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Abstract: In terms of deep reinforcement learning (RL), exploration is highly significant in achieving
better generalization. In benchmark studies, ε-greedy random actions have been used to encourage
exploration and prevent over-fitting, thereby improving generalization. Deep RL with random
ε-greedy policies, such as deep Q-networks (DQNs), can demonstrate efficient exploration behavior.
A random ε-greedy policy exploits additional replay buffers in an environment of sparse and binary
rewards, such as in the real-time online detection of network securities by verifying whether the
network is “normal or anomalous.” Prior studies have illustrated that a prioritized replay memory
attributed to a complex temporal difference error provides superior theoretical results. However,
another implementation illustrated that in certain environments, the prioritized replay memory is
not superior to the randomly-selected buffers of random ε-greedy policy. Moreover, a key challenge
of hindsight experience replay inspires our objective by using additional buffers corresponding
to each different goal. Therefore, we attempt to exploit multiple random ε-greedy buffers to
enhance explorations for a more near-perfect generalization with one original goal in off-policy
RL. We demonstrate the benefit of off-policy learning from our method through an experimental
comparison of DQN and a deep deterministic policy gradient in terms of discrete action, as well as
continuous control for complete symmetric environments.

Keywords: deep Q-network (DQN); reinforcement learning (RL); explorations; deep deterministic
policy gradient (DDPG); random ε-greedy buffers

1. Introduction

Deep reinforcement learning (RL) [1] has been applied in challenging domains, such as games and
robotics. A combination of RL and nonlinear function approximates, such as deep neural networks,
helps in automating decision making and control issues. However, it can also be challenging in
terms of stability and convergence [2] in real-time online learning, such as in the detection of network
security through the verification of whether the network is “normal or anomalous” [3–7]. Moreover,
its widespread adaptation in the real world, such as with robotic arms, is difficult because of sample
complexity and heavy dependence on certain hyper-parameters, such as exploration constants [3–7].
A significant challenge in robotics is the engineering of a carefully shaped reward function. However,
the necessity of reward function engineering restricts the general applicability of RL in the real world.
Recent remarkable research on hindsight experience replay (HER) [8] provides additional replay buffers
with the original goal and a subset of other goals without any domain knowledge. HER improves the
sample-efficient setting and learns the possible multi-goals, even in an environment of sparse rewards.
Off-policy algorithms in RL [1], such as deep Q-networks (DQNs) [9,10], reuse the past experience
with random ε-greedy actions in replay buffers for efficient exploration behaviors. Andrychowicz
et al. [8] found that a DQN combined with HER resolves some tasks more easily than that without
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HER. An experience comprises a tuple, such as state, action, reward, or new state, and each agent of
DQN can exploit a batch of experiences to update the Q-value function via temporal differencing (TD)
learning [9,10]. The experience replay (ER) buffer discards old memories at each step by sampling the
buffer randomly and updating the DQN agent. It aids in breaking temporal relations and increasing
data usage [11,12].

The present study is inspired by the quantification of generalization in RL [11], which investigates
the impact of injecting stochastic methods on generalization by random ε-greedy actions overriding
the agent’s preferred actions. A random ε-greedy action has been used to encourage exploration and
prevent excessive over-fitting [11]. There has been research on the exploration diversities of stability
and convergence. A prioritized replay memory [13] has been used in a DQN for replaying important
transitions more frequently and learning more efficiently. HER [8] makes possible sample-efficient
learning with additional replay buffers. A parameter space in noise [14] in a neural network leads to a
more abundant set of exploratory behaviors through noise injection in the action space in deep RL.
However, some empirical implementations show that in certain environments, adding parameter space
noise [14] may not improve ε-greedy random actions by OpenReivew.net [15]. A prioritized replay
memory attributed to a complex TD error might provide better theoretical results. The TD errors might
create a balance issue between variance and bias, because TD attributes can be computed at every
n-time step [11,12]. Moreover, some studies have only partially succeeded in combining drop-out,
L2 regularization, and ε-greedy random actions. Thus, training with only ε-greedy random actions
can vastly improve generalization and exploration [11,12].

This paper proposes multiple ε-greedy experience buffers in off-policy deep RL [1] for enhancing
explorations for a more near-perfect generalization for the original goal. We consider strengthening
the advantages of exploring model-free, deep RL, and demonstrate that the off-policy method
benefits through the experimental comparison of DQN [9,10] and DDPG [16], which is actually based
on on-policy, and represents a trade-off between policy optimization [2,16] and Q-learning [9,10].
The proposed deep RL model is compatible with the discrete action as well as continuous control,
symmetrically. Therefore, we can expect better prediction accuracy in real-time online learning, such
as detecting network intrusions by verifying whether the network is “normal or anomalous” [3–7].
The concept of our proposed multiple ε-buffers is extremely simple. After experiencing some episodes,
we store them in the replay buffers R1 and R2. Note that we can replay one trajectory with only one
goal, assuming that we exploit an off-policy RL like DQN [9,10] and DDPG [16]. When the procedure
passes through multiple ε-buffers, the trade-off between policy optimization and Q-learning can be
solid and strong due to the deep neural network in DQN [9,10] or DDPG [16].

2. Background

RL comprises an agent with an environment that is described by a set of states, S, a set of actions,
A, a distribution of initial states, p(s0), a reward function, r: S × A → R, transition probabilities,
p(st+1|st,at), and a discount factor, γ ∈ [0,1] [1]. Deterministic policy maps from states to actions
are given as π: S → A. At each time step, t, the agent selects an action attributed to the current
state: at = π(st), and takes the reward, rt = r(st,at) [1]. The new state of the environment is sampled
from the distribution p(|st,at). A discounted cumulative reward is a return, Rt =

∑
Tγt’−trt’, where

T is the time step at which the agent’s simulation terminates [1]. The goal here is to maximize its
expected return Es0[R0|s0]. The action value function, named Q-function, is defined as Qπ(st,at) =

E[Rt|st,at]. An optimal policy is denoted by the following equation, called the Bellman equation,
Q*(s,a) = Es’~p(|s,a) [r + γmaxa’Q*(s’,a’)|s,a], (1), this equation converges at the Q-function as an optimal
action value [1]. The Bellman equation is to be used as a function approximation for estimating the
Q-function, Q(s,a;θ) ≈ Q*(s,a), as an action value [1]. This can be a linear-function approximation, but it
is sometimes even a nonlinear-function approximation, such as with a deep neural network [9,10].
Therefore, we attempt to exploit a deep neural network as a function approximation. We refer to a deep
neural network approximation with weights θ as the Q-function [9,10]. A Q-function network can be
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trained by minimizing a sequence of loss functions, Li(θi), which changes at i per iteration [1,9,10].
Li(θi) = Es,a~p(|s,a)[(yi − Q(s,a;θi))2], (2), where yi = Es’∼p(|s,a) [r + γmaxa’Q*(s’,a’;θi−1)|s,a] is the target
for i per iteration. The loss function can be differentiated with regard to the weights, depending on the
gradient [1,9,10]. ∇θiLi(θi) = Es,a~p(|s,a);s’~ε[r + γmaxa’Q(s’,a’;θi−1) − Q(s,a;θi))∇θiQ(s,a;θi)], (3), [1,9,10].
Optimizing the loss function by using the stochastic gradient descent is computationally intricate.
Q-learning as a function approximation becomes possible [17,18], and is model-free, which indicates
the RL model and off-policy. This implies that it learns about greedy strategy a = maxaQ(s,a;θ) while
obeying an exploration selected by ε-greedy with a probability of 1 − ε and a random action with
a probability of ε for exploration and exploitation [17,18]. DQN is a well-known, model-free RL
algorithm attributed to discrete action spaces. In DQN [9,10], we construct a deep neural network, Q,
which approximates Q∗ and is greedy-defined as πQ(s) = argmaxa∈AQ(s,a) [9,10]. It is a ε-greedy policy
with probability ε and takes the action πQ(s) with probability 1 − ε. Each episode uses the ε-greedy
policy following Q as an approximation of the deep neural network. The tuples (st, at, rt, st+1) are stored
in the replay buffer, and each new episode is configured to neural network training [9,10]. The deep
neural network is trained using the gradient descent of random episodes on loss L, encouraging Q to
follow the Bellman equation [9,10]. The tuples are sampled from the replay buffer of random episodes.
The target network yt is computed by a separate neural network that changes more slowly than the
main deep neural network in order to optimize a stable process. The weights of the target network are
set to the current weights of the main deep neural network. The DQN algorithm [9,10] is presented in
Algorithm 1.

Algorithm 1 Deep Q-learning with Experience Replay

Initialize replay memory D to capacity N
Initialize action-value function Q with random weights
for episode = 1, M do

Initialize sequence s1 = {x1} and preprocessed sequenced φ1 = φ (s1)
for t = 1, T do

With probability ε, select a random action αt

Otherwise select αt = maxαQ*(φ(st),α;θ)
Execute action αt in emulator and observe reward rt and image xt+1
Set st+1 = st, αt, xt+1 and preprocess φt+1 = φ(st+1)
Store transition (φt, αt, rt, φt+1) in D
Sample random mini-batch of transitions (φj, αj, rj, φj+1) from D
Set yj = rj for terminal φj+1
Or yj = rj + γmaxα’Q *(φj+1,α’;θ) for non-terminal φj+1
Perform a gradient descent step on (yj − Q(φj, αj |θ))2

end for
end for

A deep deterministic policy gradient (DDPG) [16] is a well-known, model-free RL algorithm
attributed to continuous action spaces [2,16]. In a DDPG, we construct two neural networks: a target
policy as an actor, π: S→ A, and an action-value-function approximation as a critic, Q: S × A→ R.
The critic approximates Qπ, which is the action-value function of the actor [16]. Each episode uses
a noisy policy of the target, πb(s) = π(s) +
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gradient [1,9,10]. ∇θiLi(θi) = Es,a~p(|s,a);s’~ε[r + γmaxa’Q(s’,a’;θi−1) − Q(s,a;θi))∇θiQ(s,a;θi)], (3), [1,9,10]. 
Optimizing the loss function by using the stochastic gradient descent is computationally intricate. Q-
learning as a function approximation becomes possible [17,18], and is model-free, which indicates the 
RL model and off-policy. This implies that it learns about greedy strategy a = maxaQ(s,a;θ) while 
obeying an exploration selected by ε-greedy with a probability of 1 − ε and a random action with a 
probability of ε for exploration and exploitation [17,18]. DQN is a well-known, model-free RL 
algorithm attributed to discrete action spaces. In DQN [9,10], we construct a deep neural network, Q, 
which approximates Q∗ and is greedy-defined as πQ(s) = argmaxa∈AQ(s,a) [9,10]. It is a ε-greedy policy 
with probability ε and takes the action πQ(s) with probability 1 − ε. Each episode uses the ε-greedy 
policy following Q as an approximation of the deep neural network. The tuples (st, at, rt, st+1) are stored 
in the replay buffer, and each new episode is configured to neural network training [9,10]. The deep 
neural network is trained using the gradient descent of random episodes on loss L, encouraging Q to 
follow the Bellman equation [9,10]. The tuples are sampled from the replay buffer of random 
episodes. The target network yt is computed by a separate neural network that changes more slowly 
than the main deep neural network in order to optimize a stable process. The weights of the target 
network are set to the current weights of the main deep neural network. The DQN algorithm [9,10] 
is presented in Algorithm 1. 

Algorithm 1 Deep Q-learning with Experience Replay 

Initialize replay memory D to capacity N 

Initialize action-value function Q with random weights 

for episode = 1, M do 
      Initialize sequence s1 = {x1} and preprocessed sequenced 𝜙1 = 𝜙 (s1) 

      for t = 1, T do 
     With probability 𝜀, select a random action 𝛼t 

      Otherwise select 𝛼t = max𝛼Q*(𝜙(st),𝛼;𝜃) 

     Execute action 𝛼t in emulator and observe reward rt and image xt+1 

     Set st+1 = st, 𝛼t, xt+1 and preprocess 𝜙t+1 = 𝜙(st+1) 

     Store transition (𝜙t, 𝛼t, rt, 𝜙t+1) in D     

     Sample random mini-batch of transitions (𝜙j, 𝛼j, rj, 𝜙j+1) from D  

     Set    yj = rj                         for terminal 𝜙j+1 

     Or     yj = rj + 𝛄max𝛼’Q *(𝜙j+1,𝛼’;𝜃)   for non-terminal 𝜙j+1 

Perform a gradient descent step on (yj − Q(𝜙j, 𝛼j |𝜃))2

       end for 

end for 

A deep deterministic policy gradient (DDPG) [16] is a well-known, model-free RL algorithm 
attributed to continuous action spaces [2,16]. In a DDPG, we construct two neural networks: a target 
policy as an actor, π: S → A, and an action-value-function approximation as a critic, Q: S × A → R. 
The critic approximates Qπ, which is the action-value function of the actor [16]. Each episode uses a 
noisy policy of the target, πb(s) = π(s) + Ɲ 0,1) [16]. The critic is trained in the same way as the Q-
function in a DQN [9,10]. The target network yt is computed using the output of the actor, i.e., yt = rt 
+ γQ(st+1, π(st+1)), and the actor’s deep neural network is trained using the gradient descent of random 
episodes on the loss La = −EsQ(s,π(s)) [2,16] and sampled from the replay buffer of random episodes. 
The gradient of La is computed by both the critic and actor through back-propagation [2,16]. The 
algorithm of a DDPG [16] is shown in Algorithm 2.

(0,1) [16]. The critic is trained in the same way as the
Q-function in a DQN [9,10]. The target network yt is computed using the output of the actor, i.e.,
yt = rt + γQ(st+1, π(st+1)), and the actor’s deep neural network is trained using the gradient descent of
random episodes on the loss La = −EsQ(s,π(s)) [2,16] and sampled from the replay buffer of random
episodes. The gradient of La is computed by both the critic and actor through back-propagation [2,16].
The algorithm of a DDPG [16] is shown in Algorithm 2.
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Algorithm 2 Deep Deterministic Policy Gradient

Randomly initialize critic Q(s, a|θQ) and actor µ(s|θµ) with weights θQ and θµ

Initialize target Q’ and µ’ with weights θQ’
← θQ, θµ’

← θµ

Initialize replay memory R
for episode = 1, M do

Initialize a random process N for action exploration
Receive initial observation state s1
for t = 1, T do

Select action αt = µ(st|θ
µ) +
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gradient [1,9,10]. ∇θiLi(θi) = Es,a~p(|s,a);s’~ε[r + γmaxa’Q(s’,a’;θi−1) − Q(s,a;θi))∇θiQ(s,a;θi)], (3), [1,9,10]. 
Optimizing the loss function by using the stochastic gradient descent is computationally intricate. Q-
learning as a function approximation becomes possible [17,18], and is model-free, which indicates the 
RL model and off-policy. This implies that it learns about greedy strategy a = maxaQ(s,a;θ) while 
obeying an exploration selected by ε-greedy with a probability of 1 − ε and a random action with a 
probability of ε for exploration and exploitation [17,18]. DQN is a well-known, model-free RL 
algorithm attributed to discrete action spaces. In DQN [9,10], we construct a deep neural network, Q, 
which approximates Q∗ and is greedy-defined as πQ(s) = argmaxa∈AQ(s,a) [9,10]. It is a ε-greedy policy 
with probability ε and takes the action πQ(s) with probability 1 − ε. Each episode uses the ε-greedy 
policy following Q as an approximation of the deep neural network. The tuples (st, at, rt, st+1) are stored 
in the replay buffer, and each new episode is configured to neural network training [9,10]. The deep 
neural network is trained using the gradient descent of random episodes on loss L, encouraging Q to 
follow the Bellman equation [9,10]. The tuples are sampled from the replay buffer of random 
episodes. The target network yt is computed by a separate neural network that changes more slowly 
than the main deep neural network in order to optimize a stable process. The weights of the target 
network are set to the current weights of the main deep neural network. The DQN algorithm [9,10] 
is presented in Algorithm 1. 

Algorithm 1 Deep Q-learning with Experience Replay 

Initialize replay memory D to capacity N 

Initialize action-value function Q with random weights 

for episode = 1, M do 
      Initialize sequence s1 = {x1} and preprocessed sequenced 𝜙1 = 𝜙 (s1) 

      for t = 1, T do 
     With probability 𝜀, select a random action 𝛼t 

      Otherwise select 𝛼t = max𝛼Q*(𝜙(st),𝛼;𝜃) 

     Execute action 𝛼t in emulator and observe reward rt and image xt+1 

     Set st+1 = st, 𝛼t, xt+1 and preprocess 𝜙t+1 = 𝜙(st+1) 

     Store transition (𝜙t, 𝛼t, rt, 𝜙t+1) in D     

     Sample random mini-batch of transitions (𝜙j, 𝛼j, rj, 𝜙j+1) from D  

     Set    yj = rj                         for terminal 𝜙j+1 

     Or     yj = rj + 𝛄max𝛼’Q *(𝜙j+1,𝛼’;𝜃)   for non-terminal 𝜙j+1 

Perform a gradient descent step on (yj − Q(𝜙j, 𝛼j |𝜃))2

       end for 

end for 

A deep deterministic policy gradient (DDPG) [16] is a well-known, model-free RL algorithm 
attributed to continuous action spaces [2,16]. In a DDPG, we construct two neural networks: a target 
policy as an actor, π: S → A, and an action-value-function approximation as a critic, Q: S × A → R. 
The critic approximates Qπ, which is the action-value function of the actor [16]. Each episode uses a 
noisy policy of the target, πb(s) = π(s) + Ɲ 0,1) [16]. The critic is trained in the same way as the Q-
function in a DQN [9,10]. The target network yt is computed using the output of the actor, i.e., yt = rt 
+ γQ(st+1, π(st+1)), and the actor’s deep neural network is trained using the gradient descent of random 
episodes on the loss La = −EsQ(s,π(s)) [2,16] and sampled from the replay buffer of random episodes. 
The gradient of La is computed by both the critic and actor through back-propagation [2,16]. The 
algorithm of a DDPG [16] is shown in Algorithm 2.

t according to the current policy and exploration noise
Execute action αt and observe reward rt and new state st+1
Store transition (st, αt, rt, st+1) in R
Sample random mini-batch of transitions (sj, αj, rj, sj+1) from R
Set yj = rj + γQ’(sj+1, µ’(sj+1|θµ’)|θQ’)
Update critic by minimizing the loss: L = 1

n Σj(yj − Q(sj, αj|θ
Q))2

Update the actor policy using the sampled policy gradient:
∇θµI≈ 1

n Σj∇αQ(s,α|θQ)|s = sj, α = α µ(sj)∇θµµ(s|θµ)|sj
Update the target:

θQ’
← τθQ+(1−τ) θQ’

θµ’
← τθµ+(1−τ) θµ’

end for
end for

3. Multiple Random ε-Buffers

3.1. Proposed Off-Policy Algorithm

We propose multiple random ε-greedy buffers in a DQN [9,10] for discrete action spaces and
DDPG [2,16] for continuous action spaces. The idea of our proposed multiple ε-buffers is to store
experienced episodes in the replay buffers R1 and R2. For better exploration, the agent evaluates a
target policy π(a|s) to compute Vπ (s) or Qπ(s,a) while following a behavior policy µ(a|s), where {s1, a1,
r2, . . . sT} ~ µ. The agent learns about multiple policies while following one policy. This means that it
can learn about the optimal policy and follow the exploratory policy. The target policy π is greedy
with respect to Q(s,a), such as π(st+1) = argmaxa’Q(st+1,a’), while the behavior policy µ is ε-greedy
with respect to Q(s,a), such as µ(st+1) = Rt+1 + maxa’γQ(st+1,a’). When an agent follows a greedy
policy, convergence changes rapidly. However, because of a lack of exploration, the agent reaches
local optimization. Many other challenges address this global–local dilemma [2,9,10,16]. A remarkable
recent work, HER [8], provides additional replay buffers with the original goal and a subset of other
goals without any complicated reward function. The off-policy algorithms in RL, such as DQN [9,10]
or DDPG [2,16], reuse the past experience with random ε-greedy actions in replay buffers for better
exploration. The ER buffers discard old memories at each step by sampling the buffer randomly to
update the DQN agent. Therefore, ER helps to break temporal relations and increase data usage [11,12].

Our study is inspired by quantifying generalization in RL [11], which provides a random ε-greedy
action that has been used to encourage exploration and prevent excessive over-fitting. A prioritized replay
memory [13] has been exploited in a DQN to replay important transitions. A parameter space in the
noise [14] of a neural network leads to a more abundant set of exploratory behaviors. These recent studies
have shown how HER [8] can improve random ε-greedy actions. Therefore, we consider enhancing
multiple random ε-greedy experience buffers in deep RL for more near-perfect explorations for the
original goal. We demonstrate the off-policy learning benefit from our method through an experimental
comparison of DQN [9,10] and DDPG [2,16] in high-dimensional discrete action environments as well
as continuous control tasks. Our idea is that after experiencing some episodes, we store them in the
replay buffers R1 and R2. We can replay one trajectory with only one goal, assuming that we exploit an
off-policy RL like DQN [9,10] and DDPG [2,16]. While the procedure passes through multiple random
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ε-buffers, the balance between variance and bias of the policy can be solid and strong due to the training
of the deep neural network.

Without using a complicated shaping reward and knowledge environment, we attempt to achieve a
near-perfect global optimal goal. This idea is also used in the HER [8] and ODE model [12]. We attempt
to achieve better exploration, which can balance computational speed and global optimization. If we use
both a target policy and an alternative policy, we can attain the previously achieved global optimization.
Subsequently, we consider the computational speed while maintaining generalization. HER [8] stores
each transition in the replay buffer not only with the original goal, but also with a subset of other goals.
However, we increase the number of replay buffers, which are a minimum of two. Therefore, we can
replay each trajectory with two or more buffers, assuming that we use an off-policy RL algorithm,
such as DQN [9,10] or DDPG [2,16], for a complete symmetric environment. Similar to HER [8],
our proposed model can learn with extremely sparse rewards, and performs better in our experiments.
These results indicate the practical challenges with reward shaping, such as HER [8]. Moreover, we can
acquire the results of the effects of memory size from ODEs [12]. The selection of memory size does
not have any effect on learning behavior; there is a trade-off between an over-fitting and the weight
update [12]. If the memory size is smaller, the process of learning is probably over-fitted. Similarly,
if the memory is bigger, the over-fitting effect is alleviated. However, it is not easy to deal with the
balance between over-fitting and weight update [11,12]. With prioritized replay [13], if the memory
size is small, especially if the mini-batch is small, then the trade-off between the over-fitting and weight
update is more consequential. Therefore, we consider enhancing the characteristic feature of model-free
RL, i.e., increasing the number of random ε-buffers. In terms of policy optimization, the policy πθ(s,a)
is explicit, and for performance optimization, the agent follows the policy πθ(s,a) directly. Therefore,
we call it on-policy optimization. However, Q-learning is based on off-policy, because it can learn about
an optimal policy with respect to Q(s,a), such as π(st+1) = argmaxa’Q(st+1,a’), and follow an exploratory
policy [1]. Policy optimization [2,16] is more stable than Q-learning [9,10]; however, Q-learning [9,10]
is more sample-efficient than policy optimization [2,16]. Therefore, we follow the lead to strengthen
the advances in model-free RL. DDPG [16] is actually based on on-policy [1]. However, it can create a
good trade-off between policy optimization [2,16] and Q-learning [9,10]. Algorithms 3 and 4 display
the DQN and DDPG algorithm, respectively, with multiple random ε-buffers.

Algorithm 3 Deep Q-learning with multiple random ε-buffers

Initialize replay memory R1 and R2
Initialize Q-function with random weights
for episode = 1, M do

Initialize sequence s1 and φ1 = φ (s1)
for t = 1, T do

With probability ε, select a random action αt

Or select αt = maxαQ *((st), α;θ)
Execute action αt in emulator and observe reward rt

Set st+1 = st, αt and φt+1 = φ (st+1)
Store transition (φt, αt, rt, φt+1) in R1

//standard experience buffer
Store transition (φt, αt, rt, φt+1) in R2

//second experience buffer
Sample random mini-batch of transitions (φj, αj, rj, φj+1) from either R1 or R2

Set yj = rj
Or yj = rj + γmaxα’Q*(φj+1, α’|θ)

Perform a gradient descent step on (yj − Q(φj, αj|θ))2

end for
Sample random mini-batch of transitions from either R1 or R2

end for
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Algorithm 4 Deep Deterministic Policy Gradient with multiple random ε-buffers

Initialize critic Q(s, a|θQ) and actor µ(s|θµ) with weights θQ and θµ

Initialize target Q’ and µ’ with weights θQ’
← θQ, θµ’

← θµ

Initialize replay memory R1 and R2
for episode = 1, M do

Initialize observation s1 and a random process N for action exploration
for t = 1, T do

Select action αt = µ(st|θ
µ) +
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gradient [1,9,10]. ∇θiLi(θi) = Es,a~p(|s,a);s’~ε[r + γmaxa’Q(s’,a’;θi−1) − Q(s,a;θi))∇θiQ(s,a;θi)], (3), [1,9,10]. 
Optimizing the loss function by using the stochastic gradient descent is computationally intricate. Q-
learning as a function approximation becomes possible [17,18], and is model-free, which indicates the 
RL model and off-policy. This implies that it learns about greedy strategy a = maxaQ(s,a;θ) while 
obeying an exploration selected by ε-greedy with a probability of 1 − ε and a random action with a 
probability of ε for exploration and exploitation [17,18]. DQN is a well-known, model-free RL 
algorithm attributed to discrete action spaces. In DQN [9,10], we construct a deep neural network, Q, 
which approximates Q∗ and is greedy-defined as πQ(s) = argmaxa∈AQ(s,a) [9,10]. It is a ε-greedy policy 
with probability ε and takes the action πQ(s) with probability 1 − ε. Each episode uses the ε-greedy 
policy following Q as an approximation of the deep neural network. The tuples (st, at, rt, st+1) are stored 
in the replay buffer, and each new episode is configured to neural network training [9,10]. The deep 
neural network is trained using the gradient descent of random episodes on loss L, encouraging Q to 
follow the Bellman equation [9,10]. The tuples are sampled from the replay buffer of random 
episodes. The target network yt is computed by a separate neural network that changes more slowly 
than the main deep neural network in order to optimize a stable process. The weights of the target 
network are set to the current weights of the main deep neural network. The DQN algorithm [9,10] 
is presented in Algorithm 1. 

Algorithm 1 Deep Q-learning with Experience Replay 

Initialize replay memory D to capacity N 

Initialize action-value function Q with random weights 

for episode = 1, M do 
      Initialize sequence s1 = {x1} and preprocessed sequenced 𝜙1 = 𝜙 (s1) 

      for t = 1, T do 
     With probability 𝜀, select a random action 𝛼t 

      Otherwise select 𝛼t = max𝛼Q*(𝜙(st),𝛼;𝜃) 

     Execute action 𝛼t in emulator and observe reward rt and image xt+1 

     Set st+1 = st, 𝛼t, xt+1 and preprocess 𝜙t+1 = 𝜙(st+1) 

     Store transition (𝜙t, 𝛼t, rt, 𝜙t+1) in D     

     Sample random mini-batch of transitions (𝜙j, 𝛼j, rj, 𝜙j+1) from D  

     Set    yj = rj                         for terminal 𝜙j+1 

     Or     yj = rj + 𝛄max𝛼’Q *(𝜙j+1,𝛼’;𝜃)   for non-terminal 𝜙j+1 

Perform a gradient descent step on (yj − Q(𝜙j, 𝛼j |𝜃))2

       end for 

end for 

A deep deterministic policy gradient (DDPG) [16] is a well-known, model-free RL algorithm 
attributed to continuous action spaces [2,16]. In a DDPG, we construct two neural networks: a target 
policy as an actor, π: S → A, and an action-value-function approximation as a critic, Q: S × A → R. 
The critic approximates Qπ, which is the action-value function of the actor [16]. Each episode uses a 
noisy policy of the target, πb(s) = π(s) + Ɲ 0,1) [16]. The critic is trained in the same way as the Q-
function in a DQN [9,10]. The target network yt is computed using the output of the actor, i.e., yt = rt 
+ γQ(st+1, π(st+1)), and the actor’s deep neural network is trained using the gradient descent of random 
episodes on the loss La = −EsQ(s,π(s)) [2,16] and sampled from the replay buffer of random episodes. 
The gradient of La is computed by both the critic and actor through back-propagation [2,16]. The 
algorithm of a DDPG [16] is shown in Algorithm 2.

t by the current policy and exploration noise
Execute action αt and observe reward rt and new state st+1

Store transition (st, αt, rt, st+1) in R1

//standard experience buffer
Store transition (st, αt, rt, st+1) in R2

//second experience buffer
Sample a random mini-batch of transitions (sj, αj, rj, sj+1) from either R1 or R2

Set yj = rj + γQ’(sj+1, µ’(sj+1|θµ’)|θ Q’)
Update critic by minimizing the loss: L = 1

n Σj(yj − Q(sj, αj|θ
Q))2

Update the actor by the sampled policy gradient:
∇θµI≈ 1

n Σj∇αQ(s,α|θQ)|s = sj, α = α µ(sj)∇θµµ(s|θµ)|sj
Update the target:

θ Q’
← τθQ+(1−τ) θ Q’

θ µ’
← τθµ+(1−τ) θ µ’

end for
Sample a random mini-batch of transitions from either R1 or R2

end for

3.2. Algorithm Description

3.2.1. DQN with Multiple Random ε-Buffers

1. Initialize replay memories of both R1 and R2 and Q(s,a), and initiate the process from a random
state, s.

2. Initialize the sequence with the start state, s.
3. The agent learns the policy maxαQ*((st,a);θ) with greed and follows another policy with probability ε.
4. For exploration, an experience composed of a tuple, such as (state s, action a, reward r, new state

s’), is in both R1 and R2.
5. Sample a random mini-batch of transitions from either R1 or R2.
6. The weights for performing the gradient descent (rj + γmaxα’Q*(φj+1, α’|) − Q(φj, αj|θ)) for a

target DQN with multiple random ε-buffers.
7. Steps 3–6 are repeated for training.
8. For the next episode, sample a random mini-batch of transitions from either R1 or R2.
9. Steps 2–8 are repeated for training.

3.2.2. DDPG with Multiple Random ε-Buffers

1. Initialize critic deep network Q(s, a|θQ) and actor deep network µ(s|θµ).
2. Initialize replay memories in both R1 and R2.

3. The agent selects the action according to the current policy, αt = µ(st|θ
µ) +
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is presented in Algorithm 1. 

Algorithm 1 Deep Q-learning with Experience Replay 

Initialize replay memory D to capacity N 

Initialize action-value function Q with random weights 

for episode = 1, M do 
      Initialize sequence s1 = {x1} and preprocessed sequenced 𝜙1 = 𝜙 (s1) 

      for t = 1, T do 
     With probability 𝜀, select a random action 𝛼t 

      Otherwise select 𝛼t = max𝛼Q*(𝜙(st),𝛼;𝜃) 

     Execute action 𝛼t in emulator and observe reward rt and image xt+1 

     Set st+1 = st, 𝛼t, xt+1 and preprocess 𝜙t+1 = 𝜙(st+1) 

     Store transition (𝜙t, 𝛼t, rt, 𝜙t+1) in D     

     Sample random mini-batch of transitions (𝜙j, 𝛼j, rj, 𝜙j+1) from D  

     Set    yj = rj                         for terminal 𝜙j+1 

     Or     yj = rj + 𝛄max𝛼’Q *(𝜙j+1,𝛼’;𝜃)   for non-terminal 𝜙j+1 

Perform a gradient descent step on (yj − Q(𝜙j, 𝛼j |𝜃))2

       end for 

end for 

A deep deterministic policy gradient (DDPG) [16] is a well-known, model-free RL algorithm 
attributed to continuous action spaces [2,16]. In a DDPG, we construct two neural networks: a target 
policy as an actor, π: S → A, and an action-value-function approximation as a critic, Q: S × A → R. 
The critic approximates Qπ, which is the action-value function of the actor [16]. Each episode uses a 
noisy policy of the target, πb(s) = π(s) + Ɲ 0,1) [16]. The critic is trained in the same way as the Q-
function in a DQN [9,10]. The target network yt is computed using the output of the actor, i.e., yt = rt 
+ γQ(st+1, π(st+1)), and the actor’s deep neural network is trained using the gradient descent of random 
episodes on the loss La = −EsQ(s,π(s)) [2,16] and sampled from the replay buffer of random episodes. 
The gradient of La is computed by both the critic and actor through back-propagation [2,16]. The 
algorithm of a DDPG [16] is shown in Algorithm 2.

t.
4. For exploration, an experience composed of a tuple, such as (state s, action a, reward r, new state

s’), is in both R1 and R2.
5. A mini-batch of transitions is randomly sampled from either R1 or R2.
6. The critic network is updated by the loss function L = 1/n

∑
j(rj + γQ’(sj+1, µ’(sj+1|θµ’)|θQ’) − Q(sj,

αj |θQ))2.
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7. The actor network is updated by the policy gradient descent ∇θµI ≈ 1/n
∑

j∇αQ(s|θQ)|s = sj, α = α

µ(sj) ∇θµµ(s|θµ)|sj for a target DDPG with multiple random ε-buffers.
8. Update the target network θQ’

← τθQ + (1 − τ) θQ’ and θµ’
← τθµ + (1 − τ) θµ’.

9. Steps 3–8 are repeated for training.
10. For the next episode, a mini-batch of transitions is randomly sampled from either R1 or R2.
11. Steps 2–10 are repeated for training.

4. Evaluation and Results

We consider OpenAI Gym [19] for our proposed algorithms, i.e., DQN and DDPG with multiple
random ε-buffers. To enhance multiple random ε-greedy experience buffers, we exploit classic control
environments in OpenAI Gym, such as CartPole-v0 [20,21], MountainCar-v0 [22,23], and Pendulum-
v0 [24,25]. With similar approaches [9,10], we exploit a method, known as experience replay. Moreover,
in our proposed method, Q-learning stores past experiences at each time step, et = (st, at, rt, st+1),
in multiple random ε-buffers, R1 and R2. Our emulators from OpenAI Gym [19] can apply mini-batch
updates into R1 and R2. After the multiple random experience replay memories, the agent’s actions of
the emulator follow ε-greedy policy. In terms of DQN with multiple random ε-buffers, for enhanced
exploration, we also follow the theory of the target Q-network of breakthrough research in [9,10].
The Q-learning agent calculates the TD error with the current estimated Q-value [9,10]. The optimized
action-value function follows a significant identity, known as the Bellman equation [9,10]. In accordance
with this equation, the TD target is the reward based on an action in the state plus the discounted highest
Q-value for the next state [9,10]. In terms of DDPG with multiple random ε-buffers, for enhanced
exploration, we also follow the theory of the critic and actor networks in [2,16]. Because the Q-learning of
DDPG can exploit the deterministic policy, argmaxaQ, our proposed method can follow the off-policy [1].

For DQN with multiple random ε-buffers, we exploit CartPole-V0 [20,21] and MountainCar-V0 [22,23].
In CartPole-V0 [20,21], a pole is attached with an unactuated joint to a cart moving along a frictionless
track. It is controlled by forcing +1 or −1 to the cart. The pole starts upright, and the goal is to prevent
it from falling over. A + 1 reward is given to every time step in which the pole remains upright.
The episode stops when the pole is more than 15◦ from the vertical direction or the cart moves more
than 2.4 units from the center. In our simulation, CartPole-V0 defines “solving” as if the average
reward is more than 490 or equal to 500 over 10 consecutive runs. The agent of CartPole-V0 receives
−100 reward if it falls over prior to the max-length of the episode [21]. In MountainCar-V0, a car
is on a one-dimensional track, positioned between two mountains, with the goal of driving up the
mountain on the right. The engine of the car is not strong enough to scale the mountain in a single pass.
Therefore, the only way to succeed is to drive back-and-forth to reach the other side of the mountain.
MountainCar-V0 defines “solving” as obtaining an average reward of −110 over 100 consecutive
trails [23]. In Pendulum-V0, the inverted pendulum starts from a random position, and the goal is to
swing it upwards so that it stays upright. Pendulum-V0 is an unsolved environment, which means
that it does not have a special reward threshold at which it is considered solved [24,25].

Our proposed DQN and DDPG with multiple random ε-buffers were implemented using
TensorFlow [26] and Keras [27] in OpenAI Gym [19].

4.1. CartPole-V0

For DQN with multiple random ε-buffers, we follow similar previous studies [21]. In Figure 1a,
there is a CartPole-V0 [20] by OpenAI Gym [19]. Thus, GAMMA = 0.95, LEARNING − RATE = 0.001,
MEMORY − SIZE = 10,000, BATCH − SIZE = 64, EXPLORATION −MAXIMUM = 1.0, EXPLORATION
−MININUM = 0.01, and EXPLORATION − DECAY = 0.995 are the same as with the previous DQN
studies [21] because of a fairness comparison.
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Figure 2. (a) The environment of CartPole-V0 and (b) the actions taken by the agent of CartPole-V0 
[20]. 

However, the requirements from the implementation research can be considered in order to 
obtain better solutions [21]. Q-learning receives −100 as the reward when it falls before the maximum 
length of the episode is reached. Moreover, if the average reward is more than 490 or equal to 500 

Figure 1. (a) CartPole-V0 [20], (b) MountainCar-V0 [22], and (c) Pendulum-V0 [24].

In the Cart-Pole-V0 environment, there are four observations and two discrete actions; see Figure 2.
Furthermore, there are three episode terminations: the pole angle is more than −12◦ or + 12◦, the cart
position is more than −2.4 or + 2.4, and the episode length is greater than 200 [20].
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Figure 2. (a) The environment of CartPole-V0 and (b) the actions taken by the agent of CartPole-V0 [20].

However, the requirements from the implementation research can be considered in order to
obtain better solutions [21]. Q-learning receives −100 as the reward when it falls before the maximum
length of the episode is reached. Moreover, if the average reward is more than 490 or equal to 500
over 10 consecutive runs, Q-learning is terminated, even before it attains the maximum length of the
episode [21].

Figures 3–5 display most of the results for the average, worst, and best cases, respectively. A DQN
with multiple random ε-buffers can yield better results than one random buffer. In each of the average,
worst, and best cases, our proposed method reaches the maximum reward earlier than DQN with one
random buffer. Therefore, we can simulate identical results in real-time online for information security
in Big Data. If our proposed method is used in training in real-time online in deep RL, as in a recent
study [3–7], we acquire better results. Moreover, we can attempt a different deep neural network and
hyper-parameter settings to demonstrate that our proposed model can enhance the exploration without
specific domain information. We are convinced that we can enhance the behavior policy. Therefore, our
proposed method can advance the exploration performance of ε-greedy, because multiple mini-batches
do not follow a local minimum [9,10].
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4.2. MountainCar-V0

For DQN with multiple random ε-buffers, we follow similar previous studies [23]. Figure 5b
shows a MountainCar-V0 [22] in OpenAI Gym [19]. Thus, GAMMA = 0.95, LEARNING − RATE
= 0.001, MEMORY − SIZE = 100,000, BATCH − SIZE = 64, EXPLORATION − MAXIMUM = 1.0,
EXPLORATION −MININUM = 0.01, and EXPLORATION − DECAY = 0.995 are the same as with
previous DQN studies [23] because of a fairness comparison. In the MountainCar-V0 environment,
there are two observations and three discrete actions, in Figure 6. Additionally, there are two episode
terminations: when it reaches 0.5 position of the flag or if 200 iterations are reached. A penalty of 1 unit
is applied for each move, including doing nothing. Our method limits the maximum number of times
to 10,000 and 60 episodes by following the previous implementation of “Car has reached the goal” in
each round [23].
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Figure 6. (a) The environment of MountainCar-V0 and (b) the actions taken by the agent of MountainCar-
V0 [22].

Figures 7–9 display the maximum results for the number of rounds, from approximately 100 to
300. A DQN with multiple random ε-buffers can yield better results compared to when one random
buffer is used. In each case, for around 100, 200 and 300 rounds, our proposed method shows that the
number of “Car has reached the goal” [23] is higher than that obtained by DQN with one random buffer.
We guarantee similar results for deep learning car simulations online, such as real-time learning with a
normal neural network. Moreover, we can expect a real-time system with live training for real-time
safeties. Similarly, for the experiment on Cart-Pole, we exploit the behavior policy to implement better
exploration with multiple random ε-buffers so as not to follow a local minimum [9,10].
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4.3. Pendulum-V0

For DDPG with multiple random ε-buffers, we follow similar previous studies [25]. Figure 5c
shows a Pendulum-V0 [24] by OpenAI Gym [19]. Thus, LEARNING − RATE = 0.001, MEMORY −
SIZE = 2000, BATCH − SIZE = 32, EXPLORATION −MAXIMUM = 1.0, EXPLORATION −MINIMUM
= 0.01, and EXPLORATION − DECAY = 1/2000 are the same as with the previous DQN studies [25]
because of a fairness comparison. In the pendulum environment, there are three observations and one
discrete action; see Figure 10. Additionally, there is a precise equation for the reward: −(θ2 + 0.1 ×
θ2 + 0.001 × action2), where θ is normalized between −π and +π. Therefore, the lowest cost is −(π2 +

0.1 × 82 + 0.001 × 22) = −16.2736044 and the highest cost is θ [25]. The goal is to remain at zero angle
(vertical) with the least rotational velocity and least effort. There are no episode terminations, adding a
maximum number of steps [24,25].
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V0 [24].

Figures 11–13 exhibit the maximum results for the number of rounds, ranging from approximately
100–300. A DDPG with multiple random ε-buffers can yield a small improvement compared to that
with one random buffer. In each case, for around 100, 200 and 300 rounds, our proposed method
shows higher rewards than DDPG [16] with one random buffer. However, unlike the results of
CartPole-V0 [20] and MountainCar-V0 [22], DDPG with multiple random ε-buffers cannot obtain a
significant result compared with the cases of DQN. We consider this from the viewpoint of the on-policy.
Fundamentally, a DDPG is based on the on-policy. Moreover, there is an issue about interpolating
between policy optimization [2,16] and Q-learning [9,10]. The multiple random ε-buffers are actually
based on Q-learning.

To train an agent, there are two major algorithms in model-free RL: policy optimization and
Q-learning, which can follow the Bellman equation. A Q-learning agent selects an action to maximize
the Q-value function based on the data at some point in the environment, regardless of the policy, known
as the off-policy. Therefore, explorations on sample efficiency are extremely important to maximize
the objective Q-value function. The representative algorithm in the off-policy is DQN. However, in
terms of policy optimization, for better performance, an agent follows the recent deterministic policy
and exploits a gradient ascent of the deterministic policy, thereby optimizing the parameters for the
deterministic policy, known as the on-policy. Therefore, the update of the deterministic policy is
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extremely important for the exploration of the sample data. DDPG trains the agent by developing both
the deterministic policy and the Q-value function. However, it is difficult to obtain both principled
policy optimization and efficient Q-learning. That is why we cannot achieve better results in terms
of DDPG. Therefore, we developed “Tradeoff Policy Optimization and Q-Learning” based on “Data
vs. Policy” for better DDPG results. Thus, superior results can be obtained if we exploit a policy
optimization method, based on the on-policy. This is another issue for future research.
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5. Conclusions 

We proposed multiple ε-greedy experience buffers in off-policy deep RL to enhance the 
exploration for superior and near-perfect generalization. We considered strengthening the 
advantages of explorations of model-free deep RL. We exploited multiple random ε-buffers for one 
original goal, and emulated the environment of OpenAI Gym to achieve better results in 
environments such as CartPole-V0, MountCar-V0, and Pendulum-V0. Our results demonstrated that 
the off-policy method was beneficial through an experimental comparison of DQN and DDPG based 
on on-policy. The proposed model is compatible with discrete actions as well as continuous control, 
symmetrically. Therefore, we can expect better prediction accuracy in real-time online learning, as in 
the detection of network intrusions through the verification of whether the network is “normal or 
anomalous.” Although our results are superior to those obtained by normal DQN with one random 
buffer, there is still scope for improvement, particularly for balancing policy optimization and Q-
learning. The multiple random ε-buffers are fundamentally based on Q-learning. Therefore, the 
trade-offs between policy optimization and Q-learning should be solid and strong. Because of the 
deep neural network in RL, better results can be acquired in terms of DDPG, which is based on the 
on-policy of policy optimization. However, we can obtain better results if we develop another method 
based on policy optimization beyond the multiple random ε-buffers. The comparisons conducted in 
this study reveal that our model displays improvements in terms of exploration over the deep RL 
algorithms with Q-learning systems. 
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5. Conclusions

We proposed multiple ε-greedy experience buffers in off-policy deep RL to enhance the exploration
for superior and near-perfect generalization. We considered strengthening the advantages of
explorations of model-free deep RL. We exploited multiple random ε-buffers for one original goal,
and emulated the environment of OpenAI Gym to achieve better results in environments such
as CartPole-V0, MountCar-V0, and Pendulum-V0. Our results demonstrated that the off-policy
method was beneficial through an experimental comparison of DQN and DDPG based on on-policy.
The proposed model is compatible with discrete actions as well as continuous control, symmetrically.
Therefore, we can expect better prediction accuracy in real-time online learning, as in the detection
of network intrusions through the verification of whether the network is “normal or anomalous.”
Although our results are superior to those obtained by normal DQN with one random buffer, there is still
scope for improvement, particularly for balancing policy optimization and Q-learning. The multiple
random ε-buffers are fundamentally based on Q-learning. Therefore, the trade-offs between policy
optimization and Q-learning should be solid and strong. Because of the deep neural network in RL,
better results can be acquired in terms of DDPG, which is based on the on-policy of policy optimization.
However, we can obtain better results if we develop another method based on policy optimization
beyond the multiple random ε-buffers. The comparisons conducted in this study reveal that our model
displays improvements in terms of exploration over the deep RL algorithms with Q-learning systems.
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