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Abstract: Random Fourier mapping (RFM) in kernel adaptive filters (KAFs) provides an efficient
method to curb the linear growth of the dictionary by projecting the original input data into a
finite-dimensional space. The commonly used measure in RFM-based KAFs is the minimum mean
square error (MMSE), which causes performance deterioration in the presence of non-Gaussian noises.
To address this issue, the minimum Cauchy loss (MCL) criterion has been successfully applied for
combating non-Gaussian noises in KAFs. However, these KAFs using the well-known stochastic
gradient descent (SGD) optimization method may suffer from slow convergence rate and low
filtering accuracy. To this end, we propose a novel robust random Fourier features Cauchy conjugate
gradient (RFFCCG) algorithm using the conjugate gradient (CG) optimization method in this paper.
The proposed RFFCCG algorithm with low complexity can achieve better filtering performance
than the KAFs with sparsification, such as the kernel recursive maximum correntropy algorithm
with novelty criterion (KRMC-NC), in stationary and non-stationary environments. Monte Carlo
simulations conducted in the time-series prediction and nonlinear system identification confirm the
superiorities of the proposed algorithm.

Keywords: random Fourier mapping; minimum Cauchy loss; non-Gaussian noise; conjugate
gradient; complexity

1. Introduction

Many applications in the real world, such as system identification, regression, and online kernel
learning (OKL) [1], require complex nonlinear models. The kernel method using a Mercer kernel
has attracted interests in tackling these complex nonlinear applications, which transforms nonlinear
applications into linear ones in the reproducing kernel Hilbert space (RKHS) [2]. Developed in RKHS,
a kernel adaptive filter (KAF) [2] is the most celebrated subfield of OKL algorithms. Using the simplest
stochastic gradient descent (SGD) method for learning, KAFs including the kernel least mean square
(KLMS) algorithm [3], kernel affine projection algorithm (KAPA) [4], and kernel recursive least squares
(KRLS) algorithm [5] have been proposed.

However, allocating a new kernel unit as a radial basis function (RBF) center with the coming of
new data, the linearly growing structure (called “dictionary” hereafter) will increase the computational
and memory requirements in KAFs. To curb the growth of the dictionary, two categories are chosen
for sparsification. The first category accepts only informative data as new dictionary centers by
using a threshold, including the surprise criterion (SC) [6], the coherence criterion (CC) [7], and the
vector quantization (VQ) [8]. However, these methods cannot fully address the growing problem
and still introduce additional time consumption at each iteration. The fixed points methods as
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the second category, including the fixed-budget (FB) [9], the sliding window (SW) [10], and the
kernel approximation methods (e.g., the Nyström method [11] and random Fourier features (RFFs)
method [12]), are used to overcome the sublinearly growing problem. However, the FB method
and the SW method cannot guarantee a good performance in specific environments with a small
amount of time [13]. Compared with the Nyström method, RFFs are drawn from a distribution that is
randomly independent from the training data. Due to a data-independent vector representation, RFFs
can provide a good solution to non-stationary circumstances. On the basis of RFFs, random Fourier
mapping (RFM) is proposed by mapping input data into a finite-dimensional random Fourier features
space (RFFS) using a randomized feature kernel’s Fourier transform in a fixed network structure.
The RFM alleviates the computational and storage burdens of KAFs, and ensures a satisfactory
performance under non-stationary conditions. The examples for developing KAFs with RFM are the
random Fourier features kernel least mean square (RFFKLMS) algorithm [13], random Fourier features
maximum correntropy (RFFMC) algorithm [14], and random Fourier features conjugate gradient
(RFFCG) algorithm [15].

For the loss function, due to their simplicity, smoothness, and mathematical tractability, the
second-order statistical measures (e.g., minimum mean square error (MMSE) [2] and least squares [16])
are widely utilized in KAFs. However, KAFs based on the second-order statistical measures are
sensitive to non-Gaussian noises including the sub-Gaussian and super-Gaussian noises, which
means that their performance may be seriously degraded if the training data are contaminated by
outliers. To handle this issue, robust statistical measures have therefore gained more attention, among
which the lower-order error measure [17] and the higher-lower error measure [18] are two typical
examples. However, the higher-order error measure is not suitable for the mixture of Gaussian
and super-Gaussian noises (Laplace, α-stable, etc.) with poor stability and astringency, and the
lower-order measure of error is usually more desirable in these noise environments with slow
convergence rate. Recently, the information theoretic learning (ITL) [19] similarity measures, such as the
maximum correntropy criterion (MCC) [20] and minimum error entropy criterion (MEE) [19], have been
introduced to implement robust KAFs. The ITL similarity measures have been shown to have a strong
robustness against non-Gaussian noises at the expense of increasing computational burden in training
processing. In addition, minimizing the logarithmic moments of the error, the logarithmic error
measure—including the Cauchy loss (CL) [21] with low computational complexity—is an appropriate
measure of optimality. Using the Cauchy loss to penalize the noise term, some algorithms based on
the minimum Cauchy loss (MCL) criterion are efficient for combating non-Gaussian noises, especially
for heavy-tailed α- stable noises.

From the aspect of the optimization method, the stochastic gradient descent (SGD)-based
algorithms cannot find the minimum using the negative gradient in some loss functions [20–22].
Toward this end, recursive-based algorithms [23] address these issues at the cost of increasing
computational cost. In comparison with the SGD method and recursive method, the conjugate
gradient (CG) method [24–26] and Newton’s method as developments of SGD have become alternative
optimization methods in KAFs. The inverse of matrix of Newton’s method increases the computation
and causes the divergence of algorithms in some cases [22]. However, the CG method gives a trade-off
between convergence rate and computational complexity without the inverse computation, and has
been successfully applied in various fields, including compressed sensing [27], neural networks [28],
and large-scale optimization [29]. In addition, the kernel conjugate gradient (KCG) method is
proposed [30] for adaptive filtering. KCG with low computational and space requirements can
produce a better solution than KLMS, and has comparable accuracy to KRLS.

In this paper, to reduce the computational complexity, we apply the RFM in the MCL-based KAF
to address the problem of linear growth and improve the robustness. Further, the CG optimization
method is used to improve the filtering accuracy and convergence rate, developing a novel robust
random Fourier features Cauchy conjugate gradient (RFFCCG) algorithm. The contributions of this
paper are summarized as follows. 1) Inspired by the finite-dimensional RFM and MCL criterion,
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a novel RFFCCG algorithm is derived by mapping the original input data into the fixed-dimensional
RFFS, which can significantly solve the problem of the growth of network structure and improve
robustness compared to other robust algorithms in the context of non-Gaussian noises. 2) By applying
the CG method, RFFCCG with low computational and space complexities provides good filtering
accuracy against non-Gaussian noises. The computational and space complexities of RFFCCG are also
discussed. 3) The proposed algorithm can also achieve excellent tracking performance when a system
has a sudden change.

The rest of this paper is structured as follows. The MCL criterion and its convexity are described
in Section 2, and the online CG algorithm is also briefly reviewed in this section. In Section 3, we
present the proposed RFFCCG algorithm and its complexity analysis. Illustrative simulations in the
presence of non-Gaussian noises are presented to confirm the effectiveness of the proposed algorithm
in Section 4. Finally, Section 5 gives the concluding remarks of this paper.

2. Background

In this section, we first briefly review the minimum Cauchy loss (MCL) criterion. The performance
surfaces of Cauchy loss (CL) and mean square error (MSE) are also compared. Then, the conjugate
gradient (CG) method and its online algorithm are introduced.

2.1. Minimum Cauchy Loss Criterion

Given two random variables X and Y, the Cauchy loss [21] is defined as:

V(X, Y) = E

[
ln

(
1 +

(X−Y)2

γ2

)]

=
∫

ln

(
1 +

(X−Y)2

γ2

)
dFXY(x, y), (1)

where E [·] denotes the mathematical expectation, FXY(x, y) denotes the joint distribution function of
(X, Y), and γ > 0 is a constant. Since FXY(x, y) is usually unknown, it is difficult to calculate V(X, Y)
directly. In practice, given a finite number of samples {xk, yk}N

k=1, (1) can be approximated as follows:

V̂(X, Y) =
1
N

N

∑
k=1

ln

(
1 +

(xk − yk)
2

γ2

)
, (2)

which is called the empirical CL. In addition, (2) can also be regarded as a generalized error between
two vectors X = [x1, x2, ..., xN ]

T and Y = [y1, y2, ..., yN ]
T.

Let e = X− Y = [e1, e2, ..., eN ]
T, where ek = xk − yk, k = 1, 2, ...N. Because of (2), the Hessian

matrix of V̂(X, Y) with respect to e is expressed as:

HV̂(X,Y)(e) =

[
∂2V̂(X, Y)

∂ek∂ej

]
= diag[ξ1, ξ2, ..., ξN ], (3)

where

ξk =
2
(
γ2 − e2

k
)(

γ2 + e2
k
)2 , k = 1, 2, ..., N. (4)

We have that HV̂(X,Y)(e) ≥ 0 when |ek| ≤ γ, that is, the empirical CL is convex at |ek| ≤ γ. A larger γ

results in a larger convex range in general.
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The optimal solution to the Cauchy loss function can be obtained by solving the following
optimization problem:

min
N

∑
k=1

ln
(

1 +
(dk − yk)

2

γ2

)
, (5)

which is called the minimum Cauchy loss (MCL) criterion. Figure 1 shows the comparison of MSE
and CL functions with different γ. We can observe that: 1) compared with the MSE loss function, the
CL function maintains the insensitivity to large errors. Thus, adaptive filters using the CL function
will be robust against large outliers. 2) The value of γ can control the shape of the CL function, and a
larger γ can generate a smoother curve when the error is smaller, which means that the CL function
can provide good smoothness to the steady-state error. In practice, we choose an appropriate γ to
guarantee the robustness and convexity of the CL function.

Figure 1. Comparison of mean square error (MSE) and Cauchy loss (CL) with different γ.

2.2. Conjugate Gradient Algorithm

The typical conjugate direction method is the conjugate gradient (CG) method, which is developed
by selecting the successive direction vectors as conjugate versions of the successive gradients. The CG
method is introduced to a linear adaptive filter in [24,26], which is used to solve the following linear
equation:

Rω = b (6)

and (6) is also equivalent to solve the following purely quadratic function:

f (ω) =
1
2

ωTRω− bTω. (7)

where ω ∈ Rn is the weight vector, b ∈ Rn is the cross-correlation vector, and R ∈ Rn×n is a symmetric
positive definite auto-correlation matrix. To find the optimal ω, the CG method—which is described as
follows—provides an alternative method instead of estimating R−1. Beginning with any ω0 ∈ Rn, and
direction p0 = −g0 = b−Rω0, the global minimum to (6) can be derived by iteratively computing
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αk = −
gT

k pk
pT

k Rpk

ωk+1 = ωk + αkpk
gk+1 = b−Rωk+1

βk =
gT

k+1gk+1

gT
k gk

pk+1 = −gk+1 + βkpk

, (8)

where (·)T denotes the transpose, gk is the gradient of f (ωk) with respect to ω at discrete time k, the
step-size αk is given by arg min f (ωk + αpk), and constant βk is selected to provide R-conjugacy for
vector pk regarding the previous direction vectors pk−1, pk−2, ..., p0. In (8), note that the new conjugate
direction pk is formed by a linear combination of the current negative gradient −gk and the previous
direction vectors with a proper βk to avoid manually resetting the direction vector.

The CG method can be regarded as a trade-off between the stochastic gradient descent (SGD)
method and Newton’s method in terms of convergence rate and the complexities of computation
and storage. Especially, the inverse of the Hessian matrix—which will cause the divergence of the
algorithm—is avoided in the CG method. Therefore, the CG method is widely applicable to address
quadratic optimization problems. In addition, it can also be extended to approximate non-quadratic
optimization problems.

2.3. Online Conjugate Gradient Algorithm

The aforementioned CG method is generally used for offline applications. In this section, the
online CG algorithm is given for online learning, where training data arrive sequentially [1,30].

It is necessary to estimate R and b for online applications. Using the exponentially decaying data
window [2], the following recursive form to update R and b is given by

Rk+1 = λRk + xk+1xT
k+1

bk+1 = λbk + dk+1xk+1, (9)

where positive constant 0 < λ < 1 is usually closest to one, xk ∈ Rn is the input data, and dk is the
desired output at iteration k.

Define a residual vector of normal equations as sk = bk −Rkωk at iteration k. To improve clarity,
the online CG algorithm to estimate the weight vector is summarized as follows [15]. Given the initial
conditions ω0 = 0 and p0 = s0, when { xk, dk} is available, do



αk =
sT

k pk
pT

k Rk+1pk

ωk+1 = ωk + αkpk
Rk+1 = λRk + xk+1xT

k+1
sk+1 = λsk − αkRk+1pk + ek+1xk+1

βk =
sT

k+1sk+1

sT
k sk

pk+1 = sk+1 + βkpk

. (10)

The online CG algorithm is only efficient in dealing with linear problems, but may cause
degradation for nonlinear problems. To address this problem, the online kernel conjugate gradient
(KCG) based on the least squares (LS) is presented in [30]. Because the LS criterion is used in KCG,
it may be degraded considerably or even suffer from divergence in non-Gaussian noise environments.
In addition, the linearly growing structure of KCG with each new sample poses both computational
and memory issues. To address the complexity issue of KCG, RFFCG is proposed by using the CG
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method. However, using the LS criterion, RFFCG is only appropriate for Gaussian noises. Therefore,
we propose a novel online algorithm to deal with these issues.

3. Proposed Algorithm

In this section, we first describe a fixed dimensional mapping in random Fourier features space
(RFFS). Then, the CG method can be applied to the MCL criterion to generate a robust algorithm—that
is, the robust random Fourier features Cauchy conjugate gradient (RFFCCG) algorithm.

3.1. Random Fourier Mapping

Based on an available sequence of training data pairs {xk, dk}N
k=1, kernel adaptive filters are used

to deal with the following nonlinear problem:

dk = f ∗(xk) + υk, (11)

where xk ∈ Rn is the input data, dk ∈ R is the desirable output at iteration k in the original data space
U, υk is an additive noise signal, and f ∗(xk) is the optimal estimate of dk with a nonlinear input–output
mapping f : Rn → R.

To construct the mapping relationship in the form of f (·) = ∑k
l=1 ηlκ(·, xl), a kernel method [2] is

utilized to map the original input data into a high-dimensional feature space. A continuous, symmetric,
and positive definite Mercer kernel is used in the kernel method. Thus, using the kernel method, we
can compute the filter output at discrete time k as

f (xk) =
k−1

∑
l=1

ηlκ(xk,xl), (12)

with coefficients ηl , l = 1, 2, ...k− 1. We observe that the network increases linearly with the length
of data to train in the filter output, which poses some challenges to the kernel method in practice.
However, the random Fourier features (RFFs) present an efficient solution to solving this problem by
transforming input xk into z(xk), that is,

z : xk ∈ Rn → z(xk) ∈ Rm, (13)

where m � n. Considering a shift-invariant and positive definite kernel κ(x, y) = κ(x− y) on Rn,
Bochner’s theorem [12] ensures that the Fourier transform of ρ(w) corresponds to the kernel function
given by

κ(x− y) =
∫
Rn

ρ(w)ejwT(x−y)dw, (14)

where ρ(·) denotes the probability density function (PDF) and w is a Gaussian random vector drawn
from ρ(w) ∼ N(0, σ2In) with an n× n identity matrix In. In (14), the commonly used Mercer kernel is
the following Gaussian kernel [2], that is,

κ(x, y) = exp

(
−‖x− y‖2

2
2σ2

)
, (15)

where σ is the kernel bandwidth and ‖·‖2 is the `2 norm.
Now, define Zw(x) = ejwTx, and (14) is actually equivalent to the expectation operation of

ZH
w(x)Zw(y). Then, we have the following expression for kernel function:

κ(x− y) = Ew[ZH
w(x)Zw(y)], (16)
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where H is the conjugate transpose operation and

Zw(x) = ejwTx =
√

2 cos(wTx + b)

Zw(y) = ejwTy =
√

2 cos(wTy + b), (17)

with b being drawn from the uniform distribution on [0, 2π] [12].
Based on m random Fourier features w1, ..., wm and m uniformly random numbers b1, ..., bm,

the approximation of kernel function in (16) can be rewritten as the empirical average of m random
components:

ZT
w,b(x)Zw,b(y) ≈

1
m

m

∑
i=1

Zwi ,bi
(x)Zwi ,bi

(y), (18)

where

Zw,b(x) = [Zwi ,bi
(x), ..., Zwm ,bm(x)]

T

=

[√
2
m

cos(wT
1 x + b1), ...,

√
2
m

cos(wT
mx + bm)

]T

. (19)

The random Fourier features method for approximating the Gaussian kernel is similar to the
approximation method of standard Monte Carlo. Therefore, the transformed input data z(xk) are

z(xk) =

√
2
m

[
cos(wT

1 xk + b1), ..., cos(wT
mxk + bm)

]T
, (20)

which is called random Fourier mapping (RFM). The dimension of subspace that belongs to z(xk) is
finite. Therefore, a linear adaptive filtering structure is given based on the transformed input z(xk).

The Gaussian kernel function in (12) can be represented by the inner product of the transformed
input vector as

κ(xk, xl) = zT(xk)z(xl), (21)

with the low approximation error ε provided by m = O(nε−2 log 1
ε−2 ) [14].

Combining (12) and (21), the filter output can be recomputed by f (xk) = (Ωr)Tz(xk), where Ωr

is a finite-dimensional weight vector in RFFS. Thus, an infinite-dimensional implicit feature space is
embedded into a relatively low-dimensional explicit feature space. The expression of filter output
is similar to the linear least mean square (LMS) [2]. Therefore, a huge amount of time is saved in
the RFM-based algorithms. The fixed-dimensional structure will be used to develop the following
algorithm. Denote z(xk) = zk for simplicity hereafter.

3.2. RFFCCG Algorithm

The Cauchy loss function is presented for robust adaptive filtering as follows:

JΩr =
1
N

N

∑
k=1

ln

(
1 +

e2
k

γ2

)
=

1
N

N

∑
k=1

ln

1 +
(dk − (Ωr)Tzk)

2

γ2

, (22)

where ek = dk − (Ωr)Tzk is the prediction error regarding the transformed input zk ∈ Rm, dk ∈ R is
the desired output, and Ωr ∈ Rm is the weight vector in RFFS. From (5), (Ωr)Tzk corresponds to yk.
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The gradient of the loss function with respect to Ωr is given by

∇JΩr = − 1
N

N

∑
k=1

2
γ2 + e2

k

(
dk − (Ωr)Tzk

)
zk

=
1
N

N

∑
k=1

2
γ2 + e2

k
dkzk −

1
N

N

∑
k=1

2
γ2 + e2

k
zkzT

k Ωr

=
1
N

N

∑
k=1

θkdkzk −
1
N

N

∑
k=1

θkzkzT
k Ωr, (23)

where θk =
2

γ2+e2
k
. Hence, we have that θk tends to 0 as ek → ∞.

Letting ∇JΩr = 0 generates

N

∑
k=1

θkzkzT
k Ωr =

N

∑
k=1

θkdkzk, (24)

where weighted auto-correlation matrix Rr and weighted cross-correlation vector br are given by
Rr =

N

∑
k=1

θkzkzk
T ∈ Rm×m

br =
N

∑
k=1

θkdkzk ∈ Rm

. (25)

According to (24), (25) can be rewritten as

RrΩr = br, (26)

where the optimal solution Ωr, in practice, can be obtained by the CG method instead of
estimating (Rr)−1.

For online learning in RFFS, Rr and br are given by using an exponentially decaying data window
as follows: {

Rr
k+1 = λRr

k + θkzk+1zT
k+1

br
k+1 = λbr

k + θkdk+1zk+1
, (27)

where positive forgetting factor λ which is very close to but smaller than one (i.e., λ ∈ (0, 1)) is used to
scale down past data. Since θk tends to 0 as ek → ∞ for outliers, Rr

k+1 and br
k+1 have almost no change

from (27). In such case, according to (26), Ωr almost has no update, which is robust against outliers.
Then, we use an important concept called the search direction vector here. A fundamental relation

between the current optimal weight and the previous optimal weight in RFFS is obtained [25]. We have
the recursion to update Ωr as

Ωr
k+1 = Ωr

k + αkpr
k, (28)

which suggests that we can estimate the optimal weight Ωr
k+1 of a nonlinear dynamical system by

combining the previous Ωr
k with the search direction vector pr

k multiplied by a step-size parameter αk.
Furthermore, by the conjugate gradient theory [24,25], we can express αk as

αk =

(
sr

k
)Tpr

k(
pr

k
)TRr

k+1pr
k

. (29)
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Now, a residual vector of normal equations sr is introduced in the kernel space. From (27)–(29),
we have the recursive residual vector of RFFCCG as follows:

sr
k+1 = br

k+1 −Rr
k+1Ωr

k+1

= λsr
k − αkRr

k+1pr
k + zk+1θk+1ek+1, (30)

where ek+1 = dk+1 − (Ωr
k)

Tzk+1 is the prediction error estimated by the desired and the real output in
RFFS. These residual vectors are orthogonal to each other, that is, (sr

k)
Tsr

l = 0, for l = 0, ..., k− 1.
In [25], the Hessian matrix must be recalculated at each iteration for the Hestenes–Stiefel method,

which requires a large amount of computation, and the numerator of the Fletcher–Reeves method may
be close zero, resulting in poor performance. From the results of the global convergence characteristics
analysis, using the Polak–Ribière method [22] which adopts a degenerated scheme to calculate βk,
the performance of the conjugate gradient is the best. Thus, a proper coefficient parameter βk (k = 1,2,...)
is expressed to update the current search direction pr

k+1 automatically by

βk =

(
sr

k+1

)T
(sr

k+1 − sr
k)(

sr
k
)Tsr

k

. (31)

By using (31) directly, a linear formulation of the new search direction is given by

pr
k+1 = sr

k+1 + βkpr
k, (32)

where βk is set to provide the R-conjugacy for the new search direction pr
k+1 with regard to the

previous direction vectors (i.e., pr
1, pr

2, ..., pr
k). The search direction is updated per iteration to ensure

the convergence of the algorithm. Depending on the spanning subspace theorem [30], the residual
vector at iteration k will be orthogonal to the search direction in the Krylov subspace, that is, sH

k pl = 0,
for l < k.

Finally, combining Equations (27)–(32), we summarize the online RFFCCG algorithm in
Algorithm 1.

Remark 1. The proposed RFFCCG algorithm uses an explicit mapping method to transform the original input
into RFFS, generating a linear filtering structure. Based on a data-independent vector representation, RFFs can
provide good tracking performance for non-stationary circumstances. The network size of RFFCCG only depends
on the dimension m, which plays a significant role in the approximation accuracy. Generally, a larger dimension
simultaneously results in a higher filtering accuracy with more computational and storage burdens. In practice,
to balance the filtering accuracy and complexity, an appropriate dimension can be chosen by trials to obtain the
desirable performance. In addition, we can find from Figure 1 that the Cauchy loss function can provide good
robustness to large outliers. Hence, the proposed RFFCCG can also be applied to channel equalization and noise
cancellation [2] in non-Gaussian noise environments.
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Algorithm 1: The robust random Fourier features Cauchy conjugate gradient
(RFFCCG) algorithm.

Input: Sequential input–output pairs {xk, dk}N
k=1, kernel bandwidth σ > 0, forgetting factor

λ ∈ (0, 1), the dimension of RFF m > 0, and constant γ > 0.

Draw: i.i.d. w ∼ N (0, σ2 In), where the dimension of original data space n > 0.
i.i.d. b ∼ U[0, 2π], where U denotes the uniform distribution.

Initialization: z1 =
√

2
m
[
cos(wT

1 x1 + b1), ..., cos(wT
mx1 + bm)

]T,

Ωr
1 = 0, d1 = e1, θ1 = 2

γ2+e2
1
, Rr

1 = θ1z1zT
1 , br

1 = θ1d1z1, pr
1 = br

1 −Rr
1Ωr

1, pr
1 = sr

1.

Computation:
while { xk, dk} is available, do

1. zk+1 =
√

2
m
[
cos(wT

1 xk+1 + b1), ..., cos(wT
mxk+1 + bm)

]T,

2. yk+1 =
〈

Ωr
k+1, zk+1

〉
,

3. ek+1 = dk+1 − yk+1,
4. θk+1 = 2

γ2+e2
k+1

,

5. Rr
k+1 = λRr

k + θk+1zk+1zT
k+1,

6. αk+1 =
(sr

k)
T

pr
k

(pr
k)

T
Rr

k+1pr
k

,

7. Ωr
k+1 = Ωr

k + αkpr
k,

8. sr
k+1 = λsr

k − αkRr
k+1pr

k + zk+1θk+1ek+1,

9. βk =
(sr

k+1)
T
(sr

k+1−sr
k)

(sr
k)

T
sr

k

,

10. pr
k+1 = sr

k+1 + βkpr
k .

end while

3.3. Complexity

In this section, we mainly discuss the complexities of RFFCCG in terms of computation and
storage. The computational complexity of RFFCCG at each iteration is summarized in detail as follows.
It can be seen from Algorithm 1 that at each iteration, RFFCCG requires a total of 4m2 + (n + 12)m + 1
multiplications from Steps 1, 2, and 5–10; 3m2 + (n + 11)m + 1 additions from Steps 1, 2, and 4–10;
and 4 divisions from Steps 1, 4, 6, and 9. The computation of cos(.) is not considered here since it
can be ignored compared with the cost of RFFCCG. We compare the computational complexities
of RFFCCG with the kernel least mean square (KLMS) algorithm [3], kernel recursive least squares
(KRLS) algorithm [5], kernel conjugate gradient (KCG) algorithm [30], and kernel recursive maximum
correntropy (KRMC) algorithm [31] in Table 1, where k is the number of iterations and n and m are the
dimensions of original data space and RFFS, respectively. We clearly see from Table 1 that the proposed
RFFCCG algorithm has a fixed computational complexity, but the computational complexities of
KLMS, KRLS, KCG, and KRMC increase with the network size. Thus, RFFCCG can significantly
reduce the computational requirements.

Further, we discuss the storage complexity of RFFCCG based on the matrix number and size.
From Algorithm 1, there is only an m×m symmetric matrix R that needs to be stored. Therefore,
the storage complexity of RFFCCG is O(m). Table 2 lists the compared results with other algorithms
based on matrix. Note that the storage complexity of RFFCCG is also fixed, and other algorithms have
increasing network sizes. In summary, compared with the KAFs without sparsification in Table 1 and
Table 2, RFFCCG can efficiently alleviate the computational and storage burdens of KAFs.
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Table 1. Computational cost of algorithms per iteration. KCG: kernel conjugate gradient; KLMS: kernel
least mean square; KRLS: kernel recursive least squares; KRMC: kernel recursive maximum correntropy.

Algorithm Addition Multiplication Division

1-4 KLMS [3] k k 0
KRLS [5] 4k2 + 4k 4k2 + 4k 1

KRMC [31] 4k2 + 4k 4k2 + 4k 2
KCG [30] 2k2 + 8k 2k2 + 10k 3
RFFCCG 3m2 + (n + 11)m + 1 4m2 + (n + 12)m + 1 4

Table 2. Storage cost of algorithms per iteration.

Algorithm Matrix

m × m n × k k × k

KLMS [3] 0 1 0
KRLS [5] 0 1 1

KRMC [31] 0 1 1
KCG [30] 0 1 1
RFFCCG 1 0 0

4. Simulation

To demonstrate the superior performance of the proposed RFFCCG algorithm in this section,
simulations were performed on the Mackey–Glass chaotic time series prediction and nonlinear system
identification, respectively. Due to the modest complexity and excellent performance, representative
algorithms (i.e., random Fourier features kernel least mean square (RFFKLMS) algorithm [13],
quantized kernel recursive least squares (QKRLS) algorithm [32], random Fourier features maximum
correntropy (RFFMC) algorithm [14], kernel recursive maximum correntropy algorithm with novelty
criterion (KRMC-NC) [31], and random Fourier features conjugate gradient (RFFCG) algorithm [15])
were selected to compare the performance of RFFCCG. Among these algorithms, RFFMC and
KRMC-NC are typical robust algorithms, while RFFKLMS, QKRLS, and RFFCG with no robustness
are also used for the filtering performance reference. For all simulations, we ran 50 independent
Monte Carlo simulations to reduce disturbances using Matlab R2016b on Windows 10, where PC is
configured with 3.30 GHz of CPU and 8 GB of RAM.

To evaluate the filtering performance of algorithms, the testing mean-square error (MSE) is
defined as:

MSE(dB) = 10log10(
1
N

N

∑
k=1

(dk − yk)
2), (33)

where yk is the prediction of dk and N is the length of testing data.
The non-Gaussian noise model considered in this section is the impulsive noise [33], which was

modeled by the combination of two mutually independent noise processes. We assumed the mixture
noise model in the form of υk = (1− ak)Ak + akBk, where ak ∈ (0, 1) is a binary distribution with
occurrence probability P(ak = 1) = c and P(ak = 0) = 1− c (0 ≤ c ≤ 1). Without mentioning
otherwise, the parameter c was configured to 0.1 and Ak is a zero-mean Gaussian distribution with
σ2

A = 0.01. For Bk, we mainly considered the α-stable noise (heavy-tailed impulsive noise) process
with characteristic function [34]:

ϕ(t) = exp{j(εt)− η|t|α[1 + j(β sgn(t)S(t, α))]}, (34)
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where

S(t, α) =

{
tan απ

2 , α 6= 1,
2
π log |t| , α = 1,

(35)

where α ∈ (0, 2] is the characteristic factor to measure the heaviness of the tail and a smaller parameter
α means a larger impulse, η is the dispersion factor that controls the number of impulses, −∞ <

ε < +∞ is the location factor, β ∈ [−1, 1] is the symmetry factor, sgn(·) is the sign function, and
j =
√
−1. The parameter vector of the noise model is written as Vα−stable = [α, β, η, ε]. Here, we chose

the parameter vector Vα−stable = [0.8, 0, 0.1, 0] in the following simulations.

4.1. Mackey–Glass Time Series

Since the Mackey–Glass (MG) chaotic system is a benchmark problem for nonlinear learning
problems, we first considered the MG chaotic time series [2] in the following simulations, which is
generated by the delayed differential equation as follows:

du(t)
dt

= −bu(t) +
au(t− τ)

1 + u(t− τ)n , (36)

with a = 0.2, b = 0.1, n = 10, and τ = 30. The time series was discretized at the sampling period
of 6 s and corrupted by the noise model mentioned above. We used the previous seven points
{uk−7, uk−6, ..., uk−1}T to predict the current value uk. The prediction was trained by 2000 data points,
and tested with another 200.

The parameter γ is key in the proposed RFFCCG algorithm. In the first simulation, we discuss
the influence of γ on the filtering accuracy of RFFCCG to combat non-Gaussian noises. The parameter
was selected within the range γ = [0.01, 0.1, 0.3, 0.5, 0.7, 0.9, 1, 2, 4, 6]. The influence of γ is shown in
Figure 2, where the steady-state MSEs are derived by averaging the last 200 iterations. For RFFCCG,
the Gaussian kernel bandwidth was set as σ = 1, the forgetting factor β = 0.999, and the dimension of
RFF m = 100. It can be seen from Figure 2 that the parameter γ had a direct influence on the filtering
performance of RFFCCG. The RFFCCG algorithm could achieve the highest filtering accuracy when
γ = 0.3, and thus too large or too small γ will cause performance degradation. An appropriate γ

can combat impulsive noises efficiently. Therefore, we set the parameter γ = 0.3 for RFFCCG in the
following simulations.

Figure 2. Steady-state MSEs of RFFCCG versus different γ in Mackey–Glass (MG) time series prediction
for non-Gaussian noises.



Symmetry 2019, 11, 1323 13 of 18

In addition, the steady-state MSEs and the averaged time are plotted in Figure 3 regarding
different dimension m. Here, the simulation environment and kernel bandwidth setting of RFFCCG
were similar to those of Figure 2. The range of m was set as [1,100]. From Figure 3, we observe: (1)
the average consumed time increased linearly with m; (2) the filtering accuracy of RFFCCG could
be improved by increasing m to some extent, however it remained almost unchanged when m ≥ 60.
In addition, a larger dimension m resulted in higher filtering accuracy at the expense of increasing
computational time. Thus, the dimension m = 60 was set for RFFCCG to provide a trade-off between
filtering accuracy and computational time.

Figure 3. Comparison of steady-state MSEs and average consumed time of RFFCCG versus m in MG
time series prediction for non-Gaussian noises.

In this example, we compared the filtering accuracy and robust performance of RFFCCG with
other filtering algorithms. The parameters of each algorithm were set to achieve the desired filtering
accuracy and to have the same convergence rate. The bandwidth of Gaussian kernels was set to 1
for all algorithms; the step size was η = 0.1 in RFFKLMS and RFFMC; the threshold ε = 0.05 was
chosen for QKRLS; the distance threshold and the error threshold were set as δ1 = 0.1 and δ2 = 0.1,
respectively, and the regularization parameter λ = 0.1 for the KRMC-NC; for RFFCG and RFFCCG,
the forgetting factor was set to β = 0.999; γ = 0.3 was chosen for RFFCCG; the dimension of RFFS
was m = 60. From Figure 4, we observe that the performance of quadratic-based algorithms (i.e.,
RFFKLMS, QKRLS, and RFFCG) became worse in the non-Gaussian noise environment, while RFFMC,
KRMC-NC, and RFFCCG always generated stable performance and achieved desirable performance
when impulse noise appeared. Especially, the filtering performance of RFFCCG was very close to that
of the recursive KRMC-NC algorithm and better than that of the SGD-based RFFMC algorithm. Table 3
lists the detailed simulation results in terms of the dictionary size, steady-state MSE, and average
consumed time. One also can observe that RFFCCG could produce the comparable filtering accuracy
to KRMC-NC with less consumed time and storage requirements. Thus, RFFCCG is more efficient in
the compared algorithms for the MG time series prediction.

Table 3. Simulation results of RFFKLMS, QKRLS, RFFKMC, KRMC-NC, RFFCG, and RFFCCG in MG
time series prediction for non-Gaussian noises.

Algorithm Size MSE (dB) Consumed Time (s)

RFFKLMS [13] 60 N/A 2.6305
QKRLS [32] 182 N/A 8.2586
RFFMC [14] 60 −22.3870 2.6282

KRMC-NC [31] 500 −29.6680 3.6299
RFFCG [15] 60 N/A 2.6183

RFFCCG 60 −30.5060 2.6750
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Figure 4. Learning curves of RFFCCG and different algorithms versus m = 60 in MG time series
prediction for non-Gaussian noises. KRMC-NC: kernel recursive maximum correntropy algorithm
with novelty criterion; QKLMS: quantized kernel recursive least squares; RFFCG: random Fourier
features conjugate gradient; RFFKLMS: random Fourier features kernel least mean square; RFFMC:
random Fourier features maximum correntropy.

4.2. Nonlinear System Identification

To further validate the superiority of RFFCCG, we chose the problem of nonlinear system
identification, where the nonlinear system is of the form [35]

uk = (a1 − a2 exp(u2
k−1))uk−1 − (a3 + a4 exp(−u2

k−1))uk−2

+ a5 sin(uk−1π), (37)

where uk denotes the output at discrete time k, u1 = 0.1, and u2 = 0.1 were configured as the initial
values, and a = [a1, a2, a3, a4, a5]

T denotes the coefficient vector. The setting for prediction task is
shown as follows: the previous two values (i.e., u = [uk−1, uk−2]) were used as the input vector to
predict the current value uk. We considered stationary and non-stationary scenarios in the following
simulations. The data were corrupted by the noise model mentioned above and the Gaussian kernel
with kernel parameter σ = 1 was used for all the tested algorithms.

In the stationary case, the coefficient vector was fixed at a = [0.8, 0.5, 0.3, 0.9, 0.1]T. The first
2000 data points were used for training and the additional 200 for testing. We compared the testing
MSE of RFFCCG with those of RFFKLMS, QKRLS, RFFMC, KRMC-NC, and RFFCG due to their
modest complexities and excellent performance under the stationary system. The parameters were
chosen to obtain the best results as follows: η = 0.1 for RFFKLMS; ε = 0.002 for QKLMS; η = 0.4 for
RFFMC; δ1 = 0.01, δ2 = 0.01, and λ = 0.1 for KRMC-NC; β = 0.999 for RFFCG; β = 0.999 and γ = 0.3
for RFFCCG. To balance the accuracy and computational time, m = 50 was also configured for the
dimension of RFFS. The learning curves of all the algorithms are shown in Figure 5. In this case, the
RFFCCG algorithm still had satisfactory prediction ability and achieved comparable performance to
KRMN-NC and better performance than RFFMC, while others exhibited poor performance. This also
means that RFFCCG has strong robustness against impulsive noises. Table 4 shows the dictionary size,
steady-state MSEs, and average consumed time of all algorithms. As can be clearly seen from Figure 5
and Table 4, RFFCCG consumed less time and achieved a faster convergence rate and higher filtering
accuracy than the compared algorithms including RFFCG.
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Figure 5. Learning curves of RFFCCG and different algorithms versus m = 50 in nonlinear system
identification of a stationary environment for non-Gaussian noises.

Table 4. Simulation results of RFFKLMS, RFFMCC, RFFCG, and RFFCCG in nonlinear system
identification of a stationary environment for non-Gaussian noises.

Algorithm Size MSE (dB) Consumed Time (s)

RFFKLMS [13] 50 N/A 2.2773
QKRLS [32] 160 N/A 7.1883
RFFMC [14] 50 −23.6263 2.3359

KRMC-NC [31] 500 −34.3570 2.9277
RFFCG [15] 50 N/A 2.3768

RFFCCG 50 −38.9975 2.3390

The tracking performance was evaluated in a non-stationary system where two different coefficient
vectors were used for data generation as follows: a = [0.8, 0.5, 0.3, 0.3, 0.1]T was selected in the first 2000
data, and a = [0.4, 0.7, 0.6, 0.6, 0.2]T was set in the following 2000 data. We compared the testing MSE
of RFFCCG with those of RFFKLMS, RFFMC, RFFCG, and RFFCCG due to their modest complexities
and excellent performance in the non-stationary system. To compute the convergence curve, a total of
4000 data points were used for training with a sudden change at the 2001-th data point. Regarding the
test process, 400 data points were used with a sudden change at the 201-th data point. With the same
criterion of parameters setting, the step sizes η of RFFKLMS and RFFMC were chosen as 0.1 and 0.3,
respectively, the forgetting factor β = 0.999 was used in RFFCG and RFFCCG, and the dimension of
RFF was set as m = 50. The performance comparison is presented in Figure 6. It can be observed that
all of the RFF-based algorithms were capable of tracking the change of the system. However, RFFCCG
outperformed all the compared algorithms with γ = 0.3 when abrupt change occurred. Note that the
dictionary size, steady-state MSEs, and consumed time of the tested algorithms averaged by the points
of 1500 ∼ 2000 and 3500 ∼ 4000 are summarized in Table 5. As observed in Figure 6 and Table 5,
RFFCCG provided good tracking performance for a non-stationary system in non-Gaussian noises.

Therefore, in both stationary and non-stationary circumstances for the nonlinear system
identification, the proposed RFFCCG algorithm offers excellent filtering performance in terms of
filtering accuracy, convergence rate, robustness, and computational and space complexities.



Symmetry 2019, 11, 1323 16 of 18

Figure 6. Learning curves of RFFCCG and different algorithms versus m = 50 in nonlinear system
identification of a non-stationary environment for non-Gaussian noises.

Table 5. Simulation results of RFFKLMS, RFFMCC, RFFCG, and RFFCCG in nonlinear system
identification of a non-stationary environment for non-Gaussian noises.

Algorithm Size MSE (dB) Consumed Time (s)

RFFKLMS [13] 50 N/A 0.1048
RFFMC [14] 50 −24.4093/−21.5835 0.1039
RFFCG [15] 50 N/A 0.1794

RFFCCG 50 −39.3061/−34.0029 0.1786

5. Conclusions

In this paper, the robust random Fourier features Cauchy conjugate gradient (RFFCCG) algorithm
was proposed and analyzed by integrating random Fourier mapping (RFM) into the Cauchy loss
function with the conjugate gradient (CG) optimization method for nonlinear applications in a
non-Gaussian noise circumstance. Random Fourier mapping (RFM) for a kernel adaptive filter
(KAF) generates an effective finite-dimensional sparsification approach to obtain a more accurate and
compact network. The developed RFFCCG algorithm with low computational and space complexities
could significantly improve the filtering performance in comparison with other representative robust
filters against non-Gaussian noise interferences. We discussed the influence of free parameters, and
obtained optimal parameter values for RFFCCG. Simulation results in the presence of non-Gaussian
noises validated the superiority of RFFCCG in terms of the filtering accuracy, robustness, tracking
performance, and time and storage consumption.
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