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Abstract: In this study, two-dimensional numerical simulation was carried out for an oscillatory
flow between parallel flat plates having a suddenly expanded section. Governing equations were
discretized with the second-order accuracy by a finite volume method on an unequal interval mesh
system resolving finer near walls and corners to obtain the characteristics of the oscillatory flow
accurately. Amplitude spectrums of a velocity component were obtained to investigate the periodic
characteristics of the oscillatory flow. At low Reynolds numbers, the flow is periodic because the
spectrum mostly consists of harmonic components, and then at high Reynolds numbers, it transits
to a quasi-periodic flow mixed with non-harmonic components. In conjunction with the periodic
oscillation of a main flow, separation vortices that are not uniform in size are generated from the corner
of a sudden contraction part and pass through a downstream region coming into contact with the wall.
The number of the vortices decreases rapidly after they are generated, but the vortices are generated
again in the downstream region. In order to specify where aperiodicity is generated, the turbulent
kinetic energy is introduced, and it is decomposed into the harmonic and non-harmonic components.
The peaks of the non-harmonic component are generated in the region of the expanded section.

Keywords: two-dimensional flow; instability; transition; separation; amplitude spectrum; turbulent
kinetic energy

1. Introduction

Fluid mechanics concern gas and liquid in motion. In general, as the crucial parameter known as
the Reynolds number increases, the flow tends to be more complicated because of the characteristic of
non-linearity peculiar to fluids. The state of fluid motion can be classified into laminar flow, transition,
or turbulent flow. In various industrial applications related to fluid motion as well as the natural
phenomena such as atmospheric and oceanic flows, the identification and the control of fluid flow are
of great importance. The fluid flow sometimes exhibits the transitional behavior between the laminar
and turbulent regimes at a certain range of Reynolds numbers. The transitional flow is considered to
be related to the instability of the base laminar flow. However, the complex mechanism of such flow
transition, where the flow characteristic changes from a simple state to another more complicated state,
has not been sufficiently understood yet. Herein, the three key words are recalled as follows:

1. Stability: When a small disturbance is added to a steady flow, if any disturbance is attenuated,
the flow is “stable”. Conversely, if one of any disturbance grows, its state is “unstable”.

2. Turbulence: In this paper, irregularly changing flow is treated as “turbulent flow”, but the
definition of the turbulent flow has not always been obvious. Here is a summary of the
characteristics of turbulent flow. The physical quantities such as velocity and static pressure
fluctuate irregularly in time and space, and the transport and exchange are much faster than the
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molecular transport. The energy of fluctuation is transferred from usual large-scaled vortices to
small-scaled ones.

3. Transition: A process in which the flow changes from a stable state to an unstable state as
the Reynolds number increases is called a “transition”. The forms of transition process differ
depending on the type of the base flow. In the case of a plane Poiseuille flow, the oscillatory flow
is quasi-periodic just above the critical Reynolds number.

It is well known that the plane Poiseuille flow, which is driven by a constant pressure gradient
between the parallel flat plates, has a steady exact solution of velocity profile. However, this solution
is not always realized for such a condition in which the two-dimensional disturbance called the
Tollmien–Schlichting (T-S) wave grows. It is known that the minimal value of the critical Reynolds
number for the plane Poiseuille flow is about 2900 for non-linear disturbance [1]. In a region over the
critical value, numerical simulations have revealed that an aperiodic oscillatory flow accompanying
the stimulation, such as a modulated wave or chaos, takes place depending on a combination of the
Reynolds number and wavenumber [2].

In a channel of parallel flat plates with suddenly expanded sections of a rectangle, a transition
from a steady flow to a periodic oscillating flow occurs at a lower Reynolds number than that of the
plane Poiseuille flow. This periodic oscillation is attributed to the Kelvin–Helmholtz instability [3].
This critical Reynolds number depends on the size [4] and the number [5] of the suddenly expanded
sections, the symmetry for the center line of the channel [6], the boundary condition in the mainstream
direction, and so on. Concerning the boundary condition in the mainstream direction, either a periodic
boundary condition [7] or an inlet–outlet boundary condition [8] in which a fluid is not recirculated is
given. It is known that the critical Reynolds number in the inlet–outlet boundary condition is higher
than that in the periodic boundary condition. Although the flow exhibits periodic oscillation just above
the critical Reynolds number, it may transit to an aperiodic oscillatory flow as observed in the plane
Poiseuille flow if the Reynolds number becomes higher.

For the channel flow having such a suddenly expanded section, researchers have tried to excite
instability by forced pulsating flow [9], by a non-uniform thermal field [10], or by both of them [11,12].
Thereby, a quasi-periodic oscillatory flow with a modulated wave or irregularity appears, and finally it
reaches a turbulent state in which the fundamental frequency cannot be recognized. The aperiodic
oscillatory flow may occur under these unstable conditions even if the self-sustaining oscillating flow
is periodic under the uniform temperature condition. In these studies, the channels that expanded
suddenly on only one side were used. The periodic boundary condition was imposed in the mainstream
direction in the two-dimensional computations, whereas the channels with multiple suddenly expanded
sections were used in the experiments. A similar transition pattern was observed in a channel with
suddenly expanded sections, which was symmetric with respect to the center line of the channel [13].

In facilities such as industrial machinery and environmental equipment, there are many flow
channels with sudden-expanded sections. By providing a sudden-expanded part, the mixing of heat
and mass in the working fluid can be promoted. The flow considered here is a two-dimensional
flow through a symmetric channel with a sudden expanded section, which is considered to be the
simplest model for an actual facility. In general, pipes and plates are installed in the expanded part,
where pressure, temperature, and humidity are adjusted and exhaust gases, dusts and impurities are
removed [14]. Especially for automotive equipment, technology development has been continued to
improve energy efficiency. For example, in a honeycomb monolith reactor [15] and wall flow ceramic
filters [16], which are widely utilized in automotive exhaust gas after treatment systems, improvements
were reported. Interestingly, as a case in which working fluids other than the continuum were used,
numerical simulations of dilute flows in microchannels using the lattice Boltzmann method [17]
were performed.

On the other hand, the flow between parallel plates with only a sudden reduction part is
classified as a separation flow. The flow of steady state becomes irregular immediately after passing
through the sudden reduction part, and the vortices are generated irregularly behind the separation



Symmetry 2019, 11, 1403 3 of 18

region. In a channel flow with a partially expanded part, the inlet/outlet boundary conditions may
cause not only oscillatory characteristics as observed in the plane Poiseuille flow but also irregular
characteristics peculiar to separation flow. Moreover, they can affect each other. In this study, we verify
these possibilities.

Nowadays, computational fluid dynamics (CFD) can treat quite large Reynold number flows
using powerful computers where the Navier–Stokes equation is numerically solved. For analyzing a
turbulent flow, turbulent models such as Reynolds-averaged Navier–Stokes (RANS) or large-eddy
simulation (LES) are usually used, but meanwhile, it has been attempted to analyze turbulent channel
flows with direct numerical simulation (DNS) [18], in which the Navier–Stokes equation is directly
solved with a high-resolved mesh system without using any turbulent models.

In this study, we focused on a channel flow with a suddenly expanded section being symmetric
with respect to the center line of the channel and carried out two-dimensional numerical simulation for
a process in which a periodic oscillating flow becomes aperiodic as the Reynolds number increases.
The oscillatory characteristic in the inlet–outlet boundary condition can be observed more easily than
that in the periodic boundary condition, because disturbance does not circulate in the channel. As
mention above, in the inlet–outlet boundary condition, aperiodic flow is expected to occur at higher
Reynolds numbers than in the periodic boundary condition. However, this condition requires quite a
large-scale and high-resolved mesh, i.e., high computational resources. Therefore, no computations of
such an inlet–outlet boundary condition have been reported.

The shape of the suddenly expanded section that the present study considers is that the expansion
ratio is 3 and the aspect ratio is 7/3 (its definition is shown later). The critical Reynolds number Rec

in this aspect ratio and boundary condition was reported as Rec = 843 [8] or 1000 < Rec < 1100 [19].
Therefore, in this study, the computations were carried out for the range of Reynolds numbers 1200 ≤
Re ≤ 2000, where the flow should exhibit oscillatory flow, keeping a certain numerical accuracy.

2. Methods

2.1. Geometry of a Channel and Governing Equations

Figure 1 shows a channel geometry where thick lines correspond to wall surfaces. A fluid flows
from left to right between the two parallel flat plates. This geometry is set in two-dimensional space,
where the coordinate origin O is set at the center of the suddenly expanded section, the x-coordinate
is taken along the parallel flat plates, and the y-coordinate is perpendicular to the x-coordinate. In
order to describe the channel structure accurately, serial numbers are assigned to the coordinates of the
key points of the channel based on the origin O (x0, y0). Each length of the sides is shown in Figure 1.
Parameters describing the shape of the channel are the expansion ratio Ex = (y3 − y−3)/(y1 − y−1) = 3
and the aspect ratio As = (x1 − x−1)/(y3 − y−3) = 7/3.
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Supposing an incompressible Newtonian fluid, pressure p and velocity u = (u, v) are numerically
obtained as a function of time t and x = (x, y). Dimensionless governing equations are the Equation of
continuity (1) and the Navier–Stokes Equation (2). In this study, viscous dissipation is ignored, and
therefore, the energy equation is not taken into account.

∇·u = 0 (1)

∂u
∂t

+∇·(uu) = −∇p +
1

Re
∇

2u (2)

The Reynolds number is defined as Re = U*δ*/ν*. On the inlet, the characteristic velocity U*
[m/s] is taken as the maximum value of the velocity component u* obtained from the exact solution
of the plane Poiseuille flow, and the characteristic length δ* [m] is the half height of the parallel flat
plates. Coefficients of kinetic viscosity ν* [m2/s] and density ρ* [kg/m3] are assumed to be constant.
Representing dimension values with the star (*), the physical values are made dimensionless as t =

t*U*/δ*, x = x*/δ*, p = p*/ρ*U*2, and u = u*/U*.

2.2. Numerical Solutions

OpenFOAM 2.3.1 [20] was employed as a simulation tool. Some examples using this tool for
unsteady laminar flows in a channel whose cross-sectional area changes suddenly are the flow through
a sudden expansion part in a circular pipe [21] and that in a rectangular duct [22,23].

The governing Equations (1) and (2) were discretized by a finite volume method. To be based on
them, the pressure p and the velocity u were calculated by the PISO (Pressure Implicit with Splitting of
Operators) algorithm. The numerical schemes were constructed with the second-order accuracy in
all, where the second-order accurate Crank–Nicholson scheme for the time t and the second-order
accurate central-difference scheme for the space x were used. The pressure p and the velocity u are
solved by the GAMG (geometric–algebraic multi-grid) method and Gauss–Seidel method, respectively.
The iterative calculation was performed until the residual value, which was defined by normalizing
the L1 norm of the residual vector [24] until it became less than 10−10.

The boundary conditions are as follows. For an inlet boundary condition, the velocity u is given
by the parabolic distribution as the exact solution of the plane Poiseuille flow, and the pressure p is the
zero gradient in the streamwise direction, as shown in Equation (3).

u = (u, v) =
(
−y2 + 1, 0

)
,
∂p
∂x

= 0 (3)

To cope with an outlet boundary condition for u, the Sommerfeld radiation condition is used, and
p is set so that the mean on the outlet is zero, as shown in Equation (4). Equation (4) is the advection
equation about u. It means that the velocity upstream by Uc∆t in the x direction from the boundary
surface at a current time step is applied to the velocity on the boundary surface at the next time step,
where ∆t is the time step. For the advection velocity Uc of the Sommerfeld radiation condition, the
area-averaged velocity is applied at each boundary surface subdivided by a mesh.

∂u
∂t

+ Uc
∂u
∂x

= 0,

∫ 1
−1 pdy∫ 1
−1 dy

= 0 (4)

On the walls, the no-slip condition is applied for u, and the zero gradient in the normal direction
is used for p, as shown in Equation (5).

u = (u, v) = (0, 0),
∂p
∂n

= 0 (5)
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Figure 2 shows the finest mesh employed in this study. The velocity distribution of the flow
suddenly changes around a corner, so the unequal interval mesh system, which is finer around two
corners, has been used. For instance, even with regard to a two-dimensional cavity flow it is proved that
the unequal interval mesh system gains an advantage over the uniform mesh system by a comparison
of numerical errors [25]. The mesh system was designed so that its interval was finer around the two
corners in the region of x0 ≤ x ≤ x2 in the mainstream x direction, as well as in the y direction such as in
a turbulent channel flow. In Figure 1, the thin lines in the computational region indicate the boundary
lines through which the direction of coarseness and fineness is exchanged.

Symmetry 2019, 11, x FOR PEER REVIEW 5 of 18 

 

comparison of numerical errors [25]. The mesh system was designed so that its interval was finer 
around the two corners in the region of x0 ≤ x ≤ x2 in the mainstream x direction, as well as in the y 
direction such as in a turbulent channel flow. In Figure 1, the thin lines in the computational region 
indicate the boundary lines through which the direction of coarseness and fineness is exchanged. 

 
Figure 2. Mesh structure of the finest mesh, Model C. This picture shows the range of 6 ≤ x ≤ 8 and 0.8 
≤ y ≤ 1.2. 

As shown in Table 1, the three kinds of mesh systems, i.e., the equal interval mesh (Model A), 
the course unequal interval mesh (Model B), and the fine unequal interval mesh (Model C), were 
used. The number of the meshes (control volumes) is written as Nx (the number of the meshes in the 
x direction) × Ny (the number of the meshes in the y direction). The intervals of the unequal interval 
meshes vary in the geometric progression so that the ratio of the maximum and the minimum of them 
is Rx = Ry = 10. The verification of accuracy of the discretization is checked by comparing the three 
kinds of the meshes, which is described in Section 2.3. The following shows the results of Model C, 
unless otherwise specified. 

In addition, the time step Δt was set so that the maximum courant number Comax was 0.3 or less 
by considering the numerical simulation of the plane Poiseuille flow [2]. The time step in Model C is 
0.002 (Δt = 0.002), and the time step in the others is adjusted so that Comax becomes almost equal to 
Model C. Details of the meshes are shown in Table 1. Mainly using an Intel Xeon E3-1241 v3 (3.50 
GHz × 8) for CPUs, the required time for the calculation of Model C was 12.4 days for 2000 
dimensionless times at Re = 2000 with six threads paralleled. 

The computational method in this study is somewhat similar to direct numerical simulation 
(DNS), since no turbulence models are employed. Although the present finite volume method 
(OpenFOAM) guarantees the conservation of physical quantities, it can only secure up to the second-
order accuracy, and there is a lack of higher-order statistics. Therefore, we avoided to use the word 
“DNS” in this paper. However, even with this two-dimensional solver, we believe that this 
computational method can capture turbulent kinetic energy to some extent for the range of Reynold 
numbers (1200 ≤ Re ≤ 2000) where the corresponding channel flow with an expanded section is in a 
transitional regime between laminar and turbulent flows. Based on several previous researches on 
turbulent channel flows, we used a mesh system, sufficiently resolving the flows of such a range of 
Reynolds numbers. 

This study is an extension of the research on plane Poiseuille flow and is focusing on the 
transition process by numerical simulation. As a matter of fact, such a study on the plane Poiseuille 
flow can be found in [2]. Regarding the flow in a channel with an expanded section, direct solving 
the two-dimensional Navier–Stokes equation without using a turbulent model has been reported [3–
11,13,14,19]. This study followed this kind of approach. 

Table 1. Mesh details. 

Name 
Nx × Ny 

Rx, Ry Δt 
−20 ≤ x ≤ −7 −7 ≤ x ≤ 7 7 ≤ x ≤ 40 

Model A 260 × 40 280 × 120 660 × 40 1 0.005 
Model B 117 × 46 224 × 138 479 × 46 10 0.0025 
Model C 195 × 76 373 × 228 798 × 76 10 0.002 

Figure 2. Mesh structure of the finest mesh, Model C. This picture shows the range of 6 ≤ x ≤ 8 and 0.8
≤ y ≤ 1.2.

As shown in Table 1, the three kinds of mesh systems, i.e., the equal interval mesh (Model A),
the course unequal interval mesh (Model B), and the fine unequal interval mesh (Model C), were
used. The number of the meshes (control volumes) is written as Nx (the number of the meshes in the x
direction) × Ny (the number of the meshes in the y direction). The intervals of the unequal interval
meshes vary in the geometric progression so that the ratio of the maximum and the minimum of them
is Rx = Ry = 10. The verification of accuracy of the discretization is checked by comparing the three
kinds of the meshes, which is described in Section 2.3. The following shows the results of Model C,
unless otherwise specified.

Table 1. Mesh details.

Name
Nx × Ny Rx, Ry ∆t

−20 ≤ x ≤ −7 −7 ≤ x ≤ 7 7 ≤ x ≤ 40

Model A 260 × 40 280 × 120 660 × 40 1 0.005
Model B 117 × 46 224 × 138 479 × 46 10 0.0025
Model C 195 × 76 373 × 228 798 × 76 10 0.002

In addition, the time step ∆t was set so that the maximum courant number Comax was 0.3 or less
by considering the numerical simulation of the plane Poiseuille flow [2]. The time step in Model C is
0.002 (∆t = 0.002), and the time step in the others is adjusted so that Comax becomes almost equal to
Model C. Details of the meshes are shown in Table 1. Mainly using an Intel Xeon E3-1241 v3 (3.50 GHz
× 8) for CPUs, the required time for the calculation of Model C was 12.4 days for 2000 dimensionless
times at Re = 2000 with six threads paralleled.

The computational method in this study is somewhat similar to direct numerical simulation (DNS),
since no turbulence models are employed. Although the present finite volume method (OpenFOAM)
guarantees the conservation of physical quantities, it can only secure up to the second-order accuracy,
and there is a lack of higher-order statistics. Therefore, we avoided to use the word “DNS” in this
paper. However, even with this two-dimensional solver, we believe that this computational method
can capture turbulent kinetic energy to some extent for the range of Reynold numbers (1200 ≤ Re
≤ 2000) where the corresponding channel flow with an expanded section is in a transitional regime
between laminar and turbulent flows. Based on several previous researches on turbulent channel
flows, we used a mesh system, sufficiently resolving the flows of such a range of Reynolds numbers.
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This study is an extension of the research on plane Poiseuille flow and is focusing on the
transition process by numerical simulation. As a matter of fact, such a study on the plane Poiseuille
flow can be found in [2]. Regarding the flow in a channel with an expanded section, direct
solving the two-dimensional Navier–Stokes equation without using a turbulent model has been
reported [3–11,13,14,19]. This study followed this kind of approach.

2.3. Evaluation of Discretization Error

A space discretization error is caused by the structure or fineness of the mesh system employed,
and it greatly influences the characteristics of the computational results. In this section, the space
discretization error caused by a mesh size was evaluated by referring to Ferziger and Perić [25]. If
targeted variables converge monotonously when a mesh size is made finer systematically, the mesh
dependency is judged to be small enough. In case of using an equal-interval mesh system, it is best to
make a mesh size finer by half. Although it cannot avoid that the discretization error is included in
the computational results, if the targeted variables exhibit a tendency to converge monotonously, it is
concluded at least that the reproducibility of the qualitative characteristics is ensured. The order of a
scheme o can be obtained by Equation (6) by use of the results obtained from the three kinds of the
models whose mesh size is varied systematically. Here, r is an increasing rate of a mesh size, ϕ is an
arbitrary physical value, and l is the width of the finest mesh in the subscript in Equation (6). When the
scheme order takes a positive value, the computational result converges monotonously to a true value.

o =
ln

(ϕ2l−ϕ4l
ϕl−ϕ2l

)
ln r

(6)

For evaluating mesh dependency, the mesh size was varied at Re = 1200, where the flow oscillates
periodically. For the convenience of the evaluation, the meshes are spaced equally as ∆x = ∆y. The
three kinds of mesh size that are examined are ∆x = 1/20, 1/40, and 1/80. The mesh of ∆x = 1/20 is
the same as that in Model A. A time step was set as ∆t = 0.005. The maximum amplitude v′max of
the time-fluctuating velocity component v′ was selected as the targeted physical value, which was
sampled by the position at (x, y) = (10, 0.5). As a result, v′max was 0.0666, 0.0979, and 0.110 for ∆x
= 1/20, 1/40, and 1/80, respectively. Based on them, the scheme order was calculated as o = 1.34 by
Equation (6), where r = 2, ϕ = v′max, and l = ∆x = 1/80 were substituted. The amplitude v′max converges
to a constant value, so the characteristic of the target can be reproduced enough.

Next, the influence of time steps ∆t was discussed by invoking a way to evaluate the spatial
discretization error. The convergence was evaluated when a time step ∆t was decreased to 0.01, 0.005,
and 0.0025 for a mesh interval fixed as ∆x = 1/40. For the calculation of the scheme order, the smallest
mesh size l was replaced with the least time step ∆t = 0.0025 in Equation (6). As a result, v′max was
0.0990, 0.0979, and 0.0974 for ∆t = 0.01, 0.005, and 0.0025, respectively. The scheme order was calculated
as o = 1.32.

Furthermore, in order to compare the influence of the different mesh structures on the flow at Re =

2000, the dimensionless fundamental frequency f 1 and its amplitude |V(f 1)| of the velocity component
v at (x, y) = (10, 0.5) were calculated by the discrete Fourier transform (DFT). The program of the DFT
is supplied as the application [26]. When the equal interval mesh system (Model A) was used, the
flow changed to chaos as soon as the computation was started at Re = 2000. On the other hand, a
quasi-periodic oscillatory flow was able to be obtained with the unequal interval meshes at Re = 2000.
Specifically, the results on Model C were f 1 = 0.0792 and |V(f 1)| = 0.0652. Even on Model B, which is
courser than Model C, and whose results f 1 = 0.0785 and |V(f 1)| = 0.0606 are almost equal to those on
Model C. Therefore, it is considered that the mesh of Model C has enough accuracy of discretization.
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3. Results and Discussion

3.1. Periodic Characteristics

Figure 3 shows the time evolution of the velocity component v at (x, y) = (10, 0.5). The sampling
position followed that of Mizushima et al. [8], and the position was slightly shifted from the channel
center in order to handle both symmetric and antisymmetric disturbances at Re = 1200, as shown in
Figure 3.Symmetry 2019, 11, x FOR PEER REVIEW 7 of 18 
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Figure 3. Time evolution of the velocity component v at (x, y) = (10, 0.5). (a) It was a periodic oscillating
flow. At Re = 1400, as shown in (b), the local maximum is not constant, so it is a quasi-periodic
oscillating flow with a modulated wave containing low frequency components. At Re = 1600, as shown
in (c), in addition to having a waveform of a modulated wave, it is a quasi-periodic oscillating flow
with irregular fluctuations. At Re = 2000, as shown in (d), the irregularity becomes even stronger.

In order to understand the characteristics of the oscillatory flows, the amplitude spectrum of
the velocity component v was created by the DFT (discrete Fourier transform). In order to set the
dimensionless frequency interval to ∆, f = 0.001 when the number of samples N = 2000, and the output
data for 1000 dimensionless times, t, with intervals of dimensionless times 0.5 was prepared.

Figure 4 shows the amplitude spectrum |V(f )| of the velocity component v at (x, y) = (10, 0.5). At
Re = 1200, as shown in Figure 4a, the flow is so periodic that only the peaks of the fundamental and
the harmonics appear. At Re = 1400, as shown in Figure 4b, a peak is observed in the low frequency
component in the order of |V(f )| ≈ 10−2; thus, it suggests that the flow transition to a quasi-periodic
state having the waveform of the modulated wave takes place. In the range of Re ≥ 1600, it exhibits
irregular quasi-periodic flow, as recognized from the mixing of the non-harmonic, which includes
the aperiodic components for the fundamental wave. The non-harmonic increases with the Reynolds
number, and at Figure 4c, where Re = 1600, only the weak non-harmonic is discretely mixed, but at
Figure 4d, where Re = 2000, the non-harmonic is mixed continuously.
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Figure 4. Amplitude spectrum |V(f )| of the velocity component v at (x, y) = (10, 0.5). (a) Re = 1200. (b)
Re = 1400. (c) Re = 1600. (d) Re = 2000.

3.2. Vortex Generation

In Figure 5, the streamlines at Re = 2000 are shown. The vortices, which are caused by the
oscillation of the main flow, were released from the corner of the sudden contraction part. Figure 5 is
the visualization of a sequence of a process in which a group of vortices is generated and then swept
downstream. The size of the vortex is not constant, and the vortex is not always continuously generated.
Its reason is considered to be that the main stream at the upstream side of the sudden contraction section
has been changed to the quasi-periodic oscillating flow, including the low-frequency components.
Judging from the streamlines, the generation of a similar vortex was observed in Re ≥ 1600.

We consider the mechanism of how the vortex occurs in this flow, referring to Figure 5. In the
following description, the part of the wavy pattern of the main stream, which is represented by the
streamlines is convex in the direction of y > 0, is called the crest, and that which is convex in the
direction of y < 0 is called the trough. The crest of the wave generated by the main stream oscillation
cannot sometimes keep touching the wall when it passes the corner of the sudden contraction part,
whereby the separation vortices are formed as shown in Figure 4a. At Re = 2000, although the vortex
is usually alone, two of the additional vortices in the upstream side rarely are generated, which are
very small and quickly disappear as soon as it has been generated. When the direction of the velocity
becomes parallel to the wall near the corner, the growth of the separation vortices stops, and the
vortices having formed by that time are swept downstream because they cannot stay just behind the
sudden contraction part. The group of the vortices passes the downstream region touching the wall.
The vortices occur in the downstream side of the crest of the wave, but they move in the upstream side
of the crest passing the downstream region. Therefore, it appears that the phase velocity of the vortices
is lower than that of the wavy pattern of the main flow.

In order to identify accurately the generation of the vortex, the wall shear stress τ0 was calculated.
Paying attention to the flat plate at y = 1 in the downstream region of the sudden contraction part, τ0

is defined as Equation (7), where τ0 < 0 for the region where there is no vortex. If the three vortices
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happen, the sign of τ0 changes twice from minus to plus when the group of the vortices passes at a
sampling point.

τ0 =
1

Re

(
∂u
∂y

)
y=1

(7)

Figure 6 is the distribution of the maximum of τ0 for t = 1000–2000. The magnitude of τ0 correlates
with the size of the vortex. The maximum at Re = 2000 is clearly larger than one in Re ≤ 1800 because
the much bigger groups of the vortices have been generated several times during the computation.
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Figure 6. Maximum of the wall shear stress τ0 at y = 1 during t = 1000–2000.
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Figure 7 represents the number that the vortex has generated, which is obtained by counting the
times that the wall shear stress changes from minus to plus. If one vortex is made in each period, the
vortices of about 79 are generated for t = 1000–2000 because of the fundamental frequency f 1 ≈ 0.079.
Most of the vortices disappear just behind the sudden contraction part (x ≈ 7) as soon as they are
generated, but the vortices are generated again in the downstream region, and the number of them is
at a maximum near x ≈ 18. Note that the sign reversal occurs more than 70 times at x = 7, since a part
of the main flow passing through the sudden contraction part flows backward, and it joins up with the
circulation vortex in the upstream region of the expanded section when the flow pattern of the stream
line changes from a crest to a trough.
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The mechanism of the vortex generation described in the above paragraph is held regardless
of the periodicity of the oscillating flow. Therefore, although the scale and generation period of the
vortex are affected by the periodic characteristics of the oscillating flow, the vortex can occur whether
the oscillating flow is periodic or aperiodic. Conversely, there is a possibility that the generation of
vortices affects the periodicity of the oscillating flow. In addition, there is also another possibility that
an aperiodic component on the sudden contraction part affects upstream owing to the transport by the
circular vortex in the cavity. These two possibilities are discussed in the following subsections.

3.3. Effect of a Sudden Contraction Part

In the above section, we observed the two phenomena such as the non-periodic flow and the
vortex generation. These phenomena are also observed in the flow between parallel plates with only
a sudden reduction part. The flow in the channel with a sudden contraction part was simulated in
the same way as that in the channel with the suddenly expanded section, and then the relationship
between the two was investigated. In the channel flow with the sudden contraction part, a separation
region is formed immediately after the suddenly contracted part. Such a flow is called a separation
flow. In addition, there is another separation flow that occurs at the leading edge of a thick plate [27]
or a blunt cylinder [28], for which the oscillatory characteristics have been investigated experimentally.
As a common feature of the separation flow, the vortex shedding from the separation region takes
place. The spectrum is continuous, and the central frequency ranges from 0.5 to 0.8 times the frequency
defined by the characteristic velocity and length [29].

In the computation of the channel flow with the sudden contraction part, the mesh system was
designed so as to be almost the same as that of the flow in the channel with the suddenly expanded
section. The details are shown in Table 2. The location of sudden contraction was set at x = 7 and the
reduction ratio was set at Cn = Ex = 3, which are the same values as those for the flow in the channel
with the suddenly expanded section. The computational area (−20 ≤ x ≤ 40) was taken so long as it
was not affected by the entrance boundary conditions. Using a non-matching mesh system in which
meshes with different intervals are joined together at interfaces between the two different sub mesh
systems, the computational time was attempted to be shortened. Figure 8 shows a mesh system for
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Model E, which has the same mesh structure as Model C shown in Table 1 for the region 0 ≤ x ≤ 40. In
the qualitative evaluation stage, a coarse mesh system (Model D) was used.

Table 2. Mesh details of the channels with the sudden contraction part.

Name
Nx × Ny Rx, Ry ∆t

−20 ≤ x ≤ 0 0 ≤ x ≤ 7 7 ≤ x ≤ 20 20 ≤ x ≤ 40

Model D 180 × 138 161 × 138 299 × 46 180 × 46 10 0.0025
Model E 100 × 76 268 × 228 498 × 76 300 × 76 10 0.002
Model F 100 × 76 451 × 384 838 × 128 300 × 76 10 0.001
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Figure 8. Mesh structure of the non-matching mesh for Model E. This picture shows the range of −5 ≤
x ≤ 10 and 0 ≤ y ≤ 3.

Chiang and Sheu [30] reported that a bifurcation from a symmetric flow to an asymmetric flow
occurred by carrying out a two-dimensional steady computation for the flow in suddenly reducing
channels. The critical Reynolds number Rec varied with the reduction ratio Cn, and such values were
Rec = 2310 (Cn = 2), 1013 (Cn = 4), and 825 (Cn = 8). Judging from this tendency, the critical Reynolds
number at Cn = 3 was expected to be 1013 < Rec < 2310. The present time-marching computations
implemented using a Model E mesh system gave an asymmetric steady flow at Re = 2000 and an
irregular unsteady flow at Re = 4000. The channel flow with the sudden contraction part immediately
changed from a steady state to a time-dependent irregular state as the Reynolds number increases.
Although Model F was also carried out for Re = 4000, it took a very long computational time; therefore,
we just confirmed that there was no significant difference in the vortex generation pattern between
Model E and Model F.

Figure 9 shows streamlines obtained with Model F for Re = 4000. In the channel flow with
the sudden contraction part, the separation region is formed because the fluid cannot follow the
wall surface of a corner. The separation region contains multiple vortices. The vortices are created
continuously from the corners, the vortex created earlier is pushed downstream, and eventually the
most downstream vortex breaks down and is moved further downstream. The breakdown position is
in the vicinity of the reattachment point of the separation region, which is recognized by seeing the
time-averaged field. A similar vortex generation and breakdown mechanism has been reported in
experiments for a leading-edge separation flow [29]. The size of the vortex is almost the same, but the
period of the vortex breakdown varies considerably. In the leading-edge separation of a blunt cylinder,
the pressure and the velocity fluctuation spectra at the reattachment position exhibit continuous and
wide peaks [28].
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Figure 9. Stream lines in the channel with the sudden contraction part at Re = 4000 at a certain moment.

In order to compare the aperiodic characteristics, the amplitude spectrum |V(f )| of the flow in
the channel with the sudden contraction part at Re = 4000 is shown in Figure 10. The mesh system of
Model E was used. In addition to the position at (x, y) = (10, 0.5), an amplitude spectrum at (x, y) =

(10, −0.5) was also investigated, and it was confirmed that there were no differences between the two
spectra. Since the Reynolds numbers are different from each other, the amplitudes cannot be compared
fairly, but the distribution seems such that only the non-harmonic component is extracted from the
spectrum of the flow in the channel with the suddenly expanded section at Re = 2000, as shown in
Figure 4d. There are no discrete peaks in the spectrum, but it takes its maximum at f ≈ 0.2, assuming
an approximated curve of the spectrum.
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Figure 10. Amplitude spectrum |V(f )| of the velocity component v in the channel with the sudden
contraction part at (x, y) = (10, 0.5) at Re = 4000.

The characteristics of the aperiodic oscillatory flow with the sudden contraction part are compared
with those in the channel with the suddenly expanded section. In the flow in the channel with the
sudden contraction part, an aperiodicity of the flow is generated by the breakdown of the separation
region. On the other hand, in the channel flow with the suddenly expanded section, the vortex
generation is linked to the periodic oscillation of the main flow, so the characteristics of the two flows
are different. In addition, there is no mechanism of transporting aperiodicity upstream in the channel
flow with the sudden contraction part, unlike the circulating vortex observed in the channel flow with
the suddenly expanded section. Therefore, the aperiodic oscillatory flow in the channel flow with the
sudden contraction part is different from that in the channel flow with the suddenly expanded section,
although they have the common features of aperiodicity and vortex generation.

In a contraction channel, the smaller the reduction ratio, the higher the critical Reynolds number
for a transition from symmetric flow to asymmetric flow. The critical Reynolds number to take a
transition from steady flow to unsteady flow is considered to be the same tendency. With regard to a
partially expansion channel, in which there are few papers that systematically investigated the effects
of the expansion/contraction ratio, it would be expected that the critical Reynolds number for the
transition from steady flow to non-steady flow may increase.
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3.4. Turbulent Kinetic Energy

It was attempted to extract only aperiodicity from oscillation characteristics. In order to specify
where the aperiodic component composed in the amplitude spectrum was made, the time-fluctuating
velocity components u′, v′ were decomposed into the harmonics u′H, v′H and the non-harmonics u′N,
v′N, as shown in Equation (8) and Figure 11.

u′ = u′H + u′N,v′ = v′H + v′N (8)

where the subscript H and N symbolizes the harmonics (periodic components) and the non-harmonics
(aperiodic components).
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To be more specific, the time-fluctuating velocity component u′ is restored from the output of the
DFT as follows. The other component v′ is likewise.

u′ =
N−1∑
i=1

ai cos(2π fit + θi) (9)

The subscript numbers i = 0, 1, 2, . . . , N − 1 are defined by using the number of sample N. The
term of i = 0 is the time-mean velocity component ū. With respect to the discrete frequency fi = i/(N∆t)
of the number i based on the sampling period ∆t = 0.5, the amplitude ai and the phase θi are obtained
as 1/N times the absolute value and the argument of the complex numbers obtained with the DFT. Then,
assuming that the components of the m-th harmonic (m = 1, 2, . . . ) are fm, am and θm, the harmonic
component u′H is defined by Equation (10).

u′H =
∑

m
2am cos(2π fmt + θm) (10)

Note that the range of the sum of the harmonic components is 0 < f < fc considering the Nyquist
frequency fc = 1/(2∆t). Moreover, the relation that cos(2πfit + θi) = cos(2πfN−it + θN−i) is valid by the
symmetries for the Nyquist frequency of the DFT and the trigonometric function, so each harmonic
component is doubled.

The turbulent kinetic energy k, a harmonic component kH, and a non-harmonic component kN

are defined as shown in Equations (11)–(13), where u′2, v′2, u′H2, v′H2, u′N2, v′N2 are obtained by the
arithmetic mean of the time-fluctuating velocity component.

k =
1
2

(
u′2 + v′2

)
(11)

kH =
1
2

(
u′H2 + v′H2

)
(12)
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kN =
1
2

(
u′N2 + v′N2

)
(13)

As shown in Figure 12, the distributions within the x–y plane (−7 ≤ x ≤ 35, 0 ≤ y ≤ 3) were made
in regard to the turbulent kinetic energy k, kH, and kN. At Re = 1400, the flow is almost periodic, having
the waveform of the modulated wave, so the patterns of three components are similar to each other.
When the flow is quasi-periodic as shown in the cases at Re = 1600 and Re = 2000, the patterns are
different between the harmonics kH and the non-harmonics kN, but the position of a peak does not tend
to be changed irrespective of the Reynolds number.
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Figure 12. Distributions of the turbulent kinetic energy k, which is decomposed into the harmonic
component kH and the non-harmonic component kN.

Concerning the maximum value of the kinetic energy, the maximum value of kN is less than 1%
compared with that of kH at Re = 1400, but both have the same order maximum value for Re = 1600. At
Re = 2000, the maximum value of kN is larger than that of kH.

The harmonic and non-harmonic components are both attenuated in the downstream area after
passing the sudden contraction section. This can be recognized from the contour diagram in Figure 12.
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This is because Re = 2000 is below the critical Reynolds number of the plane Poiseuille flow predicted
by weak non-linear stability analysis [1]. The flow at x = 35 is stable, since this position is sufficiently
far from the sudden contraction part.

Judging from the distribution of the turbulent kinetic energy k, the four peaks where k takes locally
its maximum are identified except near the corners. These are indicated by the arrows together with
corresponding numbers, as shown in Figure 12g. The first peak is located at the center of the channel
near the sudden contraction position (x ≈ 7, y = 0). The second one stretches out from the corner of the
sudden contraction part. The third and fourth ones are observed near the contact positions between
two circular vortices in the expanded section.

The first peak is caused by the main stream oscillation becoming excited in the suddenly
expanded section and attenuated in the downstream of the sudden contraction part. This is a
periodic phenomenon, because the harmonic component kH is dominant. Its fundamental wave is
the antisymmetric disturbance, because the velocity component u is an odd function and v is an even
function. Therefore, the maximum value of the peak does not exist at y = 0, which is the center line of
the channel, but it exists at y ≈ 0.5.

The second peak is due to the action of backward flow near the wall just after the sudden
contraction part. In fact, the separation vortices are formed actively when Re ≥ 1600. This is also
mainly recognized as the harmonic component kH.

The third and fourth peaks are recognized as the non-harmonic component kN unlike the cases
mentioned above. Therefore, it can be seen that the aperiodicity of the flow is generated not in the
downstream of the sudden contraction part but in the expanded section on the upstream side of
the corner. Although the region where kN becomes apparent is limited, kN spreads slightly to the
downstream, and it appears clearly that the change of the vortices size is observed just after the
sudden contraction.

As stated above, there are the peaks of the non-harmonic component kN near the contact of the
vortices in the expanded section. That is, it is considered that the flow aperiodicity is an inherent
property for the expanded section, and it is caused by the interaction of the circular vortices at a certain
Reynolds number or more. The circular vortex hardly transports the non-harmonic component from
the sudden contraction part. In addition, no conspicuous peak has been observed in the non-harmonic
component of the turbulent kinetic energy in the downstream of the sudden contraction part, so the
separation vortex does not significantly affect the aperiodic oscillating flow. Therefore, the aperiodicity
of flow and the generation of vortices occur independently, although they are interacted with each
other. Since the generation of the separation vortices did not always occur, it would be a secondary
phenomenon that occurs irregularly.

4. Conclusions

In this study, the two-dimensional numerical simulation was carried out for the oscillating flow
between the parallel flat plates with the suddenly expanded section whose expansion ratio is 3 and
aspect ratio is 7/3. Although the present results should be corroborated in a future challenging
experiment or in a three-dimensional numerical simulation, the following conclusions were obtained.

1. At the Reynolds number Re = 1200, it is the periodic oscillating flow. At Re = 1400, it becomes
the quasi-periodic oscillating flow having the waveform of the modulated wave, which includes
the low-frequency components. In Re ≥ 1600, it is the quasi-periodic oscillating flow with the
disordered fluctuations.

2. For Re ≥ 1600, the separation vortices are sometimes generated because the wave crest caused by
the oscillating main flow cannot keep touching the wall before it passes the corner of the sudden
contraction part. Furthermore, the size of the vortex is not constant, and the vortex is not always
generated. Most of the vortices disappear just behind the sudden contraction, but the vortex
appears again in the downstream region.
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3. When the turbulent kinetic energy is decomposed into the harmonic component and the
non-harmonic component, the peaks of the non-harmonic component are localized near the
contact of the vortices in the expanded section. That is, the aperiodic characteristics of the
oscillating flow are generated in the expanded section. The circular vortex hardly transports the
non-harmonic component from the sudden contraction part.

4. The aperiodicity of flow and the generation of vortices interact with each other, but each
phenomena occurs independently. It has been exhibited that the aperiodicity of flow is hardly
affected by vortex generation, since the peak of the non-harmonic component of turbulent energy
exists in the expanded region.
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Nomenclature

As aspect ratio [-]
Cn contraction ratio [-]
Comax maximum courant number [-]
Ex expansion ratio [-]
f dimensionless frequency = f *δ*/U* [-]
f * frequency [Hz]
f 1 dimensionless fundamental frequency [-]
k dimensionless turbulent kinetic energy [-]
N number of samples on discrete Fourier transform [-]
Nx number of meshes in the x direction [-]
Ny number of meshes in the y direction [-]
p dimensionless pressure = p*/ρ*U*2 [-]
p* pressure [Pa]
Rx ratio of the maximum and the minimum of meshes in the x direction [-]
Ry ratio of the maximum and the minimum of meshes in the y direction [-]
Re Reynolds number = U*δ*/ν* [-]
Rec critical Reynolds number [-]
t dimensionless time = t*U*/δ* [-]
t* time [s]
u dimensionless velocity vector = (u, v) [-]
u dimensionless x-directional velocity component = u*/U* [-]
u* x-directional velocity component [m/s]
U* characteristic velocity as the maximum of the plane Poiseuille flow [m/s]
Uc advection velocity [-]
v dimensionless y-directional velocity component = v*/U* [-]
v* y-directional velocity component [m/s]
v′ dimensionless time-fluctuating velocity component of v [-]
v′max dimensionless maximum amplitude of v′ [-]
|V(f )| dimensionless amplitude spectrum of v [-]
x dimensionless coordinate vector = (x, y) [-]
x dimensionless x coordinate = x*/δ* [-]
x* x coordinate [m]
y dimensionless y coordinate = y*/δ* [-]
y* y coordinate [m]
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Greek Symbols
∆f dimensionless frequency interval on discrete Fourier transform [-]
∆t dimensionless time step [-]
∆x dimensionless mesh size in the x direction [-]
∆y dimensionless mesh size in the y direction [-]
δ* characteristic length as the half height of the channel [m]
ν* coefficient of kinetic viscosity [m2/s]
ρ* density [kg/m3]
τ0 dimensionless wall shear stress on the upper wall = τ0*/ρ*U*2 [-]
τ0* wall shear stress on the upper wall [Pa]
Subscripts or Superscripts
* dimension values
¯ time-mean
′ time-fluctuating

H harmonics (periodic components)

N non-harmonics (aperiodic components)
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