
symmetryS S

Article

A Hybrid Data Hiding Method for Strict AMBTC
Format Images with High-Fidelity

Chin-Chen Chang 1,2, Xu Wang 1,* and Ji-Hwei Horng 3

1 Department of Information Engineering and Computer Science, Feng Chia University,
Taichung 40724, Taiwan; alan3c@gmail.com

2 School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou 310018, China
3 Department of Electronic Engineering, National Quemoy University, Kinmen 89250, Taiwan;

horng@email.nqu.edu.tw
* Correspondence: wx1990555@gmail.com; Tel.: +886-4-2706-6495

Received: 11 September 2019; Accepted: 18 October 2019; Published: 19 October 2019
����������
�������

Abstract: With the rapid development of smartphones, cloud storage, and wireless communications,
protecting the security of compressed images through data transmission on the Internet has become a
critical contemporary issue. A series of data hiding methods for AMBTC compressed images has been
proposed to solve this problem. However, most of these methods either change the file size of the
final compressed code or exchange the order of two quantization values in some blocks. To reverse
this situation, this paper proposes a data hiding method for strict AMBTC format images using a
hybrid strategy: replacement, matrix encoding, and symmetric quantization value embedding for
three block types i.e., smooth blocks, less complex blocks and highly complex blocks. According to
the hybrid strategy, an efficient data hiding order is designed to achieve higher-fidelity. Experimental
results show that our proposed method provides an excellent balance between image quality and
hiding capacity and has no error blocks in the final stego-compressed code.

Keywords: data hiding; strict AMBTC format; high-fidelity; matrix coding

1. Introduction

People all around the world are increasingly using the Internet and a tremendous amount of
information is transferred every day. When sensitive data is transmitted over the Internet, malicious
actors may use various techniques to intercept messages and steal information. Therefore, information
security has become a critical issue and many methods have been proposed to protect it. In recent
years, multimedia files become prevalent in network transmissions, and some efficient data hiding
techniques have been proposed for such applications. Data hiding techniques embed secret data into
various multimedia files, such as image, audio, video, and in other forms for transmission over the
network, so that others are unaware of the existing embedded data [1]. Because of the practicability
and convenience of images, adopting a data hiding method to embed secret data in a digital image is
of keen research interest [2].

Current data hiding methods are mainly divided into four types: data hiding in the spatial domain,
the transform domain, the encryption domain and the compressed domain. In the spatial domain,
the difference expansion technique and the histogram shifting technique are two of the most famous
methods. The difference expansion technique uses differences between neighboring pixel values to
explore redundancy and to find the embedding area [3]. The histogram shifting technique treats pixels
as a histogram and vacates room for data embedding by shifting the points between the peak and zero
points toward the zero point of the histogram [4]. Due to higher operability, data hiding in the spatial
domain has attracted wide attention, and a series of related methods have been proposed to improve

Symmetry 2019, 11, 1314; doi:10.3390/sym11101314 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0001-6705-4888
https://orcid.org/0000-0002-2134-5257
http://www.mdpi.com/2073-8994/11/10/1314?type=check_update&version=1
http://dx.doi.org/10.3390/sym11101314
http://www.mdpi.com/journal/symmetry

Symmetry 2019, 11, 1314 2 of 16

the performance of hiding capacity and image quality [5–8]. In the transform domain, images are first
converted into frequency coefficients using different techniques such as discrete wavelet transform
(DWT) [9], discrete Fourier transform (DFT) [10], or discrete cosine transform (DCT) [11]. Subsequently,
redundant coefficients can be used for data hiding. In the encryption domain, images are encrypted
before transmission over the Internet and no useful content is accessible to others [12]. Then, the data
hider will embed data into the encrypted image.

With the rapid development of smartphones, cloud storage, and wireless communications,
compressed images are widely used for such applications because of fast transmission and reduced
storage requirements. Therefore, data hiding methods in the compressed domain have received more
attention. Various data hiding methods in different compression techniques have been proposed, such
as vector quantization (VQ) [13], side match vector quantization (SMVQ) [14], joint photographic
experts group (JPEG) [15], block truncation coding (BTC), and absolute moment block truncation
coding (AMBTC). The BTC compression method divides an image into non-overlapping blocks and
stores two quantization values and a bitmap of each block as one compressed block code [16]. AMBTC
is an improved version of BTC [17], and has advantages both in computing speed and image quality.
A detailed description is provided in Section 2.1. Because the AMBTC compression technique is easy
to implement, many data hiding methods have been proposed based on AMBTC compressed images.

To date, data hiding methods in AMBTC compressed images are mainly divided into two
categories: embedding data into AMBTC compressed images while changing the final file size, and
embedding data into AMBTC compressed images while preserving the final file size. For the first
category, Lin et al. [18] proposed a novel data hiding method by adjusting the two quantization values
of each block according to the combination of the secret bit and the bitmap. After embedding, one
4 × 4 block contains four quantization values and one double sized bitmap. Kim et al. [19] applied
histogram modification to use ’1s’ of the bitmap to embed almost 8 bits of secret data and to add one
new quantization value for one block to reduce the compression ratio while increasing image quality
compared with [18]. Later, Chen et al. [20] adopted four disjointed embedding strategies according
to the four corner values of the bitmap. This method can achieve the same hiding capacity and
compression ratio as [18] and offer almost the same image quality as [19]. Malik et al. [21] converted
secret data into a ternary system which can embed, at most, 23 bits into one block by adding or
subtracting the ternary secret data; as a result, four new quantization values are added and the size of
the bitmap changes to 32 bits. Huynh et al. [22] provided a minima–maxima preserving algorithm to
replace 1 LSB or 2 LSBs of the reconstructed image block to achieve an almost 2 bpp hiding capacity,
but the final stego-code has the same size as the original image. All the above methods will increase
the final size of the compressed image code. Sun et al. [23] proposed a JNC predictor-based RDH
method to embed four bits into one modified compressed block code and reduced the size of the final
compressed image codes at the same time. Later, Hong et al. proposed two methods [24,25] to improve
the performance of Sun et al.’s method by achieving a higher hiding capacity and lower bitrate, i.e., a
smaller file size. A MED predictor was used in these two methods and a series of improvements were
proposed to achieve better performance.

All of the above methods will increase or decrease the size of the final stego-compressed image
code, and these significant changes in file size will no doubt become a clue for malicious actors. For the
second category, Chuang and Chang [26] first proposed a bitmap replacement method that can embed
16 bits of data into a block when the block is smooth while preserving edge blocks. Hong et al. [27]
proposed a method where a compressed block code (L, H, BM) is stored when the embedded secret
bit is ‘0’ and changes to (H, L, BM) when the embedded secret bit is ‘1’, and cannot embed data
when L is equal to H. Combining advantages of these two methods, Ou and Sun [28] divided blocks
into smooth blocks and complex blocks, then replaced the bitmap with secret data and recalculated
two quantization values in a smooth block, and used Hong et al.’s method to embed one bit into a
complex block. Later, Chen and Chi [29] sub-divided complex blocks into less complex blocks and
highly complex blocks, then used the method of [28] to process the smooth blocks and less complex

Symmetry 2019, 11, 1314 3 of 16

blocks while embedding 2 bits into a highly complex block by changing the number of ‘1’s in the
bitmap to even or odd. Kumar et al. [30] further improved the above methods by using the Hamming
distance and pixel value differencing to embed 8 bits into a less complex block and 5 bits into a highly
complex block, respectively. In the AMBTC compressed image, each block is strictly represented by
a code (L, H, BM). However, except for [26], all of the other methods will exchange the order of two
quantization values in some blocks of the final stego-compressed code, and thus, the reversed two
quantization values will undoubtedly draw attacker attention. In this paper, we treat these blocks as
the error blocks and try to avoid them.

After reviewing the previous AMBTC-based data hiding methods, some methods will change
the size of the final compressed image code, while other methods will exchange the order of two
quantization values. These two obvious changes are no doubt violating the file format. Thus, in this
paper, we propose a data hiding method for strict AMBTC format images. Three different strategies are
adopted in three block types: smooth blocks, less complex blocks and highly complex blocks. The first
two strategies preserve the difference and the third strategy will not reduce the difference of each block,
so we can define the hiding order of the difference from low to high when the block belongs to the
smooth or less complex blocks, and from left to right and top to bottom of the image when the block
belongs to the highly complex blocks. Therefore, our proposed method provides high-fidelity when
the hiding amount is lower.

The rest of this paper is organized as follows. Section 2 introduces the AMBTC compression
technique and matrix coding technique. Section 3 explains block classification and the three different
strategies of our proposed method and offers some simple examples to illustrate the embedding
and extraction phases. Section 4 provides the experimental results and discussions, including visual
comparisons, PSNR under different amounts of the hiding data, and performance under the various
thresholds. Finally, Section 5 gives some conclusions.

2. Related Work

Two important techniques are used in our proposed method: absolute moment block truncation
coding (AMBTC) compression and matrix coding. These techniques are briefly introduced in Sections 2.1
and 2.2, respectively.

2.1. Absolute Moment Block Truncation Coding (AMBTC)

In 1979, an efficient block-based lossy image compression technique named block truncation coding
(BTC) was proposed by Delp and Mitchell [16]. In order to achieve compression, an image is divided
into several non-overlapping blocks and stores only one bitmap and two corresponding quantization
values of each block. Because the algorithm utilized in the BTC technique has significant computational
complexity, Lema and Mitchell [17] proposed an improved version named absolute moment block
truncation coding (AMBTC). In AMBTC, the image is also divided into several non-overlapping blocks
with a size of k × k pixels, for each block, the mean value AVG can be calculated by Equation (1).

AVG =

∑k×k
j=1 p j

k× k
, (1)

where p j denotes the j-th pixel value in the block. The bitmap can then be constructed by comparing
each pixel value with AVG: Set the bit value of bitmap to ‘0’ if the pixel value p j is less than AVG and
set to ‘1’ for others.

Next, Equations (2) and (3) can be applied to derive two quantization values, i.e., the low mean
value L and the high mean value H, respectively.

L =

∑
p j∈B0

p j

k× k− q
, (2)

Symmetry 2019, 11, 1314 4 of 16

H =

∑
p j∈B1

p j

q
(3)

where q represents the number of ‘1’ that exist in the bitmap BM. Meanwhile, B0 and B1 denote two
original pixel sets which the corresponding bits are ‘0’ and ‘1’, respectively in bitmap BM. Therefore,
the final compression code of the block can be obtained by concatenating L, H, and BM, i.e., (L, H, BM).
The corresponding restored block can be constructed by replacing each ‘0’ and ‘1’ of the bitmap with
low mean value L and high mean value H, respectively.

2.2. Matrix Coding

Matrix coding method is a modified version of the (7, 4) Hamming code, and is widely used in
LSB-based data hiding methods [31]. By utilizing the matrix operation, for a seven-bit sequence (also
called a code-word), at most one bit is changed when embedding three secret bits. In the matrix coding

method, H is the check matrix and is defined as


0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

. Equation (4) is used to

obtain which bit needs to be changed.

z = (H ×CW T
)T
⊗ S, (4)

where CW denotes the seven-bit sequence, and S represents the three-bit vector to be hidden. Notice
that Equation (4) is calculated under the modulo-2 operation. The location of z is listed in Table 1.

Table 1. Changed bit location of corresponding z.

z 001 010 011 100 101 110 111

location 1 2 3 4 5 6 7

In the data extraction phase, Equation (5) can be used to extract three bits of secret data from each
seven-bit sequence.

S = (H ×RCW T)T (5)

where RCW denotes the seven-bit sequence that has been embedded. Equation (5) is also calculated
under the modulo-2 operation.

3. The Proposed Method

In this section, we propose a data hiding method for AMBTC compressed images using a hybrid
strategy to process different types of AMBTC compressed blocks that can maintain the strict AMBTC
format. The proposed method also uses two thresholds to define three block types as done in [30]:
smooth blocks, less complex blocks and highly complex blocks. Three strategies named bitmap
replacement, matrix encoding, and symmetric quantization value embedding are then applied to
embed data into the blocks of different types and no error blocks are generated after embedding.
We also designed an efficient data hiding order to achieve higher-fidelity. In Section 3.1, we first define
our block classification rule and their corresponding strategies. Detailed processes regarding the data
embedding and extraction phases are described in Sections 3.2 and 3.3, respectively. Subsequently in
Section 3.4, some examples are provided to illustrate the proposed method.

3.1. Block Classification and Hybrid Strategy

After AMBTC compression, the original M × N sized image is divided into i (i = 1, 2, . . . , M×N
k×k)

non-overlapping k × k sized blocks, and the block size is set to 4 × 4, i.e., k = 4 for the experiments.
Each block has only two quantization values Hi, Li, and one bitmap Bi, the carriers for data embedding

Symmetry 2019, 11, 1314 5 of 16

are chosen from them. Equation (6) is first used to calculate the difference Di. Then, according to Di,
we set two thresholds thr1 and thr2 to classify each block into three block types: smooth blocks, less
complex blocks and highly complex blocks.

Di= Hi − Li (6)

Block type =


smooth, if Di ≤ thr1
less complex, if thr1 ≤ Di ≤ thr2
highly complex, otherwise

Figure 1 shows an example of block classification under different thresholds. The complex blocks
are the edges of the image and more data are embedded into edges will lead to a significant decline
in image quality. To maintain a balance between embedding capacity and image quality, a hybrid
strategy contains three different hiding methods is used to process different block types for different
sized data embedding.

Symmetry 2019, 11, x FOR PEER REVIEW 5 of 17

according to Di, we set two thresholds thr1 and thr2 to classify each block into three block types:
smooth blocks, less complex blocks and highly complex blocks.

Di = Hi - Li (6)

Block type = ቐsmooth, if Di ≤ thr1
less complex, if thr1 ≤ Di ≤ thr2
highly complex, otherwise

Figure 1 shows an example of block classification under different thresholds. The complex blocks
are the edges of the image and more data are embedded into edges will lead to a significant decline
in image quality. To maintain a balance between embedding capacity and image quality, a hybrid
strategy contains three different hiding methods is used to process different block types for different
sized data embedding.

(a) (b) (c)
Figure 1. Examples of block classification for Lena with different thresholds: (a) thr1 = 10 and thr2 =
25; (b) thr1 = 20 and thr2 = 35; (c) thr1 = 30 and thr2 = 45. The black blocks are smooth blocks, the gray
blocks are less complex blocks, and the white blocks are highly complex blocks.

The changes in the smoother blocks will reduce the image quality less. Therefore, data are
embedded following the order of ascending difference value in smooth blocks and less complex
blocks, while from left to right and top to bottom of the image in highly complex blocks in our
method. On this account, in our hybrid hiding strategy, first two strategies will preserve blocks’
difference, and guarantee blocks’ difference will not decrease in the rest blocks.

3.1.1. Strategy 1 for Smooth Blocks: Bitmap Replacement

For smooth blocks, the two quantization values are very close, and thus, changes of the bitmap
have a slight effect on image quality. Therefore, the bitmap can be totally replaced by 16 bits of secret
data. Then, refer to the original image blocks and original pixels pj, Equations (7) to (10) are used to

calculate two new quantization values Hi
ʹ and Li

ʹ to obtain the best image quality that is closer to the
original image, i.e., minimizing the square error of the final stego-compressed block while preserving
the same difference Di. A detailed proof for the optimization is provided in the appendix.

ai =

෍ pjpj∈B0
ʹ

k × k - qʹ
,

(7)

bi = ෍ pjpj∈B1
ʹ

qʹ
,

(8)

Li
ʹ = ai - qʹ(Di - bi + ai)

k × k , (9)

Figure 1. Examples of block classification for Lena with different thresholds: (a) thr1 = 10 and thr2 = 25;
(b) thr1 = 20 and thr2 = 35; (c) thr1 = 30 and thr2 = 45. The black blocks are smooth blocks, the gray
blocks are less complex blocks, and the white blocks are highly complex blocks.

The changes in the smoother blocks will reduce the image quality less. Therefore, data are
embedded following the order of ascending difference value in smooth blocks and less complex blocks,
while from left to right and top to bottom of the image in highly complex blocks in our method. On
this account, in our hybrid hiding strategy, first two strategies will preserve blocks’ difference, and
guarantee blocks’ difference will not decrease in the rest blocks.

3.1.1. Strategy 1 for Smooth Blocks: Bitmap Replacement

For smooth blocks, the two quantization values are very close, and thus, changes of the bitmap
have a slight effect on image quality. Therefore, the bitmap can be totally replaced by 16 bits of secret
data. Then, refer to the original image blocks and original pixels p j, Equations (7) to (10) are used to
calculate two new quantization values H′i and L′i to obtain the best image quality that is closer to the
original image, i.e., minimizing the square error of the final stego-compressed block while preserving
the same difference Di. A detailed proof for the optimization is provided in the Appendix A.

ai =

∑
p j∈B′0

p j

k× k− q′
, (7)

bi =

∑
p j∈B′1

p j

q′
, (8)

Symmetry 2019, 11, 1314 6 of 16

L′i =ai −
q′(Di − bi + ai)

k× k
, (9)

H′i =bi +
(k× k− q′)(Di − bi + ai)

k× k
, (10)

where q′ represents the number of ‘1’ in the new bitmap, B′0 and B′1 denote two original pixel sets which
the corresponding bits are ‘0’ and ‘1’, respectively, in a new bitmap.

3.1.2. Strategy 2 for Less Complex Blocks: Matrix Encoding

For less complex blocks, the difference between H′i and L′i is large, and the image quality is going
to decline dramatically if we change all the values of the bitmap like the smooth blocks. Therefore,
the matrix coding that can embed three bits by at most changing one of seven bits is used in less
complex blocks. First, the bitmap is divided into two non-overlapping sub-blocks, i.e., the upper
sub-block and the lower sub-block. The first seven bits of each sub-block are treated as code-words for
data embedding. For details of the method, please refer to Section 2.2. This strategy embeds data by
modifying the bitmap and thus, does not change Di.

3.1.3. Strategy 3 for Highly Complex Blocks: Symmetric Quantization Value Embedding

For highly complex blocks, Di is too large, such that even a one bit change of the bitmap is
intolerable. Therefore, in consideration of the image quality, we turn to hiding data by modifying
two quantization values to embed 2 bits into one of them, i.e., 4 bits can be embedded into one
block. To guarantee that Di will not reduce, instead of the LSB replacement method, the symmetric
quantization value embedding method is used to obtain two new nearest expanding quantization
values which is given by Equations (11) to (14). After embedding, L′i will decrease and H′i will increase,
i.e., the difference Di will not reduce, thus, misjudgments will not happen in the data extraction phase.

mL= mod(L i , 4), (11)

mH= mod(H i , 4), (12)

L′i= Li−mod[(m L−S′i,L) , 4], (13)

H′i= Hi+mod[(S ′i,H−mH) , 4], (14)

where S′i,L and S′i,H denote two quaternary system secret data where each one is converted by 2 bit binary
system secret data. When extracting data, we only apply modulo-4 operation on two quantization
values and convert two results into the binary to get the embedded secret data.

By utilizing the proposed hybrid strategy, we can embed 16 bits, 6 bits, and 4 bits into one smooth
block, one less complex block and one highly complex block, respectively. Additionally, in smooth
blocks and less complex blocks, our method can preserve the same value of Di, and can guarantee Di
will not reduce in highly complex blocks. Therefore, the hiding order can be used to embed data into
blocks in order of Di from low to high when Di ≤ thr2, and embed secret data into blocks from left to
right and top to bottom of the image when Di > thr2, and the extraction process will not violate the
order of embedding.

3.2. Data Embedding Phase

According to the block classification, in the data embedding phase, the blocks are first classified
into smooth blocks, less complex blocks, and highly complex blocks based on two thresholds, thr1
and thr2. Three corresponding data embedding strategies are used to embed secret data into the three
block types. As mentioned before, the order of data embedding is followed in Di from low to high
when Di ≤ thr2, and from left to right and top to bottom of the image when Di > thr2. Based on the
above discussions, the detailed data embedding algorithm is given below:

Symmetry 2019, 11, 1314 7 of 16

Input: Original M × N sized image O, secret data bit stream S, and two thresholds thr1, thr2.
Output: Stego-AMBTC compressed code C’.
Step 1. Divide the original image into M×N

4×4 non-overlapping 4 × 4 sized blocks. Next, apply the
AMBTC compression method to compress each block and obtain the compressed block code Ci with
two quantization values and one bitmap (Li, Hi, BMi).

Step 2. Calculate Di by Equation (6), sort the compressed blocks according to the ascending order
of Di when Di ≤ thr2 and the raster scan order of image for the rest of the blocks.

Step 3. Extract the compressed block code Ci of the i-th block according to the ascending sort
order. If Di ≤ thr1, the block belongs to the smooth blocks and go to Step 4; or else if thr1 < Di ≤ thr2,
the block belongs to the less complex blocks and go to Step 5; or else the block belongs to the highly
complex blocks and go to Step 6.

Step 4. Extract the 16 bits Si from S, and totally replace the bitmap BMi with Si to get the new
bitmap BM′i . Then, use Equations (7) to (10) to calculate two new quantization values L′i and H′i .
Therefore, the final stego-compressed block code C′i can be obtained by concatenating L′i , H′i , and BM′i ,
i.e., (L′i , H′i , BM′i).

Step 5. Extract the 6 bits Si from S, and divide into Si,1 and Si,2 both with 3 bits of secret data.
Then, divide BMi into non-overlapping upper sub-block UBMi and lower sub-block LBMi, and extract
the first seven bits of UBMi and LBMi to form two code-words UCWi and LCWi. Use Equation (4) to
calculate which bits of UCWi and LCWi need to be flipped, respectively. Flip two corresponding bits of
BMi to obtain the new bitmap BM′i , and the final stego-compressed block code C′i can be obtained by
concatenating Li, Hi, and BM′i , i.e., (Li, Hi, BM′i).

Step 6. Extract 4 bits of Si from S, then divide into Si,1 and Si,2, both with 2 bits of secret data.
Then, convert Si,1 and Si,2 into a quaternary system and use Equations (11) to (14) to calculate two new
quantization values, L′i and H′i . Finally, concatenate L′i , H′i , and BMi to obtain the final stego-compressed
block code C′i : (L′i , H′i , BMi).

Step 7. Finish the algorithm when all of the final stego-compressed block codes are obtained,
and concatenate each C′i according its location in the original image to form the final stego-AMBTC
compressed code C’. The stego-image

with secret data can also be obtained by AMBTC decoding.

3.3. Data Extraction Phase

In the data extraction phase, the secret data can be extracted follow the order of Di from low to
high when Di ≤ thr2, and from left to right and top to bottom of the image when Di > thr2 without any
loss. Details on the extraction algorithm are given below:

Input: Stego-AMBTC compressed code C’, and two thresholds thr1, thr2.
Output: Secret data bit stream S.
Step 1. Collect all stego-compressed block code C′i .
Step 2. Calculate D′i by Equation (6), sort each stego-compressed block code according to the order

for D′i from low to high when D′i ≤ thr2 and the raster scan order of image for the rest of the blocks.
Step 3. Extract the stego-compressed block code C′i of the i-th block according to the ascending sort

order. If D′i ≤ thr1, the block belongs to the smooth blocks and go to Step 4; or else if thr1 < D′i ≤ thr2,
the block belongs to the less complex blocks and go to Step 5; or else, go to Step 6.

Step 4. Extract the 16 bits of bitmap from the stego-compressed block code C′i , and add these 16
bits directly into S.

Step 5. Divide BM′i into non-overlapping upper sub-block UBM′i and lower sub-block LBM′i , and
extract the first seven bits of UBM′i and LBM′i to form two code-words UCW′i and LCW′i , respectively.
Use Equation (5) to calculate two parts of secret data Si,1 and Si,2 both with 3 bits. Then, add these 6
bits into S.

Step 6. Apply modulo-4 operation on its two quantization values and convert the results into the
binary system, respectively. By doing so, 4 bits secret data can be obtained, then, add these 4 bits into S.

Symmetry 2019, 11, 1314 8 of 16

Step 7. Finish the algorithm when all of the stego-compressed block codes are processed, and the
final secret data bit stream S can be obtained.

3.4. Example of Our Proposed Method

In this section, we will use three simple examples to illustrate the data embedding and data
extraction phases of our proposed method. Three 4 × 4 sized blocks of the original image are assumed
in the Figure 2a–c, i.e., (176, 178, 188, 180; 181, 182, 187, 173; 177, 178, 187, 170; 179, 180, 182, 173), (152,
143, 142, 127; 147, 140, 132, 126; 143, 141, 129, 123; 137, 135, 121, 114), and (111, 70, 44, 37; 108, 86, 52, 39;
116, 90, 55, 41; 120, 87, 50, 44). After being compressed by AMBTC, three compressed codes (176, 183,
BM1), (125, 142, BM2), and (48, 103, BM3) are obtained. We set thr1 = 10 and thr2 = 25.

For the first compressed code (176, 183, BM1), the difference D1 = 7 < thr1, so the block belongs to
the smooth blocks, and BM1 can be totally replaced by 16 bits of secret data, as shown in Figure 2a.
Then, use Equations (7) to (10) to calculate two new quantization values L′1= 177 and H′1= 184. Even
when the two quantization values are changed, the value of the difference between them is maintained.

For the second compressed code (125, 142, BM2), difference D2 = 17, which is between thr1 and
thr2, so the block belongs to the less complex blocks. The matrix coding method is used to embed 6
bits of secret data in BM2. First, the secret bits are divided into S1 = 101 and S2 = 001. Then, use
Equation (4) to separately calculate which bit needs to be flipped in the upper code-word and the lower
code-word. As shown in Figure 2b, the third bit needs to be flipped in the upper code-word and the
lower code-word is unchanged. Therefore, the secret bits ‘101001’ can be embedded by just changing
the third bit of BM2 from ‘1’ to ‘0’, and the two quantization values are preserved.

For the third compressed code (48, 103, BM3), difference D3 = 55 > thr2, so the block belongs
to the highly complex blocks. First, two secret data sequences ‘11’ and ‘00’ are converted into the
quaternary system ‘3’ and ‘0’, respectively. Then, use Equations (11) to (14) to calculate two new
quantization values L′1 = 47 and H′1 = 104. By doing so, 4 bits secret data can be embedded into this
block. The difference between 47 and 104 is 59, which is higher than thr2, as expected. Therefore,
misjudgments will not happen in the data extraction phase.

Symmetry 2019, 11, x FOR PEER REVIEW 8 of 17

3.4. Example of Our Proposed Method

In this section, we will use three simple examples to illustrate the data embedding and data
extraction phases of our proposed method. Three 4 × 4 sized blocks of the original image are assumed
in the Figure 2(a)–(c), i.e., (176, 178, 188, 180; 181, 182, 187, 173; 177, 178, 187, 170; 179, 180, 182, 173),
(152, 143, 142, 127; 147, 140, 132, 126; 143, 141, 129, 123; 137, 135, 121, 114), and (111, 70, 44, 37; 108, 86,
52, 39; 116, 90, 55, 41; 120, 87, 50, 44). After being compressed by AMBTC, three compressed codes
(176, 183, BM1), (125, 142, BM2), and (48, 103, BM3) are obtained. We set thr1 = 10 and thr2 = 25.

For the first compressed code (176, 183, BM1), the difference D1 = 7 < thr1, so the block belongs
to the smooth blocks, and BM1 can be totally replaced by 16 bits of secret data, as shown in Figure
2(a). Then, use Equations (7) to (10) to calculate two new quantization values L1

ʹ = 177 and H1
ʹ = 184.

Even when the two quantization values are changed, the value of the difference between them is
maintained.

For the second compressed code (125, 142, BM2), difference D2 = 17, which is between thr1 and
thr2, so the block belongs to the less complex blocks. The matrix coding method is used to embed 6
bits of secret data in BM2. First, the secret bits are divided into S1 = 101 and S2 = 001. Then, use
Equation (4) to separately calculate which bit needs to be flipped in the upper code-word and the
lower code-word. As shown in Figure 2(b), the third bit needs to be flipped in the upper code-word
and the lower code-word is unchanged. Therefore, the secret bits ‘101001’ can be embedded by just
changing the third bit of BM2 from ‘1’ to ‘0’, and the two quantization values are preserved.

For the third compressed code (48, 103, BM3), difference D3 = 55 > thr2, so the block belongs to
the highly complex blocks. First, two secret data sequences ‘11’ and ‘00’ are converted into the
quaternary system ‘3’ and ‘0’, respectively. Then, use Equations (11) to (14) to calculate two new
quantization values L1

ʹ = 47 and H1
ʹ = 104. By doing so, 4 bits secret data can be embedded into this

block. The difference between 47 and 104 is 59, which is higher than thr2, as expected. Therefore,
misjudgments will not happen in the data extraction phase.

(a)

Figure 2. Cont.

Symmetry 2019, 11, 1314 9 of 16Symmetry 2019, 11, x FOR PEER REVIEW 9 of 17

(b)

(c)

Figure 2. Examples of the data embedding phase of three type blocks: (a) a smooth block, (b) a less
complex block, and (c) a highly complex block.

When extracting data, we also need to follow the order as mentioned above. For the first stego-
compressed code (177, 184, BM1

ʹ), D1
ʹ = 7 < thr1 , we just extract the 16 bits of bitmap

‘0101000110100010’ to obtain the secret data. For the second stego-compressed code (125, 142, BM2
ʹ),

D2ʹ = 17, which is between thr1 and thr2. The upper code-word and the lower code-word are used to
calculate the secret data by Equation (5). After calculation, two parts of the secret data ‘101’ and ‘001’
can be obtained. For the third stego-compressed code (47, 104, BM3), D3ʹ = 59 > thr2, we just apply
modulo-4 operation on two quantization values and convert the results into a binary system to obtain
two parts of secret data ‘11’ and ‘00’.

4. Experimental Results and Discussions

This section presents the experimental data and compares the results of our proposed method
with three relevant methods. Eight common 512 × 512 sized grayscale images, “Airplane”, “Baboon”,
“Boat”, “Couple”, “House”, “Lena”, “Peppers”, and “Sailboat” are used as test images as shown in
Figure 3. In our experiments, the block size used for AMBTC compression of each method is set to 4
× 4. All the experiments were implemented by MATLAB R2017a, and run on a platform with an Intel
(R) Core i5-8500 3.00 GHz processor, 8 GB RAM and Windows 10 operating system. The embedded
secret data used in our experiments were generated by a pseudo-random number generator.

Figure 2. Examples of the data embedding phase of three type blocks: (a) a smooth block, (b) a less
complex block, and (c) a highly complex block.

When extracting data, we also need to follow the order as mentioned above. For the first
stego-compressed code (177, 184, BM′1), D′1 = 7 < thr1, we just extract the 16 bits of bitmap
‘0101000110100010’ to obtain the secret data. For the second stego-compressed code (125, 142,
BM′2), D′2 = 17, which is between thr1 and thr2. The upper code-word and the lower code-word are
used to calculate the secret data by Equation (5). After calculation, two parts of the secret data ‘101’
and ‘001’ can be obtained. For the third stego-compressed code (47, 104, BM3), D′3 = 59 > thr2, we just
apply modulo-4 operation on two quantization values and convert the results into a binary system to
obtain two parts of secret data ‘11’ and ‘00’.

4. Experimental Results and Discussion

This section presents the experimental data and compares the results of our proposed method
with three relevant methods. Eight common 512 × 512 sized grayscale images, “Airplane”, “Baboon”,
“Boat”, “Couple”, “House”, “Lena”, “Peppers”, and “Sailboat” are used as test images as shown in
Figure 3. In our experiments, the block size used for AMBTC compression of each method is set to
4 × 4. All the experiments were implemented by MATLAB R2017a, and run on a platform with an Intel
(R) Core i5-8500 3.00 GHz processor, 8 GB RAM and Windows 10 operating system. The embedded
secret data used in our experiments were generated by a pseudo-random number generator.

Symmetry 2019, 11, 1314 10 of 16
Symmetry 2019, 11, x FOR PEER REVIEW 10 of 17

(a) Airplane (b) Baboon (c) Boat (d) Couple

(e) House (f) Lena (g) Peppers (h) Sailboat

Figure 3. Eight test images.

Hiding capacity and PSNR are used to quantitatively compare and evaluate our proposed
method with other methods. Hiding capacity refers to the number of secret bits that can be embedded
into the test images. Peak signal-to-noise ratio (PSNR) is used to estimate the visual quality of the
stego-images compared to the original images. The definitions of mean square error (MSE) and PSNR
are shown in Equations (15) and (16), respectively.

MSE =
1

M × N ෍ ෍ (Om,n - Om,n
ʹ)2

N

n = 1
M

m = 1 , (14)

PSNR = 10log10

(255)2

MSE dB, (15)

where (m, n) denotes the coordinate of each pixel.
Three relevant data hiding methods which embed data into AMBTC compressed images while

preserving the final file size that were proposed by Ou and Sun [28], Chen and Chi [29], and Kumar
et al. [30] are used to compare with our proposed method. For a fair comparison, two thresholds are
set to the same values in the four methods. The visual comparison is shown in Figure 4. We can see
that in (c), noticeable distortions appear on some edge regions such as the bridge of the nose and the
eyebrows. In (d), there are some black points in the white blocks or some white points in the black
blocks on the edge. The stego-images of our proposed method and Ou and Sun’s method are closer
to the original AMBTC compressed image.

Figure 3. Eight test images.

Hiding capacity and PSNR are used to quantitatively compare and evaluate our proposed method
with other methods. Hiding capacity refers to the number of secret bits that can be embedded into the
test images. Peak signal-to-noise ratio (PSNR) is used to estimate the visual quality of the stego-images
compared to the original images. The definitions of mean square error (MSE) and PSNR are shown in
Equations (15) and (16), respectively.

MSE =
1

M×N

M∑
m=1

N∑
n=1

(O m,n−O′m,n)
2, (15)

PSNR = 10 log10
(255)2

MSE
dB, (16)

where (m, n) denotes the coordinate of each pixel.
Three relevant data hiding methods which embed data into AMBTC compressed images while

preserving the final file size that were proposed by Ou and Sun [28], Chen and Chi [29], and
Kumar et al. [30] are used to compare with our proposed method. For a fair comparison, two thresholds
are set to the same values in the four methods. The visual comparison is shown in Figure 4. We can see
that in (c), noticeable distortions appear on some edge regions such as the bridge of the nose and the
eyebrows. In (d), there are some black points in the white blocks or some white points in the black
blocks on the edge. The stego-images of our proposed method and Ou and Sun’s method are closer to
the original AMBTC compressed image.

Symmetry 2019, 11, 1314 11 of 16
Symmetry 2019, 11, x FOR PEER REVIEW 11 of 17

Figure 4. Visual comparison among different methods for the enlarged “Lena” image (block size k =
4, thr1 = 10, thr2 = 25, and the hiding capacity is 100,000).

Then, we use PSNR to evaluate each method accurately. Figure 5 shows the PSNR for different
amounts of the hiding data (from 1,000 bits to the highest hiding capacity) of eight test images when
thr1 = 10 and thr2 = 25.

(a) (b)

(c) (d)

Figure 4. Visual comparison among different methods for the enlarged “Lena” image (block size k = 4,
thr1 = 10, thr2 = 25, and the hiding capacity is 100,000).

Then, we use PSNR to evaluate each method accurately. Figure 5 shows the PSNR for different
amounts of the hiding data (from 1000 bits to the highest hiding capacity) of eight test images when
thr1 = 10 and thr2 = 25.

Symmetry 2019, 11, x FOR PEER REVIEW 11 of 17

Figure 4. Visual comparison among different methods for the enlarged “Lena” image (block size k =
4, thr1 = 10, thr2 = 25, and the hiding capacity is 100,000).

Then, we use PSNR to evaluate each method accurately. Figure 5 shows the PSNR for different
amounts of the hiding data (from 1,000 bits to the highest hiding capacity) of eight test images when
thr1 = 10 and thr2 = 25.

(a) (b)

(c) (d)

Figure 5. Cont.

Symmetry 2019, 11, 1314 12 of 16Symmetry 2019, 11, x FOR PEER REVIEW 12 of 17

(e) (f)

(g) (h)

Figure 5. Comparison of peak signal-to-noise ratio (PSNR) among different methods for eight test
images: (a) Airplane; (b) Baboon; (c) Boat; (d) Couple; (e) House; (f) Lena; (g) Peppers, and (h)
Sailboat.

Kumar et al.’s method achieves the highest hiding capacity; however, the image quality is the
worst. In the Ou and Sun method, the PSNR will not change when embedding bits into complex
blocks. Therefore, the image quality of [28] is the best, but the hiding capacity is the lowest in most
images. Our proposed method can achieve the second highest hiding capacity, i.e., only lower than
[30]. In addition, our proposed method can achieve a relatively higher image quality. This is
especially the case in smooth images such as Airplane, where the PSNR of our proposed method is
the highest, and in Lena, when hiding capacity is lower, the PSNR of our proposed is also the highest.
In Figure 5a, the PSNR of the other methods are rapidly declining when hiding capacity is higher
than 8000 because the image becomes complex in the rear areas. Due to the hiding order of our
proposed method, the PSNR of our proposed method will decline slowly with the increasing amount
of hiding data. Therefore, our proposed method can achieve an excellent balance between image
quality and hiding capacity, and can obtain high-fidelity images when the hiding amount is lower.

Table 2 shows the performance under different thresholds in eight test images. HC and ER
denote hiding capacity and error ratio, respectively. The error ratio is the ratio of the error blocks to
all blocks, and the error blocks are blocks where two quantization values are exchanged. Our
proposed method can embed 6 bits and 4 bits into one less complex block and one highly complex
block, with 2 bits and 1 bit less than [30], respectively. Thus, the gap in hiding capacity between our
proposed method and [30] decreases when thresholds are enlarged, and the hiding capacity of our
proposed method is always higher than the remaining two methods. The most important benefit of
our proposed method is that there are no error blocks. The ER of the other three methods are all
greater than 30%, and the ER increases with the decrease of thresholds, because the hiding strategy
for smooth blocks in these three methods exchange the order of two quantization values. Method [28]
has the highest ER in the most cases because of the embedding strategy in the complex block, thus,
its security is the worst. Our proposed method can achieve a strict AMBTC format while the other
methods cannot, and as such, security can be perfectly guaranteed in data transmission.

Figure 5. Comparison of peak signal-to-noise ratio (PSNR) among different methods for eight test
images: (a) Airplane; (b) Baboon; (c) Boat; (d) Couple; (e) House; (f) Lena; (g) Peppers, and (h) Sailboat.

Kumar et al.’s method achieves the highest hiding capacity; however, the image quality is the
worst. In the Ou and Sun method, the PSNR will not change when embedding bits into complex
blocks. Therefore, the image quality of [28] is the best, but the hiding capacity is the lowest in most
images. Our proposed method can achieve the second highest hiding capacity, i.e., only lower than [30].
In addition, our proposed method can achieve a relatively higher image quality. This is especially the
case in smooth images such as Airplane, where the PSNR of our proposed method is the highest, and
in Lena, when hiding capacity is lower, the PSNR of our proposed is also the highest. In Figure 5a, the
PSNR of the other methods are rapidly declining when hiding capacity is higher than 8000 because the
image becomes complex in the rear areas. Due to the hiding order of our proposed method, the PSNR
of our proposed method will decline slowly with the increasing amount of hiding data. Therefore, our
proposed method can achieve an excellent balance between image quality and hiding capacity, and can
obtain high-fidelity images when the hiding amount is lower.

Table 2 shows the performance under different thresholds in eight test images. HC and ER denote
hiding capacity and error ratio, respectively. The error ratio is the ratio of the error blocks to all blocks,
and the error blocks are blocks where two quantization values are exchanged. Our proposed method
can embed 6 bits and 4 bits into one less complex block and one highly complex block, with 2 bits
and 1 bit less than [30], respectively. Thus, the gap in hiding capacity between our proposed method
and [30] decreases when thresholds are enlarged, and the hiding capacity of our proposed method is
always higher than the remaining two methods. The most important benefit of our proposed method
is that there are no error blocks. The ER of the other three methods are all greater than 30%, and the
ER increases with the decrease of thresholds, because the hiding strategy for smooth blocks in these
three methods exchange the order of two quantization values. Method [28] has the highest ER in the
most cases because of the embedding strategy in the complex block, thus, its security is the worst.
Our proposed method can achieve a strict AMBTC format while the other methods cannot, and as
such, security can be perfectly guaranteed in data transmission.

Symmetry 2019, 11, 1314 13 of 16

Table 2. Comparison of PSNR, hiding capacity (HC) and error ratio (ER) of the four methods under
different thresholds in eight test images.

Methods Metrics Airplane Baboon Boat Couple House Lena Peppers Sailboat

AMBTC PSNR 31.9832 26.9748 31.1592 31.2793 30.9910 33.2053 33.4056 31.1794

thr1 = 10 and thr2 = 25

Proposed
PSNR 30.8573 26.4748 29.6169 29.7528 29.8977 31.3441 31.1888 29.7954

HC 200837 105437 168901 159993 166187 200531 203817 177087
ER 0 0 0 0 0 0 0 0

Kumar et al. [30]
PSNR 29.2947 25.0439 28.3124 28.3805 27.9374 30.1206 30.1617 28.5961

HC 209719 125563 183149 174552 179473 209672 213103 189226
ER 0.3622 0.3599 0.5022 0.4705 0.3884 0.4506 0.4697 0.4482

Chen and Chi [29]
PSNR 29.1864 25.4410 29.0581 29.1671 28.4183 31.0622 30.1701 29.0832

HC 182178 63258 136126 126380 136503 178991 182888 149453
ER 0.3859 0.4885 0.4503 0.4597 0.3994 0.4195 0.4352 0.4360

Ou and Sun [28]
PSNR 30.5722 26.9025 30.2695 30.7148 30.5373 32.1325 31.8410 30.6045

HC 179179 54214 132664 122014 131929 176674 180829 145729
ER 0.3820 0.4885 0.4515 0.4613 0.4042 0.4156 0.4345 0.4364

thr1 = 15 and thr2 = 30

Proposed
PSNR 30.3581 26.0870 28.8905 29.0280 29.2570 30.5953 30.4882 29.1793

HC 213679 129215 196907 185321 184375 218979 224239 197479
ER 0 0 0 0 0 0 0 0

Kumar et al. [30]
PSNR 28.9107 24.5719 27.9008 27.8522 27.3197 29.8154 29.87642 28.0991

HC 220792 146730 206789 196410 195790 225366 230105 206875
ER 0.3495 0.3568 0.4569 0.4464 0.3875 0.4202 0.4268 0.4235

Chen and Chi [29]
PSNR 29.2814 25.4026 28.9909 29.0897 28.6809 30.7737 30.5654 29.2090

HC 199877 94409 175623 161156 160229 204727 212117 177217
ER 0.3834 0.4888 0.4414 0.4460 0.3918 0.4119 0.4189 0.4269

Ou and Sun [28]
PSNR 31.4106 26.7542 30.3014 30.4907 30.4016 32.1786 31.8813 30.4846

HC 197269 86494 172789 157594 156544 202894 210409 174199
ER 0.3781 0.4836 0.4418 0.4460 0.3966 0.4132 0.4250 0.4335

thr1 = 20 and thr2 = 35

Proposed
PSNR 29.7978 25.6147 28.2041 28.2754 28.4987 29.8847 29.9105 28.5282

HC 222565 146017 213361 201759 199551 229697 233449 210615
ER 0 0 0 0 0 0 0 0

Kumar et al. [30]
PSNR 28.7812 24.4117 27.7682 27.6246 27.0495 29.5163 29.6846 27.8663

HC 228449 161804 220686 210580 209023 234623 237888 218300
ER 0.3455 0.3741 0.4269 0.4388 0.3848 0.4166 0.4125 0.4224

Chen and Chi [29]
PSNR 29.2806 25.3028 28.6718 28.8222 28.4855 30.7335 30.0696 28.9940

HC 211774 115348 198396 183117 180081 219048 224892 194609
ER 0.3755 0.4794 0.4340 0.4485 0.3933 0.4113 0.4244 0.4331

Ou and Sun [28]
PSNR 30.8572 26.5590 29.8558 30.0382 30.0897 31.5808 31.7296 30.1260

HC 209524 108499 196039 180229 177124 217654 223444 192169
ER 0.3767 0.4779 0.4461 0.4490 0.3959 0.4080 0.4337 0.4279

5. Conclusions

This paper presented a high-fidelity data hiding method for strict AMBTC format images by
using a hybrid strategy for three block types: smooth blocks, less complex blocks and highly complex
blocks. Our proposed method can embed 16 bits and 6 bits into a smooth block and a less complex
block while maintaining the same difference between two quantization values, and 4 bits into a highly
complex block, which guarantees that the difference will not decrease. Due to the designed hiding
order, our method can obtain a high-fidelity image in the lower hiding amount. Experimental results
show that our proposed method achieves an excellent balance between image quality and hiding
capacity. In addition, our proposed method is able to strictly maintain the AMBTC compressed code
format and as such, there are no error blocks in the final stego-compressed code.

Symmetry 2019, 11, 1314 14 of 16

Author Contributions: conceptualization, C.-C.C.; methodology, X.W. and J.-H.H.; software, X.W.; validation,
C.-C.C., X.W. and J.-H.H.; formal analysis, C.-C.C. and J.-H.H.; investigation, X.W.; resources, X.W.; data curation,
X.W.; writing—original draft preparation, X.W.; writing—review and editing, X.W. and J.-H.H.; visualization,
X.W.; supervision, C.-C.C.; project administration, X.W. and J.-H.H.

Funding: This research received no external funding.

Acknowledgments: The authors would like to thank the reviewers for their valuable suggestions on improving
the quality of this paper to this professional international journal.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Details of the proofs for Equations (9) and (10) are provided below. We first list the symbols that
are used:

Table A1. The list of symbols.

Symbol Meaning

k Block size

B0 Pixels belong to ‘0’ in new bitmap
B1 Pixels belong to ‘1’ in new bitmap
Di The difference between two original quantization values
q’ The number ‘1’ in a new bitmap

L′i and H′i Two new quantization values
e The square error of the block

The following processes are used to prove Equations (9) and (10), to obtain the best image quality
when maintaining the same Di.

Get

ai =

∑
p j∈B′0

p j

k× k− q′
,

and

bi =

∑
p j∈B′1

p j

q′
.

We have

ei =
∑

p j∈B′0

(p j − L′i)
2 +

∑
p j∈B′1

(p j −H′i)
2

=
∑

p j∈B′0

[
(
p j − ai

)
+ (ai − L′i)]

2
+

∑
p j∈B′1

[
(
p j − bi

)
+ (bi −H′i)]

2

=
∑

p j∈B′0

(
p j − ai

)2
+ 2

(
p j − ai

)
(ai − L′i) + (ai − L′i)

2+∑
p j∈B′1

(
p j − bi

)2
+ 2

(
p j − bi

)
(bi −H′i) + (bi −H′i)

2

=
∑

p j∈B′0

(
p j − ai

)2
+

∑
p j∈B′0

2
(
p j − ai

)(
ai − L′i

)
+

∑
p j∈B′0

(ai − L′i)
2+∑

p j∈B′1

(
p j − bi

)2
+

∑
p j∈B′1

2
(
p j − bi

)(
bi −H′i

)
+

∑
p j∈B′1

(bi −H′i)
2

=
∑

p j∈B′0

(
p j − ai

)2
+

∑
p j∈B′0

(ai − L′i)
2 +

∑
p j∈B′1

(
p j − bi

)2
+

∑
p j∈B′1

(bi −H′i)
2

=
∑

p j∈B′0

(
p j − ai

)2
+

∑
p j∈B′0

[ai −
(
H′i −Di

)
]
2
+

∑
p j∈B′1

(
p j − bi

)2
+

∑
p j∈B′1

(bi −H′i)
2

=
∑

p j∈B′0

(
p j − ai

)2
+ (k× k− q′)[ai −

(
H′i −Di

)
]
2
+

∑
p j∈B′1

(
p j − bi

)2
+ q′(bi −H′i)

2

Symmetry 2019, 11, 1314 15 of 16

Since
dei
dH′i

= −2(k× k− q′)[ai − (H′i −Di)] − 2q′(bi −H′i) = 0

then
2q′bi + 2ai(k× k− q′) + 2Di(k× k− q′) = 2q′H′i + 2H′i (k× k− q′)

so

H′i =
q′bi + ai(k× k− q′) + Di(k× k− q′)

k× k

= bi −
bi(k× k− q′) + ai(k× k− q′) + Di(k× k− q′)

k× k

= bi +
(k× k− q′)(Di − bi + ai)

k× k
and

L′i = ai −
q′(Di − bi + ai)

k× k

References

1. Bender, W.; Gruhl, D.; Morimoto, N.; Lu, A. Techniques for data hiding. IBM Syst. J. 1996, 35, 313–336.
[CrossRef]

2. Wu, M.; Liu, B. Data hiding in binary image for authentication and annotation. IEEE Trans. Multimed. 2004,
6, 528–538. [CrossRef]

3. Tian, J. Reversible data embedding using a difference expansion. IEEE Trans. Circuits Syst. Video Technol.
2003, 13, 890–896. [CrossRef]

4. Tsai, P.; Hu, Y.C.; Yeh, H.-L. Reversible image hiding scheme using predictive coding and histogram shifting.
Signal Process. 2009, 89, 1129–1143. [CrossRef]

5. Chang, C.-C.; Lu, T.C. A difference expansion oriented data hiding scheme for restoring the original host
images. J. Syst. Softw. 2006, 9, 1754–1766. [CrossRef]

6. Lee, C.F.; Chen, H.L.; Tso, H.K. Embedding capacity raising in reversible data hiding based on prediction of
difference expansion. J. Syst. Softw. 2010, 83, 1864–1872. [CrossRef]

7. Hu, Y.; Lee, H.K.; Li, J. DE-based reversible data hiding with improved overflow location map. IEEE Trans.
Circuits Syst. Video Technol. 2008, 19, 250–260.

8. Tai, W.L.; Yeh, C.M.; Chang, C.C. Reversible data hiding based on histogram modification of pixel differences.
IEEE Trans. Circuits Syst. Video Technol. 2009, 19, 906–910.

9. Xuan, G.; Yao, Q.; Yang, C.; Gao, J.; Chai, P.; Shi, Y.Q.; Ni, Z. Lossless data hiding using histogram shifting
method based on integer wavelets. In International Workshop on Digital Watermarking 2006; Lecture Notes in
Computer Science; Jeon, B., Ed.; Springer: Berlin, Germany, 2006; pp. 323–332.

10. Chen, W.Y. Color image steganography scheme using DFT, SPIHT codec, and modified differential phase-shift
keying techniques. Appl. Math. Comput. 2008, 196, 40–54. [CrossRef]

11. Chang, C.C.; Lin, C.C.; Tseng, C.S.; Tai, W.-L. Reversible hiding in DCT-based compressed images. Inf. Sci.
2007, 177, 2768–2786. [CrossRef]

12. Zhang, X. Reversible data hiding in encrypted image. IEEE Signal Process. Lett. 2011, 18, 255–258. [CrossRef]
13. Wang, J.X.; Lu, Z.M. A path optional lossless data hiding scheme based on VQ joint neighboring coding. Inf.

Sci. 2009, 179, 3332–3348. [CrossRef]
14. Qin, C.; Chang, C.C.; Chiu, Y.P. A novel joint data-hiding and compression scheme based on SMVQ and

image inpainting. IEEE Trans. Image Process. 2013, 23, 969–978.
15. Tseng, H.W.; Chang, C.C. High capacity data hiding in JPEG-compressed images. Informatica 2004, 15,

127–142.
16. Delp, E.; Mitchell, O. Image compression using block truncation coding. IEEE Trans. Commun. 1979, 27,

1335–1342. [CrossRef]
17. Lema, M.; Mitchell, O. Absolute moment block truncation coding and its application to color images.

IEEE Trans. Commun. 1984, 32, 1148–1157. [CrossRef]

http://dx.doi.org/10.1147/sj.353.0313
http://dx.doi.org/10.1109/TMM.2004.830814
http://dx.doi.org/10.1109/TCSVT.2003.815962
http://dx.doi.org/10.1016/j.sigpro.2008.12.017
http://dx.doi.org/10.1016/j.jss.2006.03.035
http://dx.doi.org/10.1016/j.jss.2010.05.078
http://dx.doi.org/10.1016/j.amc.2007.05.063
http://dx.doi.org/10.1016/j.ins.2007.02.019
http://dx.doi.org/10.1109/LSP.2011.2114651
http://dx.doi.org/10.1016/j.ins.2009.05.021
http://dx.doi.org/10.1109/TCOM.1979.1094560
http://dx.doi.org/10.1109/TCOM.1984.1095973

Symmetry 2019, 11, 1314 16 of 16

18. Lin, C.C.; Liu, X.L.; Tai, W.L.; Yuan, S.M. A novel reversible data hiding scheme based on AMBTC compression
technique. Multimed. Tools Appl. 2015, 74, 3823–3842. [CrossRef]

19. Kim, C.; Shin, D.; Leng, L.; Yang, C.N. Lossless data hiding for absolute moment block truncation coding
using histogram modification. J. Real-Time Image Process. 2018, 14, 101–114. [CrossRef]

20. Chen, Y.Y.; Hsia, C.H.; Jhong, S.Y.; Lin, H.J. Data hiding method for AMBTC compressed images. J. Ambient
Intell. Hum. Comput. 2018, 1–9. [CrossRef]

21. Malik, A.; Sikka, G.; Verma, H.K. An AMBTC compression based data hiding scheme using pixel value
adjusting strategy. Multidimens. Syst. Signal Process. 2018, 29, 1801–1818. [CrossRef]

22. Huynh, N.-T.; Bharanitharan, K.; Chang, C.C.; Liu, Y. Minima-maxima preserving data hiding algorithm for
absolute moment block truncation coding compressed images. Multimed. Tools Appl. 2018, 77, 5767–5783.
[CrossRef]

23. Sun, W.; Lu, Z.M.; Wen, Y.C.; Yu, F.X.; Shen, R.J. High performance reversible data hiding for block truncation
coding compressed images. Signal Image Video Process. 2013, 7, 297–306. [CrossRef]

24. Hong, W.; Ma, Y.B.; Wu, H.C.; Chen, T.S. An efficient reversible data hiding method for AMBTC compressed
images. Multimed. Tools Appl. 2017, 76, 5441–5460. [CrossRef]

25. Hong, W.; Zhou, X.; Weng, S. Joint adaptive coding and reversible data hiding for AMBTC compressed
images. Symmetry 2018, 10, 254. [CrossRef]

26. Chuang, J.C.; Chang, C.C. Using A Simple and Fast Image Compression Algorithm To Hide Secret Information.
Int. J. Comput. Appl. 2006, 28, 329–333.

27. Hong, W.; Chen, T.S.; Shiu, C.W. Lossless steganography for AMBTC-compressed images. 2008 Congr. Image
Signal Process. 2018, 2, 3–17.

28. Ou, D.; Sun, W. High payload image steganography with minimum distortion based on absolute moment
block truncation coding. Multimed. Tools Appl. 2015, 74, 9117–9139. [CrossRef]

29. Chen, Y.Y.; Chi, K.Y. Cloud image watermarking: High quality data hiding and blind decoding scheme
based on block truncation coding. Multimed. Syst. 2017, 1–13. [CrossRef]

30. Kumar, R.; Kim, D.S.; Jung, K.H. Enhanced AMBTC based data hiding method using hamming distance and
pixel value differencing. J. Inf. Secur. Appl. 2019, 47, 94–103. [CrossRef]

31. Westfeld, A. F5—A steganographic algorithm. Inf. Hiding 2001, 2137, 289–302.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s11042-013-1801-5
http://dx.doi.org/10.1007/s11554-016-0641-8
http://dx.doi.org/10.1007/s12652-018-1048-0
http://dx.doi.org/10.1007/s11045-017-0530-8
http://dx.doi.org/10.1007/s11042-017-4487-2
http://dx.doi.org/10.1007/s11760-011-0238-4
http://dx.doi.org/10.1007/s11042-016-4032-8
http://dx.doi.org/10.3390/sym10070254
http://dx.doi.org/10.1007/s11042-014-2059-2
http://dx.doi.org/10.1007/s00530-017-0560-y
http://dx.doi.org/10.1016/j.jisa.2019.04.007
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Absolute Moment Block Truncation Coding (AMBTC)
	Matrix Coding

	The Proposed Method
	Block Classification and Hybrid Strategy
	Strategy 1 for Smooth Blocks: Bitmap Replacement
	Strategy 2 for Less Complex Blocks: Matrix Encoding
	Strategy 3 for Highly Complex Blocks: Symmetric Quantization Value Embedding

	Data Embedding Phase
	Data Extraction Phase
	Example of Our Proposed Method

	Experimental Results and Discussion
	Conclusions
	
	References

