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Abstract: We construct a volume preserving map Up from the p-ball Bp(r) =
{

x ∈ R3, ‖x‖p ≤ r
}

to
the regular octahedron B1(r′), for arbitrary p > 0. Then we calculate the inverse U−1

p and we also
deduce explicit expressions for U∞ and U−1

∞ . This allows us to construct volume preserving maps
between arbitrary balls Bp(r) and Bp′(r̃), and also to map uniform and refinable grids between them.
Finally we list some possible applications of our maps.

Keywords: equal volume projection; hierarchical grid

1. Introduction

The p-norms in R3 have applications in many branches of mathematics, physics and computer
science. For p ≥ 1, the p-norm of the vector x = (x, y, z) ∈ R3 (also called Lp-norm) is defined as

‖x‖p = (|x|p + |y|p + |z|p)1/p . (1)

For p = 2, we arrive at the Euclidean norm, and when p→ ∞ the norm is called the infinity norm
or the maximum norm and is given by

‖x‖∞ = max(|x|, |y|, |z|).

When p ∈ (0, 1), Formula (1) does not define a norm, because the triangle inequality is
not satisfied.

2. Preliminaries

For p > 0, let Bp(r) be the 3D p-ball of radius r > 0 centered at the origin, defined by

Bp(r) =
{

x ∈ R3, ‖x‖p ≤ r
}

.

For finite p the parametric equations of Bp(r) are

x = ρ |cos θ|2/p |sin ϕ|2/p sgn(cos θ) sgn(sin ϕ),

y = ρ |sin θ|2/p |sin ϕ|2/p sgn(sin θ) sgn(sin ϕ),

z = ρ |cos ϕ|2/p sgn(cos ϕ),

with ρ ∈ [0, r], θ ∈ [0, 2π), ϕ ∈ [0, π].
For p = 1 the ball B1(r) is the regular octahedron with the vertices on the axes, at distance r from

the origin. For p = ∞, the set B∞(r) is the cube with edge of length 2r and for p = 2 the region B2(r)
represents the Euclidean ball. For p > 2 the balls are called superellipsoids and they are used in computer
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graphics (see [1,2], where the author uses the name superquadrics to refer to both superellipsoids and
supertoroids). Some examples of balls Bp(r), for different values of p are given in Figure 1.

Figure 1. Some balls Bp(r) for p = 0.5, p = 0.75, p = 1 (first line) and p = 1.2, p = 2 and p = 2.5
(second line), respectively.

The volume of the 3D p-ball is

Vol(Bp(r)) = 8
∫ r

0

∫ (rp−xp)1/p

0

∫ (rp−xp−yp)1/p

0
dz dy dx

= 8r3 Γ3(1/p + 1)
Γ(3/p + 1)

.

We notice that the radius r′ of the regular octahedron B1(r′) with the same volume as the p-ball
Bp(r) must be

r′ = rcp, with cp =
3
√

6
Γ(1/p + 1)

3
√

Γ(3/p + 1)
.

We will construct a map Up : Bp(r)→ B1(r′) which preserves the volume, i.e., Up satisfies

Vol(D) = Vol(Up(D)), for all domains D ⊆ Bp(r). (2)

Consider the bijections F1,p, F2,p : [0, 1] → [0, 1], which are particular cases of the regularized
incomplete Beta function (also known in statistics as cumulative beta distribution functions)

F1,p(t) =
1∫ 1

0 [u(1− u)]
1
p−1 du

∫ t

0
u

1
p−1

(1− u)
1
p−1 du, for t ∈ [0, 1],

F2,p(t) =
1∫ 1

0 u
2
p−1

(1− u)
1
p−1 du

∫ t

0
u

2
p−1

(1− u)
1
p−1 du, for t ∈ [0, 1].
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In the standard notation we have F1,p(t) = It(1/p, 1/p) and F2,p(t) = It(2/p, 1/p), where It is
the so-called regularized incomplete beta function defined as It(α, β) = B(t; α, β)/B(1; α, β), with

B(t; α, β) =
∫ t

0
uα−1(1− u)β−1du, for α, β > 0.

One has F1,p(0) = F2,p(0) = 0 and F1,p(1) = F2,p(1) = 1, further F1,p, F2,p are increasing
functions. Let G1,p, G2,p : [0, 1] → [0, 1] be the inverses (in Mathematica one can use the command
InverseBetaRegularized for the inverses G1,p and G2,p) of the functions F1,p and F2,p, respectively.

For a ∈ (0, π/2), let

Bp,a(r) =
{
(x, y, z) ∈ Bp(r), x, y, z ≥ 0, x tan a ≥ y

}
.

Lemma 1. For a ∈ (0, π/2) we have

Vol(Bp,a(r)) =
1
8

F1,p

(
tanp a

1 + tanp a

)
Vol(Bp(r)).

Proof. The volume of Bp,a(r) can be computed using the double integral

Vol(Bp,a(r)) =
∫∫

D
(rp − xp − yp)1/p dx dy,

where D =
{
(x, y) ∈ R2, xp + yp ≤ rp, 0 ≤ y ≤ x tan a

}
. With the change of variables

x = (ρ cos t)2/p and y = (ρ sin t)2/p the Jacobian is

J =
(

2
p

)2
ρ

4
p−1

(cos t)
2
p−1

(sin t)
2
p−1

and the new domain of integration is

∆ =
{
(ρ, t) ∈ R2, 0 ≤ ρ ≤ rp/2, 0 ≤ t ≤ arctan(tanp/2 a)

}
.

The volume of Bp,a(r) is

Vol(Bp,a(r)) =
4
p2

∫ rp/2

0
(rp − ρ2)

1
p ρ

4
p−1 dρ

∫ arctan(tan
p
2 a)

0
(cos t)

2
p−1

(sin t)
2
p−1 dt.

With the change of variables u = ρ2/rp and v = sin2 t in the two independent integrals we get

Vol(Bp,a(r)) =
r3

p2

∫ 1

0
(1− u)

1
p u

2
p−1 du

∫ tanp a
1+tanp a

0
v

1
p−1

(1− v)
1
p−1 dv

=
r3

p2 B(1/p + 1, 2/p)B(1/p, 1/p)F1,p

(
tanp a

1 + tanp a

)
= r3 Γ3(1/p + 1)

Γ(3/p + 1)
F1,p

(
tanp a

1 + tanp a

)
.

3. Construction of the Volume Preserving Map Up : Bp(r)→ B1(r′) and Its Inverse

Of course, there is no unique map Up with the volume preserving property. In this section, we will
construct a map Up : Bp(r)→ B1(r′) satisfying the following conditions:

(a) Up has the volume preserving property (2);
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(b) Up is continuous on Bp(r) and has continuous partial derivatives at every point of Bp(r), except
the points of the coordinate planes;

(c) Up has the symmetry property

Up(x, y, z) = (sgn(x)X, sgn(y)Y, sgn(z)Z), where (X, Y, Z) = Up(|x|, |y|, |z|);

(d) Up maps every Bp,a(r̃) onto some B1,b(cp r̃).

Theorem 2. The map Up = (X, Y, Z) with the properties (a)–(d) is defined by

X = sgn(x)cp (|x|p + |y|p + |z|p)
1
p

[
1− F1,p

(
|y|p

|x|p + |y|p
)]√

F2,p

(
|x|p + |y|p

|x|p + |y|p + |z|p
)

,

Y = sgn(y)cp (|x|p + |y|p + |z|p)
1
p F1,p

(
|y|p

|x|p + |y|p
)√

F2,p

(
|x|p + |y|p

|x|p + |y|p + |z|p
)

,

Z = sgn(z)cp (|x|p + |y|p + |z|p)
1
p

[
1−

√
F2,p

(
|x|p + |y|p

|x|p + |y|p + |z|p
)]

,

when |x|p + |y|p > 0, and (X, Y, Z) = (0, 0, cpz) when |x|p + |y|p = 0.

Proof. Let (x, y, z) ∈ Bp(r). Then (X, Y, Z) = Up(x, y, z) ∈ B1(r′). Consider first the case
x, y, z > 0. From condition (d) for the limit case a = π

2 and using (a) and (c) we deduce that
Vol(Bp(r)) = Vol(B1(cpr)). This relation gives us

X + Y + Z = cp(xp + yp + zp)1/p. (3)

From conditions (a) and (d) there is some b > 0 such that

Vol(Bp,a(r̃)) = Vol(B1,b(cp r̃)).

From Lemma 1 we have

F1,p

(
tanp a

1 + tanp a

)
Vol(Bp(r̃)) = F1,1

(
tan b

1 + tan b

)
Vol(B1(cp r̃)).

Since Bp(r̃) and B1(cp r̃) have the same volume and F1,1(t) = t we obtain

F1,p

(
tanp a

1 + tanp a

)
=

tan b
1 + tan b

.

Further, since tan a = y/x and tan b = Y/X, this equality can be written as

F1,p

(
yp

xp + yp

)
=

Y
X + Y

. (4)

From conditions (a) and (b) the Jacobian of Up must be 1, i.e.∣∣∣∣∣∣∣
∂X
∂x

∂X
∂y

∂X
∂z

∂Y
∂x

∂Y
∂y

∂Y
∂z

∂Z
∂x

∂Z
∂y

∂Z
∂z

∣∣∣∣∣∣∣ = 1. (5)
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Further, taking into account Formulas (3) and (4) we have

Z = cp(xp + yp + zp)1/p − X−Y,

Y = XF1,p

(
yp

xp + yp

)(
1− F1,p

(
yp

xp + yp

))−1
,

then we calculate the partial derivatives of Y and Z with respect to x, y and z and introduce them
in (5). After some calculations, we find that X must be solution of the following first order partial
differential equation

∂X
∂x

xzp−1 +
∂X
∂y

yzp−1 − ∂X
∂z

(xp + yp) =
(xp + yp)

2
p
[
1− F1,p

(
yp

xp+yp

)]2
B
(

1
p , 1

p

)
cp pX(xp + yp + zp)

1
p−1

.

With U = X2 the equation is rewritten

∂U
∂x

xzp−1 +
∂U
∂y

yzp−1 − ∂U
∂z

(xp + yp) = 2
(xp + yp)

2
p
[
1− F1,p

(
yp

xp+yp

)]2
B
(

1
p , 1

p

)
cp p(xp + yp + zp)

1
p−1

.

We have to solve the symmetric system

dx
xzp−1 =

dy
yzp−1 =

dz
−(xp + yp)

=
cp p(xp + yp + zp)

1
p−1 du

2(xp + yp)
2
p
[
1− F1,p

(
yp

xp+yp

)]2
B
(

1
p , 1

p

) .

The first equality gives us y = xC1, for some constant C1. Replacing this in the equality

dx
xzp−1 =

dz
−(xp + yp)

we get xp + yp + zp = C2, for some constant C2. Replacing these two relations in the equality

dx
xzp−1 =

cp p(xp + yp + zp)
1
p−1 du

2(xp + yp)
2
p
[
1− F1,p

(
yp

xp+yp

)]2
B
(

1
p , 1

p

) ,

integrating and using that the plane x = 0 is mapped onto U = 0 (this follows from the conditions (b)
and (c) of the map), we obtain

U =
2C

2
p

2 B(1/p, 1/p)B(2/p, 1/p)
p2cp

[
1− F1,p

(
Cp

1

1 + Cp
1

)]2

F2,p

(
xp(1 + Cp

1 )

C2

)
,

which is equivalent to

X = cp(xp + yp + zp)1/p
[

1− F1,p

(
yp

xp + yp

)]√
F2,p

(
xp + yp

xp + yp + zp

)
. (6)



Symmetry 2019, 11, 1404 6 of 12

Then,

Y = cp(xp + yp + zp)1/p F1,p

(
yp

xp + yp

)√
F2,p

(
xp + yp

xp + yp + zp

)
, (7)

Z = cp(xp + yp + zp)1/p

[
1−

√
F2,p

(
xp + yp

xp + yp + zp

)]
. (8)

In the case when z = 0 and also in the case when x = 0 or y = 0 but x + y > 0 we use
Formulas (6)–(8) to define the map Up. In the case when x = y = 0, we define Up(0, 0, z) = (0, 0, cpz),
for all z ≥ 0, using the continuity property of the map Up.

Finally, for the points (x, y, z) in the other seven octants, the map Up will be defined as

Up(x, y, z) = (sgn(x)X, sgn(y)Y, sgn(z)Z), where (X, Y, Z) = Up(|x|, |y|, |z|).

Remark. Not all the partial derivatives of the map Up which occur in Theorem 2 exist at the points of the
coordinates planes. For example, ∂Y

∂x does not exist at the points (0, y, z), because the partial derivative of

F1,p

(
|y|p

|x|p+|y|p
)

with respect to x does not exist at the points (0, y, z).

The expression of the inverse map of Up is given in the next theorem.

Theorem 3. The map U−1
p : B1(r′)→ Bp(r) is defined by

x =
X + Y + Z

cp
G

1
p

1,p

(
Y

X + Y

)
G

1
p

2,p

((
X + Y

X + Y + Z

)2
)

, (9)

y =
X + Y + Z

cp

(
1− G1,p

(
Y

X + Y

)) 1
p

G
1
p

2,p

((
X + Y

X + Y + Z

)2
)

, (10)

z =
X + Y + Z

cp

(
1− G2,p

((
X + Y

X + Y + Z

)2
)) 1

p

, (11)

for every (X, Y, Z) ∈ B1(r′) and X ≥ 0, Y ≥ 0, Z ≥ 0, X + Y > 0. If X = Y = 0, we have U−1
p (0, 0, Z) =

(0, 0, Z/cp).
In the other seven octants, we define the inverse of the map Up using the symmetry property (c) of Up.

Proof. Condition (4) is equivalent to

yp

xp + yp = G1,p

(
Y

X + Y

)
.

Replacing (3) in (7) we obtain

X + Y
X + Y + Z

=

√
F2,p

(
xp + yp

xp + yp + zp

)
,

which is equivalent to
xp + yp

xp + yp + zp = G2,p

((
X + Y

X + Y + Z

)2
)

.

After some computations we can express x, y, z in terms of X, Y, Z to obtain (9)–(11).
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4. Particular Cases

4.1. The Cases p = 1 and p = 2

For p = 1 one has c1 = 1, F1,p(t) = t and F2,p(t) = t2, therefore U1 is the identity.

For p = 2 one has c2 = π
1
3 , F1,p(t) = 1

π

(
arcsin(2t− 1) + π

2
)
= 2

π arcsin
√

t, F2,p(t) = 1−
√

1− t
and for x, y, z > 0, the map U2 is

X = 2π−2/3

√
x2 + y2 + z2 − z

√
x2 + y2 + z2 arccos

y√
x2 + y2

,

Y = 2π−2/3

√
x2 + y2 + z2 − z

√
x2 + y2 + z2 arcsin

y√
x2 + y2

,

Z = π1/3
√

x2 + y2 + z2

(
1−

√
1− z√

x2 + y2 + z2

)
.

If we use the spherical coordinates defined by x = ρ cos θ sin ϕ, y = ρ sin θ sin ϕ and z =

ρ cos ϕ we obtain relations (9), (10), (11) from [3], where we also gave the inverse, which has an
explicit expression.

4.2. The Case p = ∞

In this case we will obtain a new map, different from the one constructed in [4].
We restrict again to the case x, y, z > 0 because of the symmetry property of the map.
First, a simple calculation shows that c∞ = 61/3 and

lim
p→∞

(xp + yp + zp)1/p = max(x, y, z).

In order to calculate the limits in (6)–(8) when p→ ∞ we use the following result.

Lemma 4. For α, β > 0 we have

lim
p→∞

p

B
(

α
p , β

p

) =
αβ

α + β
. (12)

Proof. We use the equality Γ(x) = Γ(x + 1)/x, which holds for x > 0. One has

p

B
(

α
p , β

p

) =
p Γ
(

α+β
p

)
Γ
(

α
p

)
· Γ
(

β
p

) =
p · α

p ·
β
p · Γ

(
1 + α+β

p

)
Γ
(

1 + α
p

)
· Γ
(

1 + β
p

)
· α+β

p

,

and now it is easy to see that the limit when p→ ∞ is the one in (12).

Proposition 5. For x, y, z > 0 we have

lim
p→∞

F1,p

(
yp

xp + yp

)
=

{ y
2x , x > y,

1− x
2y , y ≥ x.

Proof. We use the idea in [5].
Suppose x > y.

F1,p

(
yp

xp + yp

)
=

1

B
(

1
p , 1

p

) ∫ yp/(xp+yp)

0
(u(1− u))

1
p−1 du.
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With the change of variable u = tp we have

F1,p

(
yp

xp + yp

)
=

p

B
(

1
p , 1

p

) ∫ y/(xp+yp)1/p

0
(1− tp)

1
p−1 dt.

From 0 < t < y/(xp + yp) we further deduce that xp/(xp + yp) < 1− tp < 1, and therefore

(
xp

xp + yp

) 1
p−1

> (1− tp)
1
p−1

> 1.

After integration we obtain

y

(xp + yp)
1
p

(
xp

xp + yp

) 1
p−1
≥
∫ y/(xp+yp)1/p

0
(1− tp)

1
p−1 dt ≥ y

(xp + yp)
1
p

,

and further,

p

B
(

1
p , 1

p

) y

(xp + yp)
1
p

(
xp

xp + yp

) 1
p−1
≥ F1,p

(
yp

xp + yp

)
≥ p

B
(

1
p , 1

p

) y

(xp + yp)
1
p

.

After applying Lemma 4 for α = β = 1 and replacing the limits

lim
p→∞

(xp + yp)
1
p = max(x, y) = x and lim

p→∞

xp

xp + yp = 1,

We finally obtain

lim
p→∞

F1,p

(
yp

xp + yp

)
=

y
2x

. (13)

For the case y ≥ x we use the formula F1,p(1 − t) = 1 − F1,p(t) for t = xp/(xp + yp) and
Formula (13), interchanging x and y.

Proposition 6. For x, y, z > 0 we have

lim
p→∞

F2,p

(
xp + yp

xp + yp + zp

)
=

{
1

3z2 max(x, y)2, if z = max(x, y, z),
1− 2

3
z

max(x,y) , otherwise.

Proof. Case 1. Suppose max(x, y, z) = z.
With the change of variable t = u2/p we obtain

F2,p

(
xp + yp

xp + yp + zp

)
=

p

2B
(

2
p , 1

p

) ∫ ( xp+yp

xp+yp+zp

)2/p

0

(
1− t

p
2

) 1
p−1

dt.

Applying Lemma 4 for α = 2, β = 1 we have

lim
p→∞

p

2B
(

2
p , 1

p

) =
1
3

.



Symmetry 2019, 11, 1404 9 of 12

Further, from the condition that t belongs to the interval of integration we can write

zp

xp + yp + zp < 1− t
p
2 < 1,

and therefore (
zp

xp + yp + zp

) 1
p−1

>
(

1− t
p
2

) 1
p−1

> 1.

After integration we obtain

(
xp + yp

xp + yp + zp

) 2
p
(

zp

xp + yp + zp

) 1
p−1
≥
∫ ( xp+yp

xp+yp+zp

) 2
p

0

(
1− t

p
2

) 1
p−1

dt ≥
(

xp + yp

xp + yp + zp

) 2
p

.

A simple calculation shows that

lim
p→∞

(
xp + yp

xp + yp + zp

)2/p
=

(max(x, y))2

z2 and lim
p→∞

zp

xp + yp + zp = 1,

which imply that

lim
p→∞

∫ ( xp+yp

xp+yp+zp

) 2
p

0

(
1− t

p
2

) 1
p−1

dt =
(max(x, y))2

z2 .

Case 2. Suppose max(x, y, z) = x or y.
Using the equality

Ix(α, β) = 1− I1−x(β, α), α, β > 0, x ∈ [0, 1],

we have

F2,p

(
xp + yp

xp + yp + zp

)
= 1− 1

B
(

2
p , 1

p

) ∫ zp
xp+yp+zp

0
u

1
p−1

(1− u)
2
p−1 du.

With the change of variable u = tp we get

F2,p

(
xp + yp

xp + yp + zp

)
= 1− p

B
(

2
p , 1

p

) ∫ ( zp
xp+yp+zp

)1/p

0
(1− tp)

2
p−1 dt.

Similarly

z
(xp + yp + zp)1/p

(
xp + yp

xp + yp + zp

) 2
p−1
≥
∫ ( zp

xp+yp+zp

)1/p

0
(1− tp)

2
p−1 dt ≥ z

(xp + yp + zp)1/p .

Using

lim
p→∞

z
(xp + yp + zp)1/p =

z
max(x, y)

and lim
p→∞

xp + yp

xp + yp + zp = 1,

the proof is complete.
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In conclusion, for x, y, z > 0, the map U∞ has the values (X, Y, Z) = U∞(x, y, z) given by:

61/3
(

x
2
√

3
,

2y− x
2
√

3
, z− y√

3

)
, x ≤ y ≤ z,

61/3

(
x
2

√
1− 2z

3y
,
(

y− x
2

)√
1− 2z

3y
, y

(
1−

√
1− 2z

3y

))
, x ≤ z ≤ y,

61/3
(

2x− y
2
√

3
,

y
2
√

3
, z− x√

3

)
, y ≤ x ≤ z,

61/3

((
x− y

2

)√
1− 2z

3x
,

y
2

√
1− 2z

3x
, x

(
1−

√
1− 2z

3x

))
, y ≤ z ≤ x,

61/3

(
x
2

√
1− 2z

3y
,
(

y− x
2

)√
1− 2z

3y
, y

(
1−

√
1− 2z

3y

))
, z ≤ x ≤ y,

61/3

((
x− y

2

)√
1− 2z

3x
,

y
2

√
1− 2z

3x
, x

(
1−

√
1− 2z

3x

))
, z ≤ y ≤ x,

and can be reduced to

61/3
(

x
2
√

3
,

2y− x
2
√

3
, z− y√

3

)
, x ≤ y ≤ z,

61/3

(
x
2

√
1− 2z

3y
,
(

y− x
2

)√
1− 2z

3y
, y

(
1−

√
1− 2z

3y

))
, x ≤ y, z ≤ y,

61/3
(

2x− y
2
√

3
,

y
2
√

3
, z− x√

3

)
, y ≤ x ≤ z,

61/3

((
x− y

2

)√
1− 2z

3x
,

y
2

√
1− 2z

3x
, x

(
1−

√
1− 2z

3x

))
, y ≤ x, z ≤ x.

The above formulas can also be used in the case when x = 0 or y = 0 or z = 0, with the
mention that the denominators cannot be zero, except the case when x = y = z = 0, when we take
U∞(0, 0, 0) = (0, 0, 0).

After some calculations we get that, for X, Y, Z > 0 the inverse U−1
∞ (X, Y, Z) is given by

6−1/3
(

2
√

3X,
√

3(X + Y), X + Y + Z
)

, on D1,

6−1/3
(

2X(X + Y + Z)
X + Y

, X + Y + Z,
3Z(2X + 2Y + Z)

2(X + Y + Z)

)
, on D2,

6−1/3
(√

3(X + Y), 2
√

3Y, X + Y + Z
)

, on D3,

6−1/3
(

X + Y + Z,
2Y(X + Y + Z)

X + Y
,

3Z(2X + 2Y + Z)
2(X + Y + Z)

)
, on D4,

where Di, i = 1, 2, 3, 4 are the set of points (X, Y, Z) satisfying the following conditions, respectively:

X ≤ Y,
√

3(X + Y) ≤ X + Y + Z,

X ≤ Y,
3Z(2X + 2Y + Z)

2(X + Y + Z)
≤ X + Y + Z,

Y ≤ X, (X + Y)
√

3 ≤ X + Y + Z,

Y ≤ X,
3Z(2X + 2Y + Z)

2(X + Y + Z)
≤ X + Y + Z.
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Condition
3Z(2X + 2Y + Z)

2(X + Y + Z)
≤ X + Y + Z

can be written as 3((X + Y + Z)2 − (X + Y)2) ≤ 2(X + Y + Z)2, and is equivalent to
X + Y + Z ≤

√
3(X + Y), since X, Y, Z > 0.

Therefore,

D1 = {X ≤ Y,
√

3(X + Y) ≤ X + Y + Z},
D2 = {X ≤ Y, X + Y + Z ≤

√
3(X + Y)},

D3 = {Y ≤ X, (X + Y)
√

3 ≤ X + Y + Z},
D4 = {Y ≤ X, X + Y + Z ≤

√
3(X + Y)}.

Finally, the expressions of (x, y, z) = U−1
∞ (X, Y, Z) can be reduced to

x = 6−1/3 min
(√

3, 1 +
Z

X + Y

)
(X + min(X, Y)) ,

y = 6−1/3 min
(√

3, 1 +
Z

X + Y

)
(Y + min(X, Y)) ,

z = 6−1/3 min
(

X + Y + Z, 3Z
(

1− Z
2(X + Y + Z)

))
.

These formulas can also be used in the case when Z = 0 and in the case when X = 0 or Y = 0,
but X + Y > 0. In the case when X = Y = 0 we take U−1

∞ (0, 0, Z) = (0, 0, 6−1/3Z).
If we take arbitrary numbers p, p̃ > 0, the application

U−1
p̃ ◦ Up : Bp(r)→ B p̃(r̃), with r̃ = cpc−1

p̃ r,

is a volume preserving map, therefore we have defined a volume preserving map between arbitrary
p-balls.

5. Possible Applications

A uniform grid of a 3D domain D is a grid in which all the cells have the same volume. This is
required in statistical applications, in computer graphics in the theory of deformable bodies (see, for
example, Ref. [6] and the references therein) and in construction of wavelet bases of the space L2(D).
A refinement process is needed for multiresolution analysis or for multigrid methods, when a grid
is not fine enough to solve a problem accurately. A refinement of a 3D grid is called uniform when
each cell is divided into a given number of smaller cells having the same volume. To be efficient in
practice, a refinement procedure should also be a simple one. One efficient way to construct a uniform
and refinable (UR) grid on a domain D is to map on D an existing UR grid by a volume preserving
map. In our case, we can construct (UR) grids on a ball Bp′ by transporting from a ball Bp an already
constructed (UR) grid. The simplest example of such a ball with (UR) grids is the cube B∞, but we
have also constructed such (UR) grids on the regular octahedron B1 (see [3,4]) and on the 3D Euclidean
ball B2 (see [3,7] ).

The technique used in [3] can be easily adapted to the p-ball Bp in order to construct
multiresolution analysis of L2(Bp) and orthonormal wavelet bases on the p-ball Bp.

The centers of the cells in our (UR) grids in Bp can be taken as points in interpolation formulas,
as Monte Carlo interpolation or adaptive interpolation formulas.

Another application of volume preserving maps is in the theory of partial differential equations
on Lipschitz domains (see [8]).
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