
I-k g Sl eBE 2Rk 2% - it
2'7%w -1 for some 1 < w. Hence, X = o =2""w - 1. Therefore, x," = % 2

2! 2¢
§2bk_k -1-k> (g)kZbk_k —1-k. If there are only finitely many distinct k in all pairs (k,1), x

WV

2C
§2bk—k —1-k > o0, as | > oo; otherwise, x(l)’l > (g)kzbk—k -1-k - oo, as k - oo. Then, Q —lima,, =
co. [

Corollary 2. Let (ay),»1 be the E-sequence 12121112.-, where a,, = 2 if n € {21,22,23,~~~} and a, = 1
otherwise. Then, Q) —lima, = oo

7
Proof. Take ¢ = rie log,3, k =2", and | = 2" —1. Then, ag,q = -+ =a; = 1,1 > ke for all m > 3.

Thus, Q) -limay, = co by Theorem 7. [

Theorem 8. Let (ay),31 be an E-sequence such that (i) 3" > 2" for all n € N; (ii) there is a constant ¢ > log, 3
such that there are infinitely many distinct pairs (r,1) of positive integers such that 1 > r, by, > Ic, aj, = ay for
all1<k<r, ie, (ay-ary)ap1--a;(aj1---a1,,) is contained in (ay)ys1. Then, Q —lima, = oo

I+r, Ll+r l+r-1 I 1l+r I-1
3 xy + By 3'x +Bj

Ll+r _
Proof. Let X = 2’7’“

I+
,1<ayt <2t 1< x ¥ < 377, Then, 1Y =

7

!
2h

1,1+r 1,1+r

3y 1l+7’+Bl+r 1 37‘ 1I+V+Br 1
by Proposition 5(ii). By 3' > 2h1 we have x;""" > x\y

xl I+r _ I+1 1
b b 2h
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roLr r-1
3'xy" + B}
2"
1,1+r 1,r 1,1+r A 1,r 1,1+r 1,1+r
5(iii), we have x;" ™" > x;". Let x;” " =2"u+xy". Then, u > 1by x> x5 > xo . Thus:

Let x}” = , 1< xl’r < 2%, 1< x} < 3". Then, x(l)r = xll T (mod 2"). By Proposition

1l+r _

I o7 1 I+r
201201y 4 20y - BT 2h 2¢
= >
0 3!

3 —l?(g)l—leoo, as 1 — oo.

Hence, ) - lima, = co. [
Theorem 9. Let 1< 0 <log, 3, and define a,, = [n0] - [(n —1)6]. Then, Q -lima, = co

Proof. If 6 is a rational number, then (4, ),,»1 is purely periodic, and the result follows from Theorem 1.
Let 6 be an irrational number in the following. By the Hurwitz theorem, there are infinite convergents

- of 6 such that |0 - f| < ——. There are two cases to be considered.

\/_2

s
Case 1. There are infinite convergents - of § such that 0 <6 - - <
r

s
\/_ 5+ We prove that [6n] = [;n]
n VBroo 1 s
= —.Then, 0 < {-n} <
NCERRY t

s 1 s s s
On — [;n] <o+ {;n} < 1. Thus, 0 < 0n - [;n] < 1. Hence, [0n] = [;n] Then, we have the following
periodic table for (a;) 1<n<[ \/Er]'

s
forall1<n < [V5r]. By 1<n< [\/gr] we have 0 < 6n — n<

ul az ces u[\/gy_zr] s ar
ariq anyy a[\/g},_r] any
A2r+1  A242r ﬂ[\/gr]

22[r9]”2r - B,

By Proposition 7(ii), x, Lar for some uy, > 1.

3r —2[rf]
29
By B S gr-1-igh; _ 3r-1 12" gr-1 1 2] gr-1 a2t al- (5)7 327 4
= —imigb = 3= — < 3 — < 37 — = = < ,
Yo gi) Eo 3 gi) 3 g%) 3 3 29 3-20 ~ 3-2°
1-—
3
we have:
- g 31 40
xlfzr 2 [ ]—Br> _3_29 7( ) 3= 29
0 3r_n[r6] = 3r_or6-1 1 2¢
125y
2°3
Thus, x, 121 5, as r — co. Hence, Q - lima, =
S s 1
Case 2. There are infinite convergents - of § such that 0 < - -0 < ——.
r r /512
s s 1
Firstly, we prove [0n] = [-n] for all 1 < n < [\/5r], n ¢ {r,2r}. By 0 < -—0 < ——, we have
r r \/51’2

s 1 s s s n s s s

PR <f< " Then, - [;n] - ﬁ < fn- [;n] <m- [;n] <1. Byl<n<[V5r], n¢{r2r},
1 n s s s s

we have 0 < PRl ) < - [;n] \/_r . Then, 0 < 6n — [rn] < 1. Thus, [0n] = [;n]
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S 1 n S
Secondly, we prove [r0] =s-1,[2r0] =25s-1. By 1<1n,0< --0 < ——, we have ———+ -n <
y, we prove [r6] = s -1, [2rf] y 0 s

5 N 1 n 5 n 5 s )
nf < e By n < /5r, we have -1 < - < v Then, -1+ < —ﬁ+ < nf < P By taking
n=r,2r,wehave [rf] =s-1, [2r0] =25 - 1.

Let2<j<r-1,thenr+2<r+j<2r-land r+1<r+j-1<2r-2 Thus,a,.;=[0(r+j)] - [0(r+
. s ) S . S, S . s, s .

J=D1= G+ =0+ - D] =[5+ =[5+ (- D] = [5]- [ - D] =y
Let2<j<[V5r]-2r. Then, 2r+2<2r+j < [V5r]and 2r + 1< 2r +j -1 < [V/5r] - 1. Thus, ay,.; =
. . S . S . S. s .
[0(2r+ )] - [62r +j-1)] = [22r + )] - [-2r + -] =[] - [(- D] = ;.

By easy calculation, we have a, = ag, = 1, 4,41 = app41 = 2.
Then, we have the following periodic table for (a")l<n<[ VAt

m ap as a[\/gr]fzr ar arq1
A4y A34r a[\/gr]—r e A A2r41
A2+2r  A342r a[\/gr]

s s
Since 0 < log, 3, we then take all convergents ;of 6 such that < log, 3, and thus, 2° < 3". By a; = 1,

bg*l = [r0] +1 = s and Proposition 7(ii), we have:

225+1u2r+1 _ (31‘ _ 25) _ ZBE

12r+1 _
xO 3(3r _ 25)
29
r=1 .o+l r—1 2[i9+9]71 r—1 210 37‘ 1 - (7)7
for some tiy,; > 1. By B, = ¥ 3-1-igh! —gr-ly ©  cgr-lpfly T _p0-17 37
2r+1 Yy Dp i§0 E%) 3i E%) 3 3 . 29
3
3 _ r0 29—1
20-1—__—_ < 3", where C = ——, we have:
3-2¢6 3-26
Lopeg  24U0L_c3r 1 24%-C3r 1 24%-C3 1 249 2 1
xy > -=2 -=2 -—==(=)'-=C-=
3 3r-25 3°33-2 33 3 3 3'3 3 3
Thus, lim,_ co xé’zHl = o00. Hence, Q - lima, = co. [

5. Concluding Remarks and Open Problems

The results on non-periodic E-sequences in Section 4 were based on the theory of periodic
E-sequences in Section 3 and the Matthews and Watts’ formula. Currently, we have no other way to
tackle non-periodic E-sequences. We can obtain various generalizations and analogues of Theorems 4-8.
However, we need good problems to make some progress.

One seemingly simple problem that we are not able to prove is whether (a,),51 is divergent,
where a, =2 if n € {22,3%,4%,...} and a,, = 1 otherwise, i.e., (a,),51 is 111211112. . ..

Another interesting problem is whether (ay,),,»1 with infinitely many » satisfying b, > nlog, 3 is
Q-divergent. By virtue of Theorem 4, we only need to consider the case of lim b—n = log, 3. Theorem 5

n—-oo n
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By

31(1.515 - 1)
other cases of the problem.
Conjecture 2(ii) is also important in some sense.

answers the problem if — 00, as n — oo. Currently, we do not know how to tackle the
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