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Abstract: In this article we study the properties, inference, and statistical applications to a parametric
generalization of the truncation positive normal distribution, introducing a new parameter so as to
increase the flexibility of the new model. For certain combinations of parameters, the model includes
both symmetric and asymmetric shapes. We study the model’s basic properties, maximum likelihood
estimators and Fisher information matrix. Finally, we apply it to two real data sets to show the
model’s good performance compared to other models with positive support: the first, related to the
height of the drum of the roller and the second, related to daily cholesterol consumption.
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1. Introduction

The half-normal (HN) distribution is a very important model in the statistical literature. Its density
function has a closed-form and its cumulative distribution function (cdf) depends on the cdf of the
standard normal model (or the error function), which is implemented in practically all mathematical
and statistical software. Pewsey [1,2] provides the maximum likelihood (ML) estimation for the general
location-scale HN distribution and its asymptotic properties. Wiper et al. [3] and Khan and Islam [4]
perform analysis and applications for the HN model from a Bayesian framework. Moral et al. [5] also
present the hnp R package, which produces half-normal plots with simulated envelopes using different
diagnostics from a range of different fitted models. The HN model is also presented in the stochastic
representation of the skew-normal distribution in Azzalini [6,7] and Henze [8]. In recent years this
distribution has been used to model positive data, and it is becoming an important model in reliability
theory despite the fact that it accommodates only decreasing hazard rates. Some of the generalizations
of this distribution can be found in Cooray and Ananda [9], Olmos et al. [10], Cordeiro et al. [11],
Gómez and Bolfarine [12], among others.

In particular, we focused on the extension of Cooray and Ananda [9]. The authors provided a
motivation related to static fatigue life to consider the transformation Z = σY1/α, where Y ∼ HN(1).
This model was named the generalized half-normal (GHN) distribution. An alternative way to extend
the HN model was introduced by Gómez et al. [13] considering a normal distribution with mean
and standard deviation µ and σ, respectively, truncated to the interval (0,+∞) and considering the
reparametrization λ = µ/σ. This model was named the truncated positive normal (TPN) distribution
with density function given by

f (z; σ, λ) =
1

σΦ(λ)
φ
( z

σ
− λ

)
, z, σ > 0, λ ∈ R, (1)
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where φ(·) and Φ(·) denote the density and cdf of the standard normal models, respectively. We
use TPN(σ, λ) to refer to a random variable (r.v.) with density function as in Equation (1). Note that
TPN(σ, 0) ≡ HN(σ).

In this work we consider a similar idea to that used in Cooray and Ananda [9] to extend the
TPN model including the transformation Y = σX1/α, where X ∼ TPN(1, λ). We will refer to this
distribution as the generalized truncation positive normal (GTPN).

The rest of the manuscript is organized as follows. Section 2 is devoted to study of some
important properties of the model, as well as its moments, quantile and hazard functions and its
entropy. In Section 3 we perform an inference and present the Fisher information matrix for the
proposed model. Section 4 discusses the selection model in nested and non-nested models for the
GTPN distribution. In Section 5 we carry out a simulation study in order to study properties of the
ML estimators in finite samples for the proposed distribution. Section 6 presents two applications to
real data-sets to illustrate that the proposed model is competitive versus other common models for
positive data in the literature. Finally, in Section 7, we present some concluding remarks.

2. Model Properties

In this section we introduce the main properties of the GTPN model such as density, quantile and
hazard functions, moments, among others.

2.1. Stochastic Representation and Particular Cases

As mentioned previously, we say that a r.v. Z has GTPN(σ, λ, α) distribution if Z = σY1/α, where
Y ∼ TPN(1, λ). By construction, the following models are particular cases for the GTPN distribution:

• GTPN(σ, λ, α = 1) ≡ TPN(σ, λ).
• GTPN(σ, λ = 0, α) ≡ GHN(σ, α).
• GTPN(σ, λ = 0, α = 1) ≡ HN(σ).

Figure 1 summarizes the relationships among the GTPN and its particular cases. We highlight
that λ = 0 and α = 1 are within the parametric space (not on the boundary). Therefore, to decide
between the GTPN versus the TPN, GHN, or HN distributions we can use classical hypothesis tests
such as the likelihood ratio test (LRT), score test (ST), or gradient test (GT).

GTPN(σ, λ, α)

λ=0

""

α=1

||
λ=0,α=1

��

TPN(σ, λ)

λ=0

""

GHN(σ, α)

α=1

||
HN(σ)

Figure 1. Particular cases for the GTPN distribution.

2.2. Density, Cdf and Hazard Functions

Proposition 1. For Z ∼ GTPN(σ, λ, α), the density function is given by

f (z; σ, λ, α) =
α

σαΦ(λ)
zα−1φ

(( z
σ

)α
− λ

)
, z ≥ 0. (2)
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where σ, α > 0 and λ ∈ R

Proof. Considering the stochastic representation discussed in Section 2.1, we have that z = g(y) =
σy1/α and

fZ(z) = fY(g−1(z))
∣∣∣∣dg−1(z)

dz

∣∣∣∣ = 1
Φ(λ)

φ(g−1(z)− λ)
αzα−1

σα
.

Replacing g−1(z) = (z/σ)α the result is obtained.

Proposition 2. For Z ∼ GTPN(σ, λ, α), the cdf and hazard function are given by

F(z; σ, λ, α) =
Φ(( z

σ )
α − λ) + Φ(λ)− 1

Φ(λ)
and h(z) =

f (z)
1− F(z)

=
αzα−1φ

(( z
σ

)α − λ
)

σα
[
1−Φ

(( z
σ

)α − λ
)] ,

respectively, for all z ≥ 0.

Figure 2 shows the density and hazard functions for the GTPN(σ = 1, λ, α) model, considering
some combinations for (λ, α). Note that the GTPN model can assume decreasing and unimodal shapes
for the density function and decreasing or increasing shapes for the hazard function.
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Figure 2. Density and hazard functions for the GTPN(σ = 1, λ, α) model with different combinations
of λ and α.

2.3. Mode

Proposition 3. The mode of the GTPN(σ, λ, α) model is attained:

1. at z = σ
21/α

(
λ +

√
λ2 + 4

(
1− 1

α

))1/α

whenever α ≥ 1 or 0 < α < 1 and λ > 0,

2. at z = 0 in otherwise.

Proof. Let l = log( f ), where f is the density function defined in (2), of a direct computation we have

∂l
∂z

= lz = −
1
z

[
α
( z

σ

)2α
− αλ

( z
σ

)α
− (α− 1)

]
.

Note that lz vanishes when α
( z

σ

)2α − αλ
( z

σ

)α − (α− 1) = 0. Using the auxiliary variable w =( z
σ

)α the last equation is rewritten as follows:
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αw2 − αλw− (α− 1) = 0. (3)

In the rest of the proof we use the discriminant of the quadratic equation in Equation (3),
which is given by ∆ = α2λ2 + 4α(α − 1) = α2[λ2 + 4(1 − 1

α )] and its zeros are given by: w =

(λ±
√

λ2 + 4(1− 1
α ))/2.

If α ≥ 1 then ∆ ≥ λ2. In consequence, the mode is attained at z1 =

σ
21/α

(
λ +

√
λ2 + 4

(
1− 1

α

))1/α

.

If 0 < α < 1 then ∆ < λ2. Here, two cases may occur. The first when 0 < ∆ < λ2, in which

case if λ > 0 its mode is attained at z = σ
21/α

(
λ +

√
λ2 + 4

(
1− 1

α

))1/α

, since lzz < 0, and if λ < 0,

then the zeros of Equation (3) are negative, implying that function l is strictly decreasing. Its mode is
therefore attained at zero. The other case is when ∆ < 0, then we have that αw2 − αλw− (α− 1) > 0
for all w ≥ 0, implying that lz < 0 for all z ≥ 0. Therefore, l is strictly decreasing and thus its mode is
zero.

Remark 1. Note that α ≥ 1 or λ > 0 implies that the mode of the GTPN model is attached in a positive value.

2.4. Quantiles

Proposition 4. The quantile function for the GTPN(σ, λ, α) is given by

Q(p) = σ
[
Φ−1(1− (1− p)Φ(λ)) + λ

] 1
α .

Proof. Follows from a direct computation, applying the definition of quantile function.

Corollary 1. The quartiles of the GTPN distribution are

1. First quartile σ[Φ−1(1− 3
4 Φ(λ)) + λ]

1
α .

2. Median σ[Φ−1(1− Φ(λ)
2 ) + λ]

1
α .

3. Third quartile σ[Φ−1(1− 1
4 Φ(λ)) + λ]

1
α .

2.5. Central Moments

Proposition 5. Let Z ∼ GTPN(σ, λ, α) and r = 1, 2, . . .. The r-th non-central moment is given by

µr = E(Zr) =

(
σλ1/α

)r
br(λ, α)

2Φ(λ)
√

π
,

where br(λ, α) = ∑∞
k=0 (

r/α
k )
(

λ
2

)−k
Γ
(

k+1
2 , λ2

2

)
and (r/α

k ) = 1
k!

k−1

∏
n=1

(r/α− n) is the generalized binomial

coefficient. When r/α ∈ N, the sum in br(λ, α) stops at r/α.

Proof. Considering the stochastic representation of the GTPN model in Section 2.1, it is immediate that
E(Zr) = σrE(Y r

α ), where Y ∼ TPN(1, λ). This expected value can be computed using Proposition 2.2
in Gómez et al. [13].

Remark 2. When r/α ∈ N, Closed Forms Can Be Obtained for µr

Figure 3 illustrates the mean, variance, skewness, and kurtosis coefficients for the GTPN(σ =

1, λ, α) model for some combinations of its parameters.
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Figure 3. Plots of the (a) expectation, (b) variance, (c) skewness and (d) kurtosis for GTPN(σ =

1, λ, α) for α ∈ {0.75, 1, 1.5} as a function of λ. In (d), the dashed line represents the kurtosis of the
normal distribution.

2.6. Bonferroni and Lorenz Curves

In this subsection we present the Bonferroni and Lorenz curves (see Bonferroni [14]). These curves
have applications not only in economics to study income and poverty, but also in medicine, reliability,
etc. The Bonferroni curve is defined as

B(p) =
1

pµ

∫ q

0
z f (z)dz, 0 ≤ p < 1.

where µ = E(Z), q = F−1(p). The Lorenz curve is obtained by the relation L(p) = pB(p). Particularly,
it can be checked that for the GTPN model the Bonferroni curve is given by

B(p) =
1

pµ

[
E(Z)− σ

Φ(λ)
√

2π

∞

∑
k=0

( 1
α

k

)
λ

1
α−k2

k−1
2 Γ(

k + 1
2

,

(
( q

σ )
α − λ

)2

2
)

]
.
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These curves serve as graphic methods for analysis and comparison, e.g., the inequality of
non-negative distributions. See, for example, for a more detailed discussion [15].

Figure 4 shows the Bonferroni curve for the GTPN(σ = 1, λ, α) model, considering different
values for λ and α.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

p

B
(p

)

GTPN(1,1,0.5)
GTPN(1,0.5,0.5 )
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GTPN(1,−1,0.5)

Figure 4. Bonferroni curve for the generalized truncation positive normal (GTPN)(σ, λ, α) model.

2.7. Shannon Entropy

Shannon entropy (see Shannon [16]) measures the amount of uncertainty for a random variable.
It is defined as:

S(Z) = −E (log f (Z)) .

Therefore, it can be checked that the Shannon entropy for the GTPN model is

S(Z) = log

(√
2πσΦ(λ)

α

)
− (α− 1)E (log(Z)) +

µ2α

2σ2α
− λµα

σα
+

λ2

2
,

Figure 5 shows the entropy curve for the GTPN(σ = 1.5, λ, α) model, considering different
values for λ and α. We note that this function is increasing in λ and α. where E (log(Z)) =∫ ∞

0
log(z) f (z; σ, λ, α)dz. For α = 1, the Shannon entropy is reduced to

S(Z) = log
(√

2πσΦ(λ)

)
+

µ2

2σ2 −
λµ

σ
+

λ2

2
,

which corresponds to the Shannon entropy for the TPN model; and for α = 1 and λ = 0, S(Z) is
reduced to

S(Z) = log
(√

πσ
)
+

µ2

2σ2 ,

which corresponds to the Shannon entropy for the HN distribution.
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Figure 5. Entropy for the GTPN(σ = 1, α, λ) model.

3. Inference

In this section we discuss the ML method for parameter estimation in the GTPN model.

3.1. Maximum Likelihood Estimators

For a random sample z1, . . . , zn from the GTPN(σ, λ, α) model, the log-likelihood function for
θ = (σ, λ, α) is given by

`(θ) = n log(α) + (α− 1)
n

∑
i=1

log(zi)− nα log(σ)− n log(Φ(λ))− n
2

log(2π)− 1
2

n

∑
i=1

(( zi
σ

)α
− λ

)2
.

Therefore, the score assumes the form S(θ) = (Sσ(θ), Sλ(θ), Sα(θ)), where

Sσ(θ) = −
nα

σ
+

n

∑
i=1

(( zi
σ

)α
− λ

)
α
( zi

σ

)α−1 zi
σ2 ,

Sλ(θ) = −nξ(λ) +
n

∑
i=1

(( zi
σ

)α
− λ

)
and

Sα(θ) =
n
α
+

n

∑
i=1

log zi − n log(σ)−
n

∑
i=1

(( zi
σ

)α
− λ

) ( zi
σ

)α
log
( zi

σ

)
,

where ξ(λ) = φ(λ)
Φ(λ)

is the negative of the inverse Mills ratio. The ML estimators are obtained by solving
the equation S(θ) = 03, where 0p denotes a vector of zeros with dimension p. This equation has the
following solution for λ

λ̂(σ̂, α̂) =

n

∑
i=1

( zi
σ̂

)2α̂
− n

n

∑
i=1

( zi
σ̂

)α̂
. (4)

Replacing Equation (4) in Sλ(θ) = 0 and Sα(θ) = 0, the problem is reduced to two equations. The
solution of this problem needs to be solved by numerical methods such as Newton-Raphson. Below
we discuss initial values for the vector θ to initialize the algorithm.
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3.2. Initial Point to Obtain the Maximum Likelihood Estimators

In this subsection, we discuss the initial points for the iterative methods to find the ML estimators
in the GTPN distribution.

3.2.1. A Naive Point Based on the HN Model

In Section 2 we discuss that GTPN(σ, λ = 0, α = 1) ≡HN(σ). Based on this fact, and considering
that the ML estimator for σ in the HN distribution has a closed-form, we can consider as an initial

point θnaive =

(√
1
n

n

∑
i=1

z2
i , 0, 1

)
.

3.2.2. An Initial Point Based on Centiles

Let qt, t = 1, . . . , 99, the t-th sample centile based on z1, . . . , zn. An initial point to θ can be
obtained by matching qu, q50 and q100−u, with u ∈ {1, 2, . . . , 48, 49}, with their respective theoretical
counterparts. Defining p = u/100, the equations obtained are

qu = σ
[
Φ−1(1− (1− p)Φ(λ)) + λ

] 1
α , q50 = σ

[
Φ−1(1− 0.5Φ(λ)) + λ

] 1
α and

q100−u = σ
[
Φ−1(1− pΦ(λ)) + λ

] 1
α .

The solutions for σ and α are

σ̃ = σ̃(λ̃) =
q100−u[

Φ−1
(

1− pΦ(λ̃)
)
+ λ̃

]1/α̃(λ̃)
and α̃ = α̃(λ̃) =

log
(

Φ−1(1−(1−p)Φ(λ̃))+λ̃

Φ−1(1−pΦ(λ̃))+λ̃

)
log
(

qu
q100−u

) ,

where λ̃ is obtained from the non-linear equation

σ̃(λ̃)
[
Φ−1

(
1− 0.5Φ(λ̃)

)
+ λ̃

]1/α̃(λ̃)
= q50.

Therefore, the initial point based on this method is given by θcent =
(

σ̃, λ̃, α̃
)

.

3.3. An Initial Point Based on the Method of Moments

A more robust initial point can be obtained using the method of moments. The equations to solve
are µr = zr, r = 1, 2, 3. The solution for σ is

σ̃? = σ̃?(λ̃?, α̃?) =
2
√

πzΦ(λ̃?)(
λ̃?
)1/α̃?

b1(λ̃?, α̃?)

.

The solution for λ and α (say λ̃? and α̃?, respectively) are obtained from the non-linear equations

(σ̃?(λ, α)λ1/α)2b2(α, λ)

2Φ(λ)
√

π
= z2 and

(σ̃?(λ, α)λ1/α)3b3(α, λ)

2Φ(λ)
√

π
= z3.

Therefore, the initial point based on this method is given by θmom =
(

σ̃?, λ̃?, α̃?
)

.
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3.4. Fisher Information Matrix

The Fisher information (FI) matrix for the GTPN distribution is given by IF(θ) =
(

Iab

)
a,b ∈ {σ,λ,α}

.

Consider the notation

Tjk = Tjk(λ) =
∫ ∞

0
[log(w)]kwjφ(w− λ)dw, j ∈ {1, 2}, k ∈ {0, 1, 2}.

Therefore,

Iσσ = − α

σ2 +
α(2α + 1)
σ2Φ(λ)

T20 −
λα(α + 1)
σ2Φ(λ)

T10,

Iσλ =
α

σΦ(λ)
T10,

Iσα =
1
σ
+

1
σΦ(λ)

[λ(T10 + T11)− T20 − 2T21],

Iλλ = 1− λξ(λ)− ξ2(λ),

Iλα = − 1
αΦ(λ)

T11,

Iαα =
1
α2 +

2
α2Φ(λ)

T22 −
λ

α2Φ(λ)
T12

We observe that Tjk(λ) is a continuous function and lim|λ|→+∞ Tjk(λ) = 0, then Tjk(λ) < +∞.
Note that for λ = 0 and α = 1 this matrix is reduced to

FI(σ, 0, 1) =

 2
σ2

1
σ

√
2
π − 4

σ T̂21

· 1− 2
π −2T̂11

· · 1 + 4T̂22

 ,

where T̂jk = Tjk(0). Additionally, we note that

det(FI(σ, 0, 1)) =
2
σ2

[
(π − 3)

π
(1 + 4T̂22 + 4T̂21)− 4(T̂11 −

√
2
π

T̂21)
2

]
≈ 0.1021506

σ2 > 0, ∀σ > 0,

where det(·) denotes the determinant operator. Therefore, the FI matrix for the reduced model (HN)
is invertible.

4. Model Discrimination

In this section we discuss some techniques to discriminate among the GTPN distribution and
other models.

4.1. GTPN versus Submodels

An interesting problem to solve is the discrimination between GTPN and the three submodels
represented in Figure 1. In other words, we are interested in testing the following hypotheses:

• H(1)
0 : α = 1 versus H(1)

1 : α 6= 1 (TPN versus GTPN distribution).

• H(2)
0 : λ = 0 versus H(2)

1 : λ 6= 0 (GHN versus GTPN distribution).

• H(3)
0 : (α, λ) = (1, 0) versus H(3)

1 : (α, λ) 6= (1, 0) (HN versus GTPN distribution).

The three hypotheses can be tested considering the LRT, ST, and GT. Below we present the
statistics for the three tests considered and for the three hypotheses of interest.
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4.1.1. Likelihood Ratio Test

The statistic for the LRT (say SLR) to tests H(j)
0 , j = 1, 2, 3, is defined as

SLRj = 2
[
`
(

σ̂, λ̂, α̂
)
− `

(
σ̂0j, λ̂0j, α̂0j

)]
,

where σ̂0j, λ̂0j and α̂0j denote the ML estimators for σ, λ and α restricted to H(j)
0 , j = 1, 2, 3. Under H(j)

0 ,

j = 1, 2, SLRj ∼ χ2
(1) and under H(3)

0 , SLR3 ∼ χ2
(2), where χ2

(p) denotes the Chi-squared distribution

with p degrees of freedom. For H(3)
0 , we obtain

σ̂03 =

√
1
n

n

∑
i=1

z2
i , λ̂03 = 0 and α̂03 = 1,

whereas to test H(1)
0 and H(2)

0 the ML estimators under the null hypotheses need to be computed
numerically. However, in both cases the problem is reduced to a unidimensional maximization. For
details see Cooray and Ananda [9] and Gómez et al. [13], respectively.

4.1.2. Score Test

The statistic for the ST (say SR) to test H(j)
0 , j = 1, 2, 3, is defined as

SRj =
[
S
(

θ̂0j

)]> [
IF
(

θ̂0j

)]−1
S
(

θ̂0j

)
,

where θ̂j is the ML estimator under H(j)
0 . Under H(j)

0 , j = 1, 2, SRj ∼ χ2
(1) and under H(3)

0 , SR3 ∼ χ2
(2).

4.1.3. Gradient Test

The statistic for the GT (say ST) to tests H(j)
0 , j = 1, 2, 3, is defined as

STj = S(θ̂j)
(

θ̂− θ̂j

)
.

Again, under H(j)
0 , j = 1, 2, STj ∼ χ2

(1) and under H(3)
0 , ST3 ∼ χ2

(2). After some algebraic
manipulations, we obtain that

ST1 = (α̂− 1)

{
n [1− log (σ̂01)] +

n

∑
i=1

[
log zi −

((
zi

σ̂01

)
− λ̂01

)(
zi

σ̂01

)
log
(

zi
σ̂01

)]}
.

ST2 = λ̂

[
−n

√
2
π

+
n

∑
i=1

(
zi

σ̂02

)α̂02
]

.

ST3 = (α̂− 1)

{
n [1− log (σ̂03)] +

n

∑
i=1

[
log zi −

(
zi

σ̂03

)2
log
(

zi
σ̂03

)]}
+ λ̂

[
−n

√
2
π

+
n

∑
i=1

(
zi

σ̂03

)]
.
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4.2. Non-Nested Models

The comparison of non-nested models can be performed based on the AIC criteria (Akaike [17]),
where the model with a lower AIC is preferred. However, in practice we can have a set of inappropriate
models for a certain data set. For this reason, we also need to perform a goodness-of-fit validation.
This can be performed, for instance, based on the quantile residuals (QR). For more details see Dunn
and Smyth [18]. These residuals are defined as

QRi = G(zi; ψ̂), i = 1, . . . , n,

where G(; ψ̂) is the cdf of the specified distribution evaluated in the estimator for ψ. If the model
is correctly specified, such residuals are a random sample from the standard normal distribution.
This can be assessed using, for instance, the Anderson–Darling (AD), Cramer-Von-Mises (CVM) and
Shapiro–Wilks (SW) tests. A discussion of these tests can be seen in Yazici and Yocalan [19].

5. Simulation

In this section we present a Monte Carlo (MC) simulation study in order to illustrate the behavior
of the ML estimators. We consider three sample sizes: n = 50, 150 and 300; two values for σ:1 and
2; two values for λ:3 and 4; and three values for α: 0.8, 1 and 2. For each combination of n, σ, λ and
α, we draw 10,000 samples of size n from the GTPN(σ, λ, α) model. To simulate a value from this
distribution, we consider the following scheme:

1. Simulate X ∼ Uni f orm(0, 1).
2. Compute Y = Φ−1(1 + (X + 1)Φ(λ)) + λ.

3. Compute Z = σY
1
α .

For each sample generated, ML estimators were computed numerically using the
Newton-Raphson algorithm. Table 1 presents means and standard deviations for each parameter in
each case. Notice that bias and standard deviations are reduced as the sample size increases, suggesting
that the ML estimators are consistent.
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Table 1. Monte Carlo (MC) simulation study for the maximum likelihood (ML) estimators in the GTPN(σ, λ, α) model in 12 combinations of σ, λ and α. The results
summarize the mean and the standard deviation (sd) of the respective estimators obtained in the 10,000 replicates.

n = 50 n = 150 n = 300 n = 1000
True Valor σ̂ λ̂ α̂ σ̂ λ̂ α̂ σ̂ λ̂ α̂ σ̂ λ̂ α̂

σ λ α mean sd mean sd mean sd mean sd mean sd mean sd mean sd mean sd mean sd mean sd mean sd mean sd

1

3
0.8 1.523 1.573 3.089 1.797 0.987 1.029 1.227 1.029 3.000 1.052 0.875 0.350 1.081 0.614 3.017 0634 0.830 0.202 1.011 0.233 3.014 0.267 0.803 0.071
1 1.286 1.105 3.118 1.843 1.227 0.705 1.111 0.705 3.027 1.040 1.083 0.425 1.044 0.444 3.020 0.629 1.031 0.250 1.006 0.185 3.012 0.266 1.004 0.089
2 1.006 0.510 3.220 2.036 2.432 0.309 1.011 0.309 3.019 1.055 2.171 0.850 1.001 0.196 3.022 0.614 2.058 0.481 0.998 0.093 3.013 0.266 2.008 0.177

4
0.8 1.489 1.799 4.391 2.010 0.971 0.860 1.087 0.860 4.280 1.199 0.817 0.282 1.017 0.513 4.164 0.786 0.798 0.148 1.003 0.301 4.049 0.413 0.799 0.082
1 1.236 1.219 4.439 2.182 1.203 0.631 1.018 0.631 4.295 1.222 1.017 0.343 0.986 0.418 4.187 0.826 0.995 0.191 0.993 0.230 4.055 0.404 0.998 0.099
2 0.962 0.543 4.642 2.495 2.360 0.321 0.957 0.321 4.323 1.326 2.033 0.696 0.974 0.223 4.168 0.839 2.000 0.382 0.993 0.118 4.045 0.404 2.000 0.198

2

3
0.8 3.006 3.131 3.157 1.876 0.974 1.996 2.423 1.996 3.018 1.045 0.869 0.340 2.152 1.185 3.023 0.624 0.823 0.194 2.034 0.472 3.007 0.269 0.805 0.072
1 2.512 2.198 3.215 1.942 1.207 1.437 2.237 1.437 3.028 1.077 1.086 0.431 2.094 0.897 3.017 0.642 1.033 0.250 2.009 0.373 3.015 0.269 1.004 0.089
2 1.999 1.039 3.318 2.223 2.417 0.631 2.017 0.631 3.035 1.096 2.171 0.862 2.000 0.405 3.027 0.638 2.061 0.504 1.995 0.186 3.016 0.267 2.006 0.177

4
0.8 2.880 3.544 4.562 2.283 0.970 1.714 2.161 1.714 4.326 1.288 0.813 0.282 2.024 1.078 4.194 0.849 0.796 0.160 2.003 0.573 4.053 0.404 0.799 0.079
1 2.402 2.434 4.659 2.419 1.176 1.283 2.033 1.283 4.344 1.346 1.015 0.355 1.974 0.835 4.190 0.844 0.995 0.191 1.990 0.465 4.053 0.408 0.998 0.100
2 1.913 1.132 4.802 2.848 2.378 0.668 1.898 0.668 4.393 1.469 2.024 0.708 1.938 0.460 4.198 0.901 1.993 0.391 1.984 0.236 4.047 0.401 2.000 0.198
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6. Applications

In this section we present two real data applications to illustrate the better performance of the
GTPN model over other well known models in the literature. For these comparisons we also consider
the Weibull (WEI) and the Generalized Lindley (GL, Zakerzadeh [20]) models. The density function of
the Weibull distribution is given by

f (x; σ, λ) =
σ

λ
xσ−1e−xσ/λ,

with x > 0, σ > 0 and λ > 0, whereas for the GL model is given by

f (x; α, θ, γ) =
θ2(θx)α−1(α + γx)e−θx

(γ + θ)Γ(α + 1)
,

with x > 0, θ > 0 α > 0 and γ > 0.

6.1. Application 1

The data set was taken from Laslett [21], and consisted of n = 115 heights measured at 1 micron
intervals along the drum of a roller (i.e., parallel to the axis of the roller). This was part of an extensive
study of the surface roughness of the rollers. A statistical summary of the data set is presented in
Table 2.

Table 2. Descriptive statistics of the Laslett data set.

Dataset n X S2 √
b1 b2

Heights measured 115 3.48 0.52 −1.24 6.30

Initially, we calculate the estimators based on the centiles, naive, and moments of the
GTPN distribution, which are θcent = (2.326, 2.741, 2.376), θnaive = (3.557, 0, 1), and θmom =

(3.075, 1.572, 3.203) . We used these estimations as initial values in computing the ML estimators
for the GTPN model. Results are presented in Table 3. Note the high estimated standard error for the
γ parameter in the GL model. In addition, note that, based on the AIC criteria and BIC criteria [22], the
GTPN model is preferred (among the fitted models) for this data set. Figure 6 shows the estimated
density for each model in this data set, where the GTPN model appears to provide a better fit. Finally,
Figure 7 also presents the qq-plot for the QR in the same models and the p − values for the three
normality tests discussed in Section 4.2. Results suggest that the GTPN model is an appropriate model
for this data set while the rest of models are not.

Table 3. Estimation of the parameters and their standard errors (in parentheses) for the GTPN, TPN,
WEI, and GL models for the data set. The AIC and BIC criteria are also included.

Estimated GTPN TPN WEI GL

σ 2.354(0.379) 0.720(0.047) 5.855(0.435) -
λ 2.512(0.495) 4.842(0.333) 3.744(0.062) 4.093(0.539)
α 2.227(0.401) - - 13.467(1.902)
γ - - - 15.528 (29.638)

AIC 238.43 254.63 251.74 308.67
BIC 246.67 260.12 257.23 316.90
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Figure 6. Fit of the distributions for the Laslett data set.
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Figure 7. QR for the fitted models in the Laslett data set. The p− values for the Anderson–Darling
(AD), Cramer-Von-Mises (CVM) and Shapiro–Wilks (SW) normality tests are also presented to check if
the RQ came from the standard normal distribution.
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6.2. Application 2

The data set to be investigated was taken from Nierenberg et al. [23], and is related to a study
on plasma retinol and betacarotene levels from a sample of n = 315 subjects. More specifically, the
response variable observed is grams of cholesterol consumed per day. Descriptive statistics for the
variable are provided in Table 4.

Initially, we calculate the estimators based on the centiles, naive, and moments of the
GTPN distribution, which are θcent = (2.326, 2.741, 2.376), θnaive = (275.960, 0, 1), and θmom =

(0.003,−86.024, 1.854). We used these estimations as initial values in computing the ML estimators
for the GTPN model. Table 5 summarizes the fit for this data set. As in last application, we noted
the high estimated standard error for the γ parameter in the GL model. Again, based on the AIC
criteria and BIC criteria, the preferred model is the GTPN. Figure 8 shows the estimated density for
each model in the cholesterol data set. The GTPN model appears to provide a better fit. For this data
set, we also present the hypothesis tests for the three particular models of the GTPN distribution
discussed in Section 4.1. Specifically, for H(1)

0 : α = 1 versus H(1)
1 : α 6= 1 we obtained p− values

< 0.0001, 0.0157, and < 0.0001 for the SLR, SR, and ST tests, respectively. Therefore, with a significance
of 5% we preferred the GTPN over the TPN model. For H(2)

0 : λ = 0 versus H(2)
1 : λ 6= 0 we obtained

p− values < 0.0001, 0.0008 and < 0.0001 for the SLR, SR and ST tests, respectively. Hence, with a
significance of 5% we preferred the GTPN over the GHN model. Finally, H(3)

0 : (α, λ) = (1, 0) versus

H(3)
1 : (α, λ) 6= (1, 0) we obtained p− values < 0.0001 for the three tests. Therefore, with a significance

of 5% we preferred the GTPN over the HN model. Finally, Figure 9 also presents the qq-plot for the
QR in the fitted models and the p− values for the three normality tests. Results suggest that the GTPN
model is appropriate for this data set while the rest of the models are not.

Table 4. Descriptive statistics for the cholesterol data set.

Data Set n X S2 √
b1 b2

Heights measured 315 242.46 17421.79 1.47 6.34

Table 5. Estimated parameters and their standard errors (in parentheses) for the GTPN, TPN, WEI, and
GL models for the cholesterol data set. The AIC and BIC criteria are also presented.

Estimated GTPN TPN WEI GL

σ 0.040(0.027) 151.106(8.734) 1.964(0.080) -
λ 7.888(0.459) 1.455(0.138) 274.717(8.353) 0.016(0.001)
α 0.240(0.013) - - 2.831(0.293)
γ - - - 2.067 (6.720)

AIC 3874.92 3943.25 3905.68 3879.07
BIC 3886.17 3950.75 3913.18 3890.42

Variable
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ty

0 200 400 600 800

0.000
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Figure 8. Fit of the distributions for the cholesterol data set.
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(a) GTPN
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(b) TPN
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(c) WEI
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(d) GL

Figure 9. RQ for the fitted models in the cholesterol data set. The p− values for the AD, CVM, and SW
normality tests are also presented to check if the QR came from the standard normal distribution.

7. Conclusions

In this work we introduce a new distribution for positive data named the GTPN model. This new
distribution includes as particular cases three models well-known in the literature: the TPN, GHN,
and HN models. The basic properties of the model and ML estimation were studied. We performed a
simulation study in finite samples and two real data applications, showing the good performance of
the model compared with other usual models in the literature.
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