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Abstract: In a recent work, we demonstrated that a modified gravity model in which a scalar
“darkon” field is coupled to both the standard Riemannian metric and to another non-Riemannian
volume form is compatible with observational data from Supernovae Type Ia. Here, we investigate a
more complicated model with an additional “inflaton” scalar field. We demonstrate numerically that
the model can qualitatively reproduce the Universe inflation epoch, matter dominated epoch, and
present accelerating expansion in a seamless way. We show that such solutions occur only when the
model parameters are within a very particular range. The main numerical problem we are faced with
is reproducing the extremely small time of the inflation epoch. Here, we present how the variation of
some parameters affects this time.
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1. Introduction

The observational data on the evolution of the Universe give very strong indications of the
domination of different components of the energy density during different epochs. While the
quantitative interpretation is model dependent, qualitatively, we know that the Universe has passed
through different stages: the radiation dominated era, the matter dominated era, and the current,
dark energy dominated era. Those epochs can be described in the frame of the Λ− CDM model as
different components in the energy density of the Universe. To resolve a number of cosmological
problems, however, one needs to introduce an additional exponential expansion in the beginning of
the Universe: inflation. While the initial inflation seems to solve the problems in front of the theory
(namely the horizon problem, the flatness problem, the missing monopoles problem, and the large
structure formation problem [1]), its theoretical description is ambiguous. Numerous models have
been proposed to describe inflation: chaotic inflation (one scalar field rolling in a potential), multi-field
theories (more than one scalar field), modified gravity (f(R), Brans–Dicke, etc.); for a review, see [2,3].

The Weyl (local conformal) invariance is believed to play an important role in quantum gravity,
in particular with respect to solving the cosmology problem. This is because conformal symmetry
forbids the existence of a cosmological constant, so the latter must appear as a dynamically generated
constant of integration [4]. Furthermore, in a conformally invariant theory of gravity, it is possible to
create geodesically complete cosmologies, i.e., where one can integrate past singularities such as the
one in the Big Bang or the ones found in the center of black holes (for other applications, see also [5–7]).
While the most recent Planck results rule out the perfect scale invariance of the spectrum of primordial
fluctuations in the CMB [8], they are still very close to scale invariance. Because of this, the Weyl
invariance has inspired many works, using the Higgs mechanism, which is an example of spontaneous
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symmetry breaking of gauge symmetries, to produce simple Higgs non-minimally coupled to gravity
inflation models (for example, see [9]).

Examples of theories inspired by the Weyl invariance are the multi-measure gravitational models
developed by Guendelman, Nissimov, and Pacheva [10–20]. In these models, there are one or two
scalar fields, coupled to more than one independent volume form. One of the volume forms is always
the standard Riemannian volume form, and the others are dual to the derivative of the auxiliary third
rank antisymmetric gauge field(s) (exact four-form). These models describe simultaneously both the
dark energy that is dynamically generated (an integration constant in the simplest one scalar field
model) and dark matter as a dust contribution to the energy momentum tensor.

In our previous work [21–23], we studied the cosmological aspect of a two measure model with
a new scalar field (called darkon). The model is capable of fitting the data of Supernova Type Ia
and, moreover, of producing two families of parameters for which the model corresponds to the
observational data. This model, however, was able to explain only the late-time evolution of the
Universe, i.e., the matter dominated epoch and current accelerated expansion.

Here, we present our numerical results on the inflationary model proposed in [17,18]. This is a
two scalar field model (the scalars are called darkon and inflaton) with a global Weyl symmetry. In the
model, the dynamics of the Universe is governed by the movement of the inflaton field over an effective
step-like potential with two infinite plateaus connected with a steep slope. According to [17,18], the left,
higher plateau corresponds to the inflationary Universe, while the right, lower plateau to the current
expanding Universe, and the inflaton is freely moving from the left to the right. Our results [23] have
shown that due to the existence of a friction term, the inflaton cannot move freely, so it has to start its
motion from the slope of the potential. Here, we present our progress in finding a proper description
of the Universe’s evolution and how the variations of some of the parameters affect the time at which
the inflation ends.

2. Overview of the Multi-Measures Model

A multi-measure model aimed at describing the evolution of the Universe was developed
in [17,18]. It features two scalar fields: an inflaton φ and darkon u. Here, we mention only the
points directly related to our numerical work. The action of the model is:

S = Sdarkon + Sin f laton (1)

where Sdarkon and Sin f laton are the darkon and inflaton actions, respectively.
In Sdarkon, two independent measures

√−g and Φ(C) are coupled to the darkon Lagrangian L:

Sdarkon =
∫

d4x(
√
−g + Φ(C))L. (2)

Here, Φ(C) is an integration measure density dual to the field strengths of an auxiliary three-index
antisymmetric tensor gauge field Cνκλ, namely:

Φ(C) =
1
3

εµνκλ∂µCνκλ, (3)

and:
L = −1

2
gµν∂µu∂νu−W(u). (4)

We have three additional non-Riemannian measures in the inflaton action:

Sin f laton =
∫

d4xΦ(A)(R + L(1)) +
∫

d4xΦ(B)
(

L(2) +
Φ(H)√−g

)
. (5)
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Here, A, B, and H are three additional auxiliary three-index antisymmetric tensor gauge fields,
and Φ(Z), for Z = A, B, H, is of the same form as Equation (3). Note that R is in the Palatini formalism,
so we have Γλ

µν as independent fields as well, and:

L(1) = −1
2

gµν∂µφ∂νφ−V(φ), V(φ) = f1e−αφ (6)

L(2) = − b0

2
e−αφgµν∂µφ∂νφ + U(φ), U(φ) = f2e−2αφ (7)

The gauge fields Z = H, A, B, C are pretty much like electromagnetic potentials; however, they are
not vectors (more precisely, they are not one-forms), but rank-three antisymmetric tensors (three-forms).
Their field strengths F (Z) that determine the measures Φ(Z) are F (Z) = ∂[µZνργ], where [...] denotes
antisymmetrization of the indexes in the brackets. Note that F (Z) are tensors (four-forms) because of
antisymmetrization (on the forms, the exterior derivative and antisymmetrized covariant derivative
are equivalent). The gauge transformation under which the model action is invariant is Zµνρ →
Zµνρ + ∂[µzνρ], where z = Ã, B̃, C̃, H̃ are four arbitrary rank-two antisymmetric tensors (two-forms).

A very interesting and unusual property of the action Equation (2) is that the dynamics does not
depend on the particular form of the potential W(u). If we choose it to be:

W(u) ∼ u4 (8)

then the action Equation (1) is invariant under the following global Weyl scale transformation:

gµν → λgµν, Γρ
µν → Γρ

µν, φ→ φ +
1
α

ln λ, u→ 1√
λ

u, (9)

Aµνρ → λAµνρ, Bµνρ → λ2Bµνρ, Cµνρ → λ2Cµνρ, Hµνρ → Hµνρ

The variation of S with respect to the auxiliary fields A, B, C, and H leads to four dynamically
generated integration constants M0, M1, M2, and χ2:

L = −2M0,

R + L(1) = −M1,

L(2) +
Φ(H)√−g

= −M2,

Φ(B)√−g
= χ2. (10)

Note that only χ2 is dimensionless, while M0, M1 and M2 have dimension mass4 (so do f1 and
f2). The appearance of dimensionful constants as solutions of equations of motion signals dynamical
spontaneous breaking of the symmetry Equation (9).

Equations (10) together with the equation following from the variation with respect to Γ can be
used to eliminate the auxiliary fields in the model, leaving an effective Lagrangian depending only on
gµν and the inflaton scalar field. Explicitly, for the Weyl rescaled metric g̃µν and the redefined darkon
scalar field ũ:

g̃µν =
Φ(A)√−g

gµν (11)

∂ũ
∂u

= (W(u)− 2M0)
− 1

2 , (12)

we get the standard action S(e f f ) =
∫

d4x
√
−g̃(R̃ + L(e f f )) for the effective Lagrangian:

L(e f f ) = X̃− Ỹ(V + M1 − χ2b0e−αφX̃) + Ỹ2(χ2(U + M2)− 2M0). (13)
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Here, Ỹ = − 1
2 g̃µν∂µũ∂νũ, X̃ = − 1

2 g̃µν∂µφ∂νφ are the respective kinetic terms for the new metric.
This Lagrangian is non-linear with respect to both scalar fields’ kinetic terms and thus can be classified
as a generalized k-essence type. For this, the Einstein equations correspond to the equations of motion
derived for the original metric. Its step-by-step derivation can be found in [23].

In the Friedman–Lemaitre–Robertson–Walker space-time metric, the effective equations of motion
are:

v3 + 3av + 2b = 0 (14)

ȧ(t)−
√

ρ

6
a(t) = 0 (15)

d
dt

(
a(t)3φ̇(1 +

χ2

2
b0e−αφv2)

)
+

a(t)3(α
φ̇2

4
χ2b0e−αφv2 +

1
2

Vφv2 − χ2Uφ
v4

4
) = 0 (16)

The dot over the fields indicates the time derivative. The algebraic Equation (14) is a remnant of
the darkon field equation where the parameters are:

a = −1
3

V(φ) + M1 − 1
2 χ2b0e−αφφ̇2

χ2(U(φ) + M2)− 2M0
, b = − pu

2a(t)3(χ2(U(φ) + M2)− 2M0)

and pu is an integration constant. Equation (15) is the first Friedman equation where a(t) is the metric
scaling function, and the energy density is:

ρ =
1
2

φ̇2(1 +
3
4

χ2b0e−αφv2) +
v2

4
(V + M1) +

3puv
4a(t)3 .

Equation (16) is the effective inflaton equation of motion, where Uφ = ∂U
∂φ and Vφ = ∂V

∂φ . We can
write down the second Friedman equation as well:

ä(t) = − 1
12

(ρ + 3p)a(t), (17)

where p = 1
2 φ̇2(1 + 1

4 χ2b0e−αφv2) − 1
4 v2(V + M1) + puv/(4a(t)3). However, Equation (17) is not

independent, but is connected through the equation of state Equation (14) to Equation (15).

3. Numerical Results

Before starting with the numerical analysis, it is useful to have some estimates of the asymptotic
values of the energy density ρ and pressure p in the Universe to compare.

First, we can derive the following limits for the equation of state (EOS) w = p/ρ:

w −−−→
a(t)=0

1/3

w −−−−→
a(t)→∞

−1 (18)

Second, the model possesses an “effective potential” depending only on the inflaton field φ of
the form:

Ue f f (φ) =
( f1e−αφ + M1)

2

4χ2( f2e−2αφ + M2)− 8M0
. (19)
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For certain parameters, Ue f f (φ) has a step-like form with a steep slope, connecting left (higher)
and right (lower) plateaus. The length of the φ-interval of the slope depends mainly on the parameter
α. The asymptotic of the left plateau is:

U− = Ue f f |φ→−∞ =
f 2
1

4χ2 f2

and the asymptotic of the right plateau is:

U+ = Ue f f |φ→+∞ =
M2

1
4χ2M2 − 8M0

.

This potential (in the regions where the kinetic energy of the inflaton can be neglected) can be
connected to the effective cosmological constant in the model. In this way, the model naturally has
states with a (arbitrary) large and (arbitrary) small cosmological constant. Note however that the
effective potential does not bring the kinetic energy in standard form. For example, even in the limit of
slow roll approximation (neglecting the terms ∼ φ̇2, φ̇3, φ̇4), the inflaton equation has the form:

Aφ̈ + 3HAφ̇ + U′e f f = 0, (20)

where A = 1 + b0 e−αφ(V + M1)/(2(U + M2)). Nevertheless, we find the effective potential useful,
because it naturally distinguishes three regions of φ-values (left plateau, slope, right plateau) on which
we observe three qualitatively different solutions of the system of Equations (14)–(16), which enables
us to track the movement of the inflaton correctly regardless of the validity of Equation (20).

We demonstrated [23] that in the Friedman–Lemaitre–Robertson–Walker space-time metric, when
the scaling parameter a(t) grows exponentially, there is a strong friction term in the scalar field equation
of motion. Therefore, in the far future, we have φ̇(t) → 0 and a dynamically generated asymptotic
cosmological constant, which for φ→ ∞ is:

Λasymp =
U+

2
=

M2
1

8(χ2M2 − 2M0)
. (21)

We perform our calculations in units in which c = 1, G = 1/16π, and tu = 1, where c is the speed
of light, G is Newton’s constant, and tu is the present day age of the Universe. Thus, our mass unit is
equal to 1.62× 1059MPl where MPl is the Plank mass, the cosmological constant is Λ ∼ 3.6, and the
Hubble constant is H(1) ∼ 1.

The system of Equations (14)–(16) has 12 free parameters, namely {α, b0, M0, M1, M2, f1, f2, pu, χ2}.
Some of them are the theory parameters, and some are dynamically generated (integration constants).
In addition, because Equation (15) is a first order ordinary differential equation (ODE) and Equation (16)
is a second order ODE, we have three initial conditions {a(0), φ(0), φ̇(0)}. Note that the differential
Equation (15) has a singular point in a(0) = 0 due to the term ∼ 1/a(t)3 in ρ. Therefore, a natural
replacement of the initial condition a(0) = 0 is the normalization condition a(1) = 1, where t = 1
corresponds to the current moment. Since these are plenty of parameters, we would like to restrict
somehow their number and the region of variation, and this is the main objective of the present work.

It was assumed in [17] that the left plateau corresponds to the pre-inflationary Universe (Planck
times) and the right plateau to the current and future accelerated expansion, On this basis, the following
estimated values have been advocated: M1 = 10−60M4

Pl , M2 = M4
Pl , f1 ∼ 10−8M4

Pl , f2 ∼ 10−8M4
Pl .

Implicitly, these estimates are based on the existence of a solution describing the inflaton moving from
the left to right plateau. We do not observe numerically such a solution. Moreover, because of the
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friction in the inflaton equation of motion, there are strong indications that such a solution does not
exist. Therefore, the only restriction to the model parameters from the effective potential is:

f 2
1

f2
>>

M2
1

M2
. (22)

Our strategy to deal with the system of Equations (14)–(16) is to solve algebraically Equation (14),
to substitute its solution in Equations (15) and (16), and then to integrate the resulting system
numerically. We do that using the Fehlberg fourth - fifth order Runge–Kutta method with degree four
interpolation implemented in Maple.

Equation (14), as a cubic equation, has three roots, of which at least one is always real. The roots
can be written as:

vi =
(

3
√
−1
)

i

a
A −

(
3
√
−1
)

i
A; i = 1, 2, 3 (23)

where A =
3
√
−b +

√
a3 + b2 and

( 3
√
−1
)

i is one of the three roots of 3
√
−1(

= −1, (1 + i
√

3)/2, (1− i
√

3)/2
)

. We have to work with the real solution of Equation (14).
However, there is no globally defined smooth real solution of Equation (14) in the plane [a, b]. In this
work, we will work with b < 0, so the root v1 is real, and we use it as a solution of Equation (14) in
what follows. In order to have negative b, we usually (but not always) use negative M0. In fact, we
expect that we can fix M0 to an arbitrary value (provided b < 0) because we expect that there will be a
family of solutions of the model, parametrized by M0 and giving an equally good description of the
Universe evolution. Our logic is that first, we showed in [21] that with a proper combination of other
parameters in the purely darkon model, we have a nice fit of Supernovae Type Ia data for any M0, and
second, we expect that at the observed supernovae times, the inflaton field is settled down, leaving the
Universe’s dynamics to be governed by the darkon field only (with some constants determined by the
asymptotic value of the inflaton).

In [23], we connected the observed cosmological constant Λ ∼ 3.6 to Λasymp, and we used
Equation (21) to eliminate one of the parameters M0, M1, M2, and χ2. However, in this way, we
obtained a slightly larger Hubble constant because, first, the final value of φ is not infinite, but finite,
and second, the movement of the inflaton is not stopped at t = 1. Therefore, here, we use Λasymp = 1,
which gives H(1) ∼ 0.7.

We observe that practically, the evolution does not depend on φ̇(0); any initial inflaton velocity
is almost immediately reduced to the one, dictated by the dynamics. Numerically, the velocity (up
to φ̇(0) ∼ ±104) is corrected in the first step of the integration with minimal deviation of the other
variables. This gives us the possibility to use more “physical” initial conditions:

φ̇(0) = 0. (24)

Another observation is that the position of the effective potential slope is parameter dependent.
We would like to use this freedom to set φ(0) = 0, which we consider “more physical” as well, but this
is not a priority of our current numerical investigations. Note that the example on Figure 1 is exactly
with φ(0) = 0, while the data in Figures 2–4 is for a family of solutions for which φ(0) = −2.7.

Here, we use b0 > 0 in opposition to b0 = −0.52 in [17] because for negative b0, we have problems
with ρ.

Thus far, we have not performed a thorough consideration of the model in the whole parameter
space and even in the reduced one as described above. However, everywhere we look, we observe
only three types of deceleration-acceleration sequences in the Universe’s evolution:

(a) only deceleration;
(b) deceleration followed by acceleration. The acceleration can be (i) very strong, i.e., we
have inflation, in which case the deceleration epoch is extremely short, or (ii) very slow, i.e.,
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corresponding to acceleration with the cosmological constant as given in Equation (21). Which of
these options is realized depends on the asymptotic value of φ.
We also observe a (c) “physically realistic” Universe with four epochs: a short first deceleration
epoch (FD), early inflation (EI), a second deceleration (SD), which we interpret as radiation and
matter determined epochs together, and finally, an infinite slow accelerating expansion (AE). Some
examples of this type of “physically realistic” evolution are shown in Figures 1–4, and hereafter,
we consider only this type of evolution.

The deceleration, with which any type of evolution starts, is due to the singularity of ρ at a = 0.
The type (c) evolution represents just a small part of the parameter space, very sensitive to

fine-tuning. Thus, a significant part of the numerical work is to find the points in the parameter
space for which we observe the physically realistic behavior. Numerically, this means that the second
derivative of the scale factor has to cross the t-axis in three points (namely, tEI, tSD, and tAE), turning
the problem into a root-finding problem. In order to find the zeros of the function with arbitrary
precision, we use the one-dimensional Muller algorithm on the polynomial approximation of ä(t)
(Equation (15) or Equation (17) for independent confirmation) provided by Maple. In the units we use,
tSD ∼ 10−50 and tAE ∼ 0.71. At the moment, we are unable to reproduce tSD, but this seems to be due
only to numerical problems, while there is no indication that this is impossible in principle.

The main observation in our work is that it is impossible to start the evolution from the left
plateau and to obtain a physically realistic solution as defined above, no matter what is the inflaton’s
initial velocity. If one starts from the left plateau, one ends with a Type b(i) Universe.

The only way to get a physically realistic solution is to start from the slope and roll down to
the right plateau. An example of a physically realistic solution is shown in Figure 1. We used the
parameter b0 to set tAE ∼ 0.71 and parameter f1 to ensure a(1) = 1.

The two different regions of exponential expansion of the Universe are well visible on the
logarithmic plot of a(t) in Figure 1, Panel (a).

The other phases of the Universe evolution are easily traceable in Figure 1, Panel (b), where the
time dependence of ä(t) is plotted, and also from Panel (d), where the EOS characterizing parameter
w(t) = p(t)/ρ(t) is plotted. The asymptotics of w(t) is given in Equation (18). We can see that the
Universe passes through the following stages:

1. At t0 = 0 we observe the EOS of ultra-relativistic matter with w = 1/3. The existence of this
phase does not contradict the observations, because currently, we have information solely from
the time after the initial inflation;

2. Initial inflation with EOS of dark energy w→ −1;
3. Matter domination stage where w > −1/3;
4. Accelerated expansion with w < −1/3.

An important numerical result is that the inflaton scalar field φ tends to a constant (see Figure 1,
Panel (c)), i.e., the theory predicts the existence of a scalar field with in general a nonzero average value
in the late Universe.

As we have explained earlier for any set of suitable parameters, we can use b0 to set tAE ∼ 0.71 and
parameters f1 to ensure a(1) = 1; however, we have problems setting tSD ∼ 10−50. We investigated
the influence of other parameters on the value of tSD. As was expected, the parameter α was crucial for
this value, which is illustrated in Figure 2.
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(a) (b)

(c) (d)

Figure 1. The Universe’s evolution for (χ2 = 1, M0 = 0.0001, M1 = 0.08, M2 = 0.001). The
parameters {α, b0, pu, f1, f2} are {1.1, 0.00119, 1.5× 10−7, 20, 10−3}. On the panels are the evolution of:
(a) the scale factor a(t), (b) the second derivative of scale factor ä(t), (c) the inflaton field φ(t), and (d)
the equation of state w(t) = p(t)/ρ(t).

(a) (b) (c)

Figure 2. (a) The beginning of the matter dominated epoch tSD as a function of the parameter α for
χ2 = 1, M0 = −1, M1 = 4, M2 = 0.001, pu = 10−12, f2 = 0.001. (b) The f1 parameters used. (c) The
b0 parameters used.

We can immediately draw two conclusions from Figure 2: First, a bigger α ensures smaller tSD.
Thus, α→ 0 advocated in [17] seems implausible. Second, it seems impossible to obtain realistic tSD
solely by increasing α.

Another parameter that significantly affects the value of tSD is f2; see Figure 3, from which we can
make the following two conclusions: First, smaller f2 ensures smaller tSD. Second, it seems impossible
to obtain realistic tSD solely by decreasing f2.
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(a) (b) (c)

Figure 3. (a) The beginning of the matter dominated epoch tSD as a function of the parameter f2 for
χ2 = 1, M0 = −1, M1 = 4, M2 = 0.001, pu = 10−12, α = 1.1. (b) The f1 parameters used. (c) The b0

parameters used.

The third parameter on which tSD depends strongly is pu; see Figure 4. The results prompt that
higher pu ensures smaller tSD.

(a) (b) (c)

Figure 4. (a) The beginning of the matter dominated epoch tSD as a function of the parameter pu for
χ2 = 1, M0 = −1, M1 = 4, M2 = 0.001, pu = 10−12, α = 1.1. (b) The f1 parameters used. (c) The b0

parameters used.

The influence of the other parameters in the model on tSD is not so easy to track, because they are
interconnected through Equation (21) and because they determine the position of the effective potential
slope and, thus, the possible value of φ(0). Therefore, we prefer to consider them as determining
different families of solutions.

Finally, we want to note that starting the inflaton evolution on the slope of the effective potential
can raise a question about maintaining small slow-roll parameters during inflation. However, there
are two mechanisms in the model preventing the appearance of large kinetic energy. One has to note
that since the inflaton equation is not in the standard form, the friction should not be considered as a
dissipative process, but as an exchange of energy between the two scalar fields.

Second, depending on the parameter choice, the inflaton can perform rather peculiar movement;
see Figure 1c. In this case, the inflaton starts its evolution with φ(0) = 0 and φ̇(0) = 0. Its position
corresponds almost exactly to the middle of the effective potential slope with dUe f f /dφ < 0.
Nevertheless, the initial movement of the inflaton is towards negative values, i.e., upwards of the
potential slope, a situation resembling the stability of the L4 and L5 Lagrange points. As a result,
for a relatively long period of time, Ue f f (φ(t)) does not change significantly, and the inflaton kinetic
energy remains small. These effects together with the small value of pu ensure almost pure exponential
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growth of a(t). This in turns gives that the slow-roll parameter ε = −Ḣ/H2 during inflation is ε << 1,
because ε effectively measures the “exponentiality” of a(t).

4. Conclusions

We studied numerically the inflaton model of Guendelman–Nissimov–Pacheva by integrating the
coupled differential system governing the inflaton fields and metric scaling parameter. Our calculations
confirmed that qualitatively, this model can successfully describe the evolution of the Universe, since
it naturally reproduces its main phases. Quantitatively, the emerging picture seems different than the
one sketched in [17,18]. This requires some additional work, both theoretical and numerical, in order
to clarify the situation.

We showed that the inflationary region of the effective potential is its slope, while the evolution
starting from the higher plateau of the step-like effective potential is nonphysical. Our numerical work
showed that the type of evolution of the Universe, i.e., the number of stages one observes, depends
on the starting position on the effective potential, while the other parameters define the shape of the
potential and the time scales of the different stages. A connecting result is that the inflaton field tends
to a constant, thus predicting the existence of a non-zero averaged scalar field in the current Universe.
The value of this constant depends mainly on the initial value of the inflaton field.

We studied the dependence on the parameters of the time at which the inflation ends.
We demonstrated that it is possible to obtain shorter inflation by making the effective potential
higher, steeper, and if there is more dark matter.
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