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Abstract: In this paper, the Lie symmetries of the Jaulent-Miodek (JM) equations are calculated and
one dimensional optimal systems of Lie algebra are obtained. Furthermore, the conservation laws are
constructed by using the adjoint equation method. Finally, the exact solutions of the equations are
obtained by the conservation laws.
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1. Introduction

In this paper, we consider the Jaulent-Miodek (JM) equations [1]

@

0t + Vyxx — 6lx0 — 6Uvy — 20,02 = 0.

{ Up + Uyxx + %vvxxx + %vxvxx — buuy — 6uvvy — %uxvz =0,
which associates with the JM spectral problem [2,3] and energy-dependent Schrodinger potential [4-6].
There are a plethora of methods to solve system (1), such as exp-function method [7-10], tanh-coth
and sech methods [11-14]. A numerical method is available in [15]. According to our understanding,
the Lie symmetry and conservation laws of the JM equations have not been done yet. This paper will
give the symmetry reduction and conservation laws of the system (1) and construct its exact solution.
The structure of this paper is as follows: In Section 2, the Lie symmetry of the Jaulent-Miodek (JM)
equations are calculated and one dimensional optimal systems of Lie algebra are obtained; in Section 3,
the conservation laws of the system are given by adjoint equation method; in Section 4, the exact
solutions of the system are constructed by the conservation laws; and in Section 5, a brief summary is
made of the full text.

2. Lie Symmetry Analysis and Optimal Systems

2.1. Lie Symmetry

In this section, we will perform Lie symmetry analysis for the system (1). We first assume that the
infinitesimal generator [16] allowed of the system (1) is:

) ) ) 0
o 9 1 2
V=_z(tx, u,v)at +é (t,x,u,v)—ax +7 (t,x,u,v)—au +7 (t,x,u,v)—av, ()
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where &1(t, x,u,v), &(t, x,u,v), 11 (t, x,u,v),7%(t, x, u,v) are coefficient functions to be determined.

For the system (1), V satisfies the following Lie symmetry conditions as follows

Pr3V(A1)|A1:O,A2:O =0,
PrV(A2)|ay=0,80-0 = 0,

where

3 9 3
A1 = Uy + Uyyy + Evvxxx + vavxx — 6uUUy — 6UVV, — EuxUZ,

15
Ao = Ut 4 Uyxx — OULD — 6UD, — ?vaz.

By Lie’s theory, the third prolongation [17] of (2) is of the form

d d d d d 0 d
(3) 1x 1t 2x 2t 1xx 1xt 1tt
ProV =V 4y g T T e T g T +7

Oy R Qtdt st
0 0 0 d 0 0
+ 2xx 2xt 2tt + Ixxx + Txxt 1xtt
T 0Vyxx avxt i avtt T Ollyyy 1 Ollyyt Ol ytt
d 0 0 d 0
+ 1ttt + 2xxx + 2xxt + 2xtt 2ttt ,
1 aMttt 1 OUVxxx 1 OUxxt 1 Uyt OV

where . ) ) . )
:Dx(ﬂ —Cur—¢ ux)+§ Uty + & Uyy,

n

n' = Dy(nt — E'up — Puy) + uy + Cu,

N = Dx(ﬂz - f:lvt - (;Izvx) + glvtx + gzvxx;

77 = Dt(772 — glop — Pox) + Slow + EPox,

7" = Dax (' = &lus — 8Pux) + & ttix + Gt

1% = Dx(1* — 8o — E0x) + & 0pax + E 0,

Wlxxx = Dxxx(ﬂl - glut - Czux) + glutxxx + gzuxxxx/

172xxx = Dxxx(ﬂz - glvt - szx) + Clvtxxx + gzvxxxx-
Combining (3) and (4), we get the determining equations of system (1) as follows:

7t (—6uy — 6v0y) + 1 ( Vyxy — 6UDy — 3uy0) + 1¥ (—6u — %vz) +

_H72x(%vxx 6uv) + 172xx9v + lexx + ’72xxx3v =0,
71 (—60y) + 12 (—6ux — 15050) + ¥ (—60) + n2* (—6u — L0?) + 5 4 % = 0.

®)

4)

©)

(6)

@)

Substituting system (6) into the equivalent condition (7), and making the coefficients of the various
monomials in partial derivatives with respect to x and various powers of u equaled, one then obtains

the over determining equations of system (7):

6}, =0, gﬁ =0, 17% =0, 0171 — 2u172 =0,
& =0, & =0, =0,
& =0, & =0, =0,

3171 + ZuC} =0, 171 + Zucﬁ =0, 171 — u;ylll =0.

Solving (8), one can get
3 c
¢l = _§C3f to, E=-Zx+o,

C3
171 = c3l, 172 = 7.

®)

©)
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where c1,cp,c3 are three arbitrary constants. Therefore the three-dimensional Lie algebra of
infinitesimal symmetries for Jaulent-Miodek (JM) equations (1) are spanned by the following three
vector fields:

d
Vl - gl
d
= 10
12 . (10)
V — ,gti 1 3 + i + 103
3 2'ox 2%t " Mou T 2%

2.2. Optimal System

In this section, we research the one-dimensional optimal system of (10). The basic method of
constructing one-dimensional optimal system is given in ref. [18]. The adjoint transformation is
expressed as the following series form:

Ad(eV)V; =V — €[V;, Vil + 3€2[V;, [V;, Vi) —

where € is a parameter. [V}, Vj] is the usual commutator and the calculation formula is as follows:
Vi, Vi) = ViV = ViV

Hence we have the following commutator table [19] (See Table 1) and the adjoint table
(See Table 2).

Table 1. Commutator table of the Lie algebra.

vi,vil Wi W V3

v 0 0 -3n
V2 0 0 —iW
Vs i iw 0

Table 2. Adjoint table of the Lie algebra.

Ad
1%
V2
V3

Vi
Vi
1%l
3

e 2V,

V2

V2

V2
e s€ 1%

V3
Vs +3eWy
Vs + 5€Va
V3

Next, according to the method of constructing one dimensional optimal system in [18], we set up
the following non-zero vector field with arbitrary coefficients a1, ay, a3

Step 1:

V=a/Vi+aV,+a3Vs.

Without loss of generality, supposing that a3 # 0 and setting a3 = 1, then the vector V becomes

V=a1Vi4+aVo+V;5.

To eliminate the coefficient of V;, using Ad(e€"1) to act on above V, we gain

= Ad(e€")V

using Ad(e€"2) to act on above V’, we derive

= Ad(e€"2)V

—a2V2+V3+%V2:(a2+%

=1 +aVo+ Vi + %eVl =

(a1 +3€)Vi + apVo + V3,

where the group parameter € = —2%. Therefore, V' = a;V, + V3. We continue to eliminate V; ,

€)V2 + V3,
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where the group parameter € = —2a;. Therefore, V"' = V3.
Step 2:

Supposing that a3 = 0,4, # 0 and setting a4, = 1, then the vector V prove to be

V=a1V1+ V.

Based on the above method, we know that neither V; and V, can be eliminated.
Step 3:

Supposing that a3 = 0,a; = 0,41 # 0 and setting a; = 1, then the vector V turn into

V="V.

Based on the adjoint representations of the vector field, we obtain the optimal systems of
Lie algebra.

V1, V3,aVy + V3],

with a is an arbitrary constant.
For V, the system of (1) is reduced as follows:

" o4 3 m o9y g / I _3pig2
{ Fm—i— EH/H +§H/H - 6/FF2 —6FHH' — 3F'H? =0, an
H" —6F'H — 6FH' — W H'H? = 0,
where, u(x,t) = F({),v(x,t) = H({), & = x.
For aVy 4 V3, the system of (1) is reduced as follows:
F - a3F" — 32 HH" — %L H'H" + 6aFF' + 6aFHH' — 34F'H? = 0, 12
H' —a3H" + 6aF'H + 6aFH' + 3H'H? = 0,

where, u(x,t) = F(¢),v(x,t) = H({),{ =t —ax.
Obviously, Both (11) and (12) are difficult to calculate, So we take the following method to solve
the system (1).

3. The Conservation Laws of Jaulennt-Miodek Equations

In this section, we construct the conservation laws by using the adjoint equations method [20-24].

3.1. Adjoint Equations and Lagrange Functions

The formal Lagrangian for the system (1) is given by

3 9 3
L = 01(ut + thyxx + =00xxx + =UxUxx — 6ULy — 6UVVy — fuxvz)—i—
2 2 2 (13)

15
02 (0f 4 Vxxx — 6ULV — 6UTy, — Tvxvz),

where 01 and 6, are new dependent variables of ¢, x, u, v. The adjoint system for the Equation (1) is

defined as 5L 5L
=0 =0

ou ' v
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where
oL oL oL oL oL oL oL oL
—=-—-Di=——-D D:D D:D DD — DiD:D
u " aw aw ow U B U G N
oL oL oL
— D{DyDy=——— — D{D{Dy=—— — DyDyDy=—— + ..,
Ollpxy Opix Oyxx (14)
oL oL oL oL oL oL oL oL
— = D D:D D:D DD — DtDyDy—
50 9 tavt x8x+ ¢ ta + Dy xa + Dy X3 Uer Dy tavm
oL oL oL
— D{DyDy=—— — D{D{Dy=—— — DyDyDy— + ....
00ty 904ty 0Vxxx
For system (1), The adjoint equations have the following form
b = gﬁ = —36100x + 601U + %elxv2 + 602,0 — O1xx — 01t =0, (15)
Fy = Sk = 360101y — 301,0xx + 601,10 + 602311 + 202,07 — 360110,0 — O — O2xrx = 0,
where, the solution to system (15) can be 6; = 2, 6, = v. So we derive the Lagrangian
3 9 3 5
L=2(us+ thyxx + Evvxxx + vavxx — 6ULy — 6UVDy — Euxv )+
(16)

15
V(0 + Uyxx — 6UXV — 6UVy — 703(02)

3.2. Conservation Laws

Every Lie symmetry provides a conservation law for system (1). The elements of the conservation
vector (C!, C?) are defined by the following expression:

; oL oL oL oL oL
1 __ =l (4 B i i o
C'=¢'L+W [au? Dfau“ DDka z%k+...}+D](W >[auij Dkauzk+ )
- ! ! (17)
+ D; Dk(wa)[a - +. ]+
if

where, W* = 5* — ¢/ u;?‘. Hence, the conservation laws for system (1) are given by
Di(Cl)|(1,1) :0, l: 1,2
Next we consider conservation laws in three cases.

Case 1. For Vq = %, we obtain
W= —u;, W?=-—

The conservation law of system (1) is
2 15 3
Di(—2ut — vvy) + Dy (12uuy + 907Uy — 2upyy — 40405y + 18uv0; + ?v U — 504Uy — 40044y ) = 0.

Case 2. For V, = %, we derive
W= —u,, W?=—u,.

The conservation law of system (1) is

Dy(—2uy — voy) + Dx(2us +vo;) = 0.
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Case 3. For V3 = —%t% — %xaa—x + % + %v%, We have
3 1 1 3 1
W =u+ 5t + 5 X1, W2 = S0+ Stor+ Sxvx.

The conservation law of system (1) is
) + Dy(—12u% — 18tuu; — 6xuty — 18uv® — =-tvu;

1 3 1
Dy (2u + 3tuy + xuy + —v* + Ztovp + = x0Uy
2 2 2
9 15
— Exvzux + 3tupry + 4ty + Xtyxx + 80Uy + 6t01Uxx + Exvxvxx — 27tuovvy — 9xUVU, — 104—
) =0.

45 15 27
Ztvavt — vaavx + 51),2( + itvvtxx + 2XVyxx

4. Exact Solutions
In this section, we consider the exact solutions [25-29] by using the method of conservation laws.

For the conservation law of V5, from (Section 3.2), we obtain the conservation law of V;

Di(—2uy — v0y) + Dy (2us + v04) = 0.

Let
Di(—2uy —vvy) =0, Dy(2u; 4 vos) = 0. (18)
Assuming that
—2uy — vvy = g(x), (19)
2us + vor = q(t).
Integrating first equation of system (19), we gain
G(x) h(t) 1, ¢
=2 e 20
2 2 a7 20
where G'(x) = g(x). h(t) is a function of the variable f and c is a constant. Substituting (20) into the
second equation of system (19), we derive
—he(t) = g(b). (21)
By calculating the equation of (21), we get
1, d
= _oy——p*:_Z 22
h(t) 2u Y (22)
where d is a constant. Substituting (22) into the equation of system (20), one obtain
(23)

then the first equation of system (19) turn into
—2uy —vvy = 0.

Integrating this equation, we obtain

1 2
u——iv +c.

Solving
Di(—2uy — voy) + Dx(2us +vop) = 0.
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one gets
U= klvz + ks.
here k; and k; are constants.
Considering the special case, u = k; v+ ko u = — %02.

Case 4. Let u(x,t) = u(¢), v(x,t) = v(), where { = x — ct.
The system (1) turn into

—cu' +u'" + %vv”’ + %v’v” — 6uu’ — 6uvy’ — %u’vz =0, (24)
—cv' + 0" —6u'v — 6ur’ — %v’v2 =0.
Integrating the second equation of system (24), we obtain
5
" = cv+ 6uv+ Ev‘g’ + 1, (25)
here gy is integral constant.
Multiplying %v’ to equation (25), we get
1 1 5 1
N . N g ) 26
3uvo 5810 = 5cov’ — 707w + SU 0 (26)
Substituting (26) into the first equation of (24) and integrating, we obtain
3 1 1 5 3 5
" _ 2 2 n - -2 Y4 Y2 Y2 27
u" =g+ cu+3u z(vv ) 5810 = F 0V — 10" + Juv 4(v), (27)
here g is integral constant.
Combining (25), the system (24) turn into
u" = go+cu+3u? —3(v0") — jg10 — jov? — ot + Juv? — 3(v')?, (28)
0" = cv+6uv + 30° + g1,
here g1 and g are integral constants.
Substituting u = —%vz — Lcinto the system of (28), we obtain
1) = B2 + Jeo? + Jot) — fec? - Iot, o)
v = —%cv — %03,
the second equation of system (29) is equivalent to the following Hamilton system.
dv _
aa =Y
d 1 1 (30)
{ % - —ZCZJ — 703
The Hamilton function is
1 1 1
H(v,y) = 53/2 + 1602 + 504 =h. (31)
Solving (31) and combining u = — 30 — kc, let c = 0,1, —1, we get the exact solutions of system (1)

1
up(x,t) = —\fZIacobiSN[E(—Z%x +228ay), 12,

vi(x,t) = 2%]acobiSN[%(—2%x 4 22%,11), -1],
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1
uy(x,t) = —\/E]acobiSN[E(Z%x + ZZ%az), -1,

02(x,1) = 24 JacobiSN[3 (2} + 21ay), 1),

8of 12

u3(x,t):f%+%(l+\/401)]acobiSN[1( i\ =14 V401 (x — t) +2i\/ —1 + V401a3), 200 (—201 — V/401))?,

va(x, ) = —iy [1+ \/40l]acobiSN[%( i\ =1+ V401 (x — t) + 2i\/ —1 4+ V401a3), =~ (—201 — v/401)],
(i\/ =14 V401(x — t) +2i\/ —1 + V401ay), 200 —201 — V/401)]?,

ug(x,t) = 71 (1 + v/401) JacobiSN]|
va(x t) = —iyJ1+ \/401]acobiSN[§(i\/ —1+ V401 (x — t) +2i\/ —1 + V/401ay), — (—201 — V/401)),

(~V2(x + 1) +2iV2as]?),

N[ —

NI~

us(x,t) = 41} + coth[%(—\[Z(x + t) + 2iv/2a5)]?(1 — tanh|

vs(x,t) = —i 2coth[%(—ﬁ(x + 1)+ ziﬁa5)]\/1 - tanh[f(—\/i(x + 1) + 2iv2a5]2,

ug(x,t) = i + coth[%(—\@(x + t) + 2iv2a6))*(1 — tanh[= (—V2(x + ) + 2iv/2a4)?),

(—V2(x + ) + 2iv/2a]?,

NI =N =

ve(x, 1) = i 2coth[%(—\f2(x L)+ ziﬁa6)]\/1 _ tanh]

7 (x,£) =  + coth 2 (V2(x + 1) +2iv/2a7) (1 — tanh 3 (V2(x + ) + 20v2a ),

07(x,1) = ~ivZeoth 3 (V2(x + 1 +2i\/§a7)]\/1 ~ tanh[} (Va(x + 1) +2iv/20s ],
us(x,£) = § +coth (VA(x + 1) +2i/2ag)(1 ~ tanh[ (V2(x + 1) +2iv2a]?),

05(x, 1) = ~iv/2coth[3 (VA(x +1) + zi\fzag)]\/1 ~ tanh[3 (VA (x + 1) + 2V 2],

here ay,ay, a3, ay, as, ag, az, ag are constants. JacobiSN represent Jacobi elliptic function in MATHEMATIC.

Substituting u = }LU into the system of (1), we obtain

VOxxx + 30xUxx — %vvt + %vxv3 =0,
Ut + Uy — 30,02 = 0.

Case 5. Let v(x,t) = F(z), where z = x — ct.
The system (32) turn into

—cF' + F" —3F'F2 =0,
SFF' +3FF" + FF" + 3F3F' = 0.

From the first equation of (33), one can get
F"” = cF' +3F'F~.
Substituting the (34) for the second equation of (33), we derive

¢FF + 2F'F" + 3F3F = 0.

(32)

(33)

(34)

(35)
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By calculating the equation of (35), we obtain

26672\/%i(x7ct)72\/§b + 4cef\/ii(x7ct)f\/27cb +2c 2c 36
F= 3(872\/@(%@)72\/@7 — e~ V2ci(x—ct)—V2cb | 1) T3 (36)
here a and b are integral constants.
Therefore, the exact solutions of the system of (1) are
1 26672\/Zi(xfct)72\/ﬂh + 4C67\/Zi(x7ct)7\/zb +2c 2¢
ug(xt) = =5 3(e—2Vaci(x—ct)-2v2eb _ gp—vci(x—ct)—v2b 1 1) 3
2ce—2V2ci(x—ct)=2v2cb | fop—V2ei(x—ct)=V2b L 20 D¢
Z)g(x,t) - 3(672\/27Ci(x7ct)72\/27ch _ Zefﬁi(xfct)fx/ib + 1) o ?
Here a and b are integral constants (see Figure 1).
Case 6. Let v(x,t) = F(z), where z = kx — ct.
The system (32) turn into
— cF' +K°F" — 3kF'F* =0,
(37)
SFF + 3PP + IOFF" + ng31?’ —0.
From the first equation of (37), we obtain
P = SF 4+ D FE (38)
=13 2 .
Substituting the (38) for the second equation of (37), one can get
cFF' +2K°F'F" + 3kF°F' = 0. (39)

By calculating the equation of (39), we obtain

206_2 %i(kx—ct)—2\/zkcb+4ce—\/zkci(kx—ct)—\/%b+zc 7%
3(ke_2 %i(kx—ct)—Z\/%b _ zke—\/%i(kx—ct)— b +K) 3k

F=

here a and b are integral constants.
Therefore, the exact solutions of the system of (1) are

wo(x,£) = —( Zce_zéika_Ct)_Zﬁb rao OB e
3(ke 2 Xi(ke—ct) -2,/ % _ Zke—\/z;cl(kx—ct)_ B, " 3k
olst) 2ce~2 %i(kxfct)fz\/%b+4cef\/%i(kx7ct)f\/2;°b+zc 2
3(ke 2 Ti(kn—ct)-2,/%b _ zkef\/%i(kxfct)f o, 0 3k

Here a and b are integral constants (see Figure 2).
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Figure 2. The 3D surface of the exact solution to system (1) by settingb =0, ¢ = =2, k = 2.

5. Conclusions

In this paper, the Lie symmetries of the Jaulent-Miodek (JM) equations are calculated and one
dimensional optimal systems of Lie algebra are obtained. The conservation laws are constructed by
using the adjoint equation method. Finally, the new exact solutions of the equations are constructed by
the conservation laws. However, our method is special in the process of constructing exact solutions
by conservation laws. More general methods require further study.
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