
symmetryS S

Article

A Breakdown-Free Block COCG Method for Complex
Symmetric Linear Systems with Multiple
Right-Hand Sides

Hong-Xiu Zhong 1 , Xian-Ming Gu 2,* and Shao-Liang Zhang 3

1 School of Science, Jiangnan University, Wuxi 214122, Jiangsu, China; zhonghongxiu@126.com
2 School of Economic Mathematics/Institute of Mathematics, Southwestern University of Finance and

Economics, Chengdu 611130, Sichuan, China
3 Department of Applied Physics, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku,

Nagoya 464-8603, Japan; zhang@na.nuap.nagoya-u.ac.jp
* Correspondence: guxianming@live.cn or guxm@swufe.edu.cn

Received: 19 September 2019; Accepted: 14 October 2019; Published: 16 October 2019
����������
�������

Abstract: The block conjugate orthogonal conjugate gradient method (BCOCG) is recognized as
a common method to solve complex symmetric linear systems with multiple right-hand sides.
However, breakdown always occurs if the right-hand sides are rank deficient. In this paper, based on
the orthogonality conditions, we present a breakdown-free BCOCG algorithm with new parameter
matrices to handle rank deficiency. To improve the spectral properties of coefficient matrix A,
a precondition version of the breakdown-free BCOCG is proposed in detail. We also give the relative
algorithms for the block conjugate A-orthogonal conjugate residual method. Numerical results
illustrate that when breakdown occurs, the breakdown-free algorithms yield faster convergence than
the non-breakdown-free algorithms.

Keywords: COCG; COCR; breakdown-free; complex symmetric matrix; rank deficiency; multiple
right-hand sides

MSC: 65F10; 65F50

1. Introduction

Consider the following complex symmetric linear system with multiple right-hand sides:

AX = B, (1)

with A ∈ Cn×n non-Hermitian but symmetric (i.e., A 6= AH , A = AT), X, B ∈ Cn×p, and 1 ≤ p� n.
Such systems arise from many practical and important applications, for example, electromagnetic
scattering, quantum chemistry, the complex Helmholtz equation, and so on [1,2].

Due to simple calculations and less information required, block Krylov subspace methods are
always designed to solve system (1) efficiently [3,4]. Recently, Tadano et al. presented the block
conjugate orthogonal conjugate gradient (BCOCG) method [5], which can exploit the symmetry
of A naturally. The BCOCG is also deemed a natural generalization of the conjugate orthogonal
conjugate gradient (COCG) method [6–8] for solving systems (1). Besides COCG-type methods,
the COCR method described in [2,7,8] can also exploit the symmetry of A when p = 1 in (1). In [1],
Gu et al. introduced a block version of the COCR method (BCOCR) by employing the residual
orthonormalization technique.

Symmetry 2019, 11, 1302; doi:10.3390/sym11101302 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0002-9125-9530
https://orcid.org/0000-0001-7895-2050
http://www.mdpi.com/2073-8994/11/10/1302?type=check_update&version=1
http://dx.doi.org/10.3390/sym11101302
http://www.mdpi.com/journal/symmetry

Symmetry 2019, 11, 1302 2 of 9

However, rank deficiency is a common problem that can lead block Krylov subspace methods to
breakdown. The main reason is that the block search direction vectors may be linearly dependent on the
existing basis by the increasing of the iteration number [9,10]. Consequently, some useless information
will affect the accuracy of the solution and the numerical stability. BCOCG and BCOCR may also
encounter such a problem, especially when p of (1) is larger, and we will show this phenomenon
in the example section. Hence, it is valuable to solve the rank deficiency problem, and finally to
enhance the numerical stability of BCOCG and BCOCR. Motivated by [10], in this paper, we propose
a breakdown-free block COCG algorithm (BFBCOCG) and a breakdown-free block COCR algorithm
(BFBCOCR) that can efficiently solve the rank deficiency problem of BCOCG and BCOCR, respectively.

The convergence rate of the Krylov subspace method depends on the spectral properties of the
coefficient matrix, for example, the eigenvalue or singular value distribution, field of values, condition
of the eigensystem, and so on. Fortunately, preconditioning can improve the spectral properties [11].
In this paper, we present the preconditioned version of BFBCOCG and BFBCOCR in detail.

The rest of this paper is organized as follows. In Section 2, based on the orthogonality conditions,
we propose the BFBCOCG and BFBCOCR algorithms and their preconditioned variants with their
new parameter matrices. Some numerical examples are listed in Section 3 to show the efficiency of our
new algorithms. Finally, some conclusions are given in Section 4.

In this paper, Kk+1(A, R0) denotes the (k + 1)-dimension Krylov subspace
span{R0, AR0, · · · , AkR0}, A denotes the conjugate of A.

2. The Breakdown-Free Variants of BCOCG and BCOCR

In this section, we present our main algorithms, i.e., the breakdown-free block COCG
algorithm (BFBCOCG) and the breakdown-free block COCR algorithm (BFBCOCR) in detail. We first
introduce the block COCG (BCOCG) and block COCR (BCOCR) methods briefly and then give the
derivation of BFBCOCG and BFBCOCR with their orthogonality properties, respectively. In the end,
the preconditioned variants of BFBCOCG and BFBCOCR are also proposed, denoted by BFPBCOCG
and BFPBCOCR, respectively. We use an underscore “_” to distinguish the breakdown-free and the
non-breakdown-free algorithms.

2.1. BCOCG and BCOCR

Let X0 be an initial approximation, and let Xk+1 ∈ X0 +Kk+1(A, R0) be the k+ 1th approximate
solution of system (1). Hence, the recurrence relation of BCOCG and BCOCR is as follows: [1]

R0 = P0 = B− AX0 ∈ K1(A, R0),

Xk+1 = Xk + Pkαk ∈ X0 +Kk+1(A, R0),

Rk+1 = Rk − APkαk ∈ Kk+2(A, R0),

Pk+1 = Rk+1 + Pkβk ∈ Kk+2(A, R0), for k = 0, 1, 2 · · · .

(2)

The difference between BCOCG and BCOCR is the different calculation formulas of matrices αk and βk
in (2), which are derived by applying the following orthogonality conditions:

Rk+1 ⊥ L and APk+1 ⊥ L. (3)

Different choices of L lead to different algorithms:

• L = Kk+1(A, R0) results in BCOCG.
• L = AKk+1(A, R0) results in BCOCR.

Symmetry 2019, 11, 1302 3 of 9

2.2. BFBCOCG and BFBCOCR

If the block size p is large, then the vectors of the block search direction will inevitably be
linearly dependent on the increasing of the iteration number for BCOCG, hence rank deficiency occurs.
In the following, in order to overcome this problem, we consider applying the breakdown-free strategy
to BCOCG and propose the breakdown-free block COCG algorithm (BFBCOCG). The rationale of
BFBCOCG is extracting an orthogonal basis Pk+1 from the current searching space by using the
operation orth(·). Thus, compared with (2), the new recurrence relation becomes

P0 = R0 = B− AX0, P0 = orth(P0) ∈ K1(A, R0),

Xk+1 = Xk + Pkαk ∈ X0 +Kk+1(A, R0),

Rk+1 = Rk − APkαk ∈ Kk+2(A, R0),

Pk+1 = orth(Pk+1) = orth(Rk+1 + Pkβ
k
) ∈ Kk+2(A, R0), for k = 0, 1, 2 · · · .

(4)

Therefore, again using the orthogonality condition (3), we can get the Lemma 1. Here, we denote
Uk = APk.

Lemma 1. For all 0 ≤ j < k, RT
j Rk = 0, PT

j Rk = 0, and PT
j APk = 0.

Proof. Because Rj, Pj ∈ Kk(A, R0) for all 0 ≤ j < k, and Rk ⊥ Kk(Ā, R̄0) by (3), thus RT
j Rk = 0 and

PT
j Rk = 0. Then PT

j APk = 0 can be obtained by the second orthogonality condition in (3).

Similarly, the following Theorem 1 is obtained to update the parameters αk and β
k
.

Theorem 1. Under the orthogonality condition (3), the value of parameters αk and β
k

in the recurrence relation
(4) can be obtained by solving the following equations:

(PT
k Uk)αk = PT

k Rk,

(RT
k Pk)β

k
= RT

k+1Rk+1, for k = 0, 1, 2, · · · .
(5)

Proof. From Lemma 1 and (4), we have the following two equations:

0 = PT
k Rk+1 = PT

k (Rk − APkαk) = PT
k Rk − PT

k Ukαk (6)

and
0 = PT

k APk+1 = PT
k A(Rk+1 + Pkβ

k
) = UT

k Rk+1 + PT
k Ukβ

k
. (7)

So, solving (6), we can easily get the αk.
Pre-multiplying αT

k to (7), then from the third equation of (4), we have

−αT
k PT

k Ukβ
k
= αT

k UT
k Rk+1 = (Rk − Rk+1)

T Rk+1.

From Lemma 1, we have RT
k Rk+1 = 0, and by the first equation of (5), one has αT

k PT
k Uk = RT

k Pk.
Thus the above equation can be rewritten as

RT
k Pkβ

k
= RT

k+1Rk+1, (8)

which can be used to update matrix β
k
.

The following Algorithm 1 is the breakdown-free block COCG.

Symmetry 2019, 11, 1302 4 of 9

Algorithm 1 Breakdown-free block COCG (BFBCOCG)
1. Given the initial guess X0 ∈ Cn×p and a tolerance tol;

Compute: R0 = B− AX0, P0 = orth(R0), U0 = AP0;
2. For k = 0, 1, 2, · · · until ‖Rk‖F/‖R0‖F ≤ tol, do

Solve: (PT
k Uk)αk = PT

k Rk;
Update: Xk+1 = Xk + Pkαk, Rk+1 = Rk −Ukαk,
Solve: (RT

k Pk)β
k
= RT

k+1Rk+1;
Update: Pk+1 = orth(Rk+1 + Pkβ

k
), Uk+1 = APk+1;

End For

Similar to BFBCOCG, we can also easily get BFBCOCR by using L = AKk+1(A, R0) in the
orthogonality condition (3). The following Algorithm 2 is the breakdown-free block COCR.

Algorithm 2 Breakdown-free block COCR (BFBCOCR)
1. Given the initial guess X0 ∈ Cn×p and a tolerance tol;

Compute: R0 = B− AX0, P0 = orth(R0), U0 = AP0;
2. For k = 0, 1, 2, · · · until ‖Rk‖F/‖R0‖F ≤ tol, do

Solve: (UT
k Uk)αk = UT

k Rk;
Update: Xk+1 = Xk + Pkαk, Rk+1 = Rk −Ukαk,
Solve: (RT

k Uk)β
k
= RT

k+1 ARk+1;
Update: Pk+1 = orth(Rk+1 + Pkβ

k
), Uk+1 = APk+1;

End For

2.3. BFPBCOCG and BFPBCOCR

As we all know, if the coefficient matrix has poor spectral properties, then the Krylov subspace
methods may not robust, while a preconditioning strategy can make it better [11]. The trick is
preconditioning (1) with a symmetric positive matrix M, which approximates to the inverse of matrix
A; we get the following equivalent system:

MAX = MB. (9)

Let M = LLT be the Cholesky decomposition of M. Then system (9) is equivalent to

ÃX̃ = B̃, with Ã = LT AL, X̃ = L−1X, B̃ = LT B. (10)

We add a tilde “˜” on the variables derived from the new system. Then applying the BFBCOCG method
and its recurrence relations (4) to (10), we have the orthogonality conditions

R̃k⊥Kk(Ã, R̃0) and ÃP̃k⊥Kk(Ã, R̃0). (11)

It is easy to see R̃k = LT Rk, P̃k = orth(R̃k + P̃k−1β
k−1

) ∈ Kk+1(Ã, R̃0). The approximate solution

Xk = LX̃k is from LX̃0 + LKk(Ã, R̃0) = X0 + Kk(MA, MR0). Set Pk = LP̃k, then
Pk ∈ Kk+1(MA, MR0). The new recurrence relation becomes

R0 = B− AX0, P0 = orth(P0) = orth(MR0) ∈ K1(MA, MR0),

Xk+1 = Xk + Pkαk ∈ X0 +Kk+1(MA, MR0),

Rk+1 = Rk − APkαk ∈ L−TKk+2(Ã, R̃0),

Pk+1 = orth(Pk+1) = orth(MRk+1 + Pkβ
k
) ∈ Kk+2(MA, MR0), for k = 0, 1, 2 · · · .

(12)

The orthogonality condition (11) become

Rk⊥Kk(MA, MR0) and APk⊥Kk(MA, MR0). (13)

Symmetry 2019, 11, 1302 5 of 9

Under the recurrence relation (12) and the orthogonality condition (13), we can get the following
Lemma 2 and Theorem 2 to update the matrices αk and β

k
. Here, we omit the proof because it is like

the proof of Lemma 1 and Theorem 1. We denote Zk = MRk, Uk = APk.

Lemma 2. For all 0 ≤ j < k, RT
j Zk = 0, PT

j Rk = 0, and PT
j APk = 0.

Remark 1. Under the preconditioned strategy, the relations of the block residuals are changed from orthogonal
for BFBCOCG to M-orthogonal for BFPBCOCG. Here, two vectors x and y are M-orthogonal, meaning x⊥My,
i.e., yH Mx = 0.

Theorem 2. Under the orthogonality condition (13), the value of parameters αk and β
k

in the recurrence
relations (12) can be obtained by solving the following equations:

PT
k Ukαk = PT

k Rk,

(RT
k Pk)β

k
= RT

k+1Zk+1, for k = 0, 1, 2, · · · .

The following Algorithm 3 is the breakdown-free preconditioned block COCG algorithm.

Algorithm 3 Breakdown-free preconditioned block COCG (BFPBCOCG)

1. Given the initial guess X0 ∈ Cn×p and a tolerance tol;
Compute: R0 = B− AX0, Z0 = MR0, P0 = orth(Z0), U0 = AP0;

2. For k = 0, 1, 2, · · · until ‖Rk‖F/‖R0‖F ≤ tol, do
Solve: (PT

k Uk)αk = PT
k Rk;

Update: Xk+1 = Xk + Pkαk, Rk+1 = Rk −Ukαk, Zk+1 = MRk+1;
Solve: (RT

k Pk)β
k
= RT

k+1Zk+1;
Update: Pk+1 = orth(Zk+1 + Pkβ

k
), Uk+1 = APk+1;

End For

Change the orthogonality conditions (11) to the following conditions:

R̃k⊥ÃKk(Ã, R̃0) and ÃP̃k⊥ÃKk(Ã, R̃0). (14)

The breakdown-free preconditioned block COCR (BFPBCOCR) can be deduced with the similar
derivation of BFPBCOCG. Algorithm 4 shows the code of BFPBCOCR.

Algorithm 4 Breakdown-free preconditioned block COCR (BFPBCOCR)

1. Given the initial guess X0 ∈ Cn×p and a tolerance tol;
Compute: R0 = B− AX0, Z0 = MR0, P0 = orth(Z0), U0 = AP0;

2. For k = 0, 1, 2, · · · until ‖Rk‖F/‖R0‖F ≤ tol, do
Solve: (UT

k MUk)αk = UT
k Zk;

Update: Xk+1 = Xk + Pkαk, Rk+1 = Rk −Ukαk, Zk+1 = MRk+1;
Solve: (ZT

k Uk)β
k
= ZT

k+1 AZk+1;
Update: Pk+1 = orth(Zk+1 + Pkβ

k
), Uk+1 = APk+1;

End For

At the end of this section, we will give the complexity for six algorithms. They are the block
COCG algorithm, block COCR algorithm, breakdown-free block COCG algorithm, breakdown-free
block COCR algorithm, breakdown-free preconditioned block COCG algorithm, and breakdown-free
preconditioned block COCR algorithm, which are denoted by BCOCG, BCOCR, BFBCOCG, BFBCOCR,
BFPBCOCG, BFPBCOCR, respectively. The pseudocodes of BCOCG and BCOCR are from [1]. Table 1
shows the main costs per cycle of the six algorithms. Here, we denote as “block vector” the matrix
with size n××p, “bdp” the dot product number of two block vectors, “bmv” the product number of

Symmetry 2019, 11, 1302 6 of 9

a matrix with n× p and a block vector, “bsaxpy” the number of two block vectors summed with one of
the block vectors being from multiplying a block vector to a p× p matrix, “LE” the number of solving
linear equations with a p× p coefficient matrix, and “bSC” the storage capacity of block vectors.

From Table 1, we can see the last four algorithms need one more dot product of two block vectors
than the original two algorithms, i.e., BCOCG and BCOCR. For the product number of a matrix with
a block vector, BFBCOCR and BFPBCOCR are both twice BFBCOCG and BFPBCOCG, respectively.
This may result in more time to spend in BFBCOCR and BFPBCOCR, especially for a problem with
a dense matrix. We reflect on the phenomenon in Example 1.

Table 1. Main costs per cycle for six algorithms.

BCOCG BCOCR BFBCOCG BFBCOCR BFPBCOCG BFPBCOCR

bdp 2 2 3 3 3 3
bmv 1 1 1 2 2 4
LE 2 2 2 2 2 2

bsaxpy 3 4 3 3 3 3
bSC 4 5 4 4 5 5

3. Numerical Examples

In this section, examples are given to demonstrate the effectiveness of our new algorithms.
All examples are operated through MATLAB 8.4 (R2014b) on a laptop with an Intel Core i5-6200U
CPU 2.3 GHz memory 8GB under the Win10 operating system.

We evaluate the algorithms according to the iteration number (Iter), CPU time (CPU), and log10

of the Frobenius norm for the true relative residual log10
‖B−AXk‖F
‖B‖F

(TRR). All algorithms are started

with X0 = zeros(n, p) and stopped with ‖B−AXk‖F
‖B‖F

≤ 10−10. Symbol † means no convergence within
1000 iterations. The bold values in the following tables represent the shortest CPU time.

Example 1. In this example, six algorithms without preconditioning are compared. They are BCOCG, BCOCR,
BFBCOCG, BFBCOCR, the block COCG method with residual orthonormalization (BCOCG_rq) [1], and the
block COCR method with residual orthonormalization (BCOCR_rq) [1]. Two types of matrices are tested.
The first type contains three matrices, cube1800, parallelepipede, and sphere2430, which are all dense and from
monostatic radar cross-section calculations, and obtained from the GitHub repository (https://github.com/Hsien-
Ming-Ku/Test_matrices/tree/master/Example2). The dimensions n of these matrices are 1800, 2016, 2430,
respectively. The second type contains helmdate_N40, helmdate_N80, and helmdate_N160, which are all
from the discretization of the Helmholtz equation [12]. Their dimensions n are 1681, 6561, 25921, respectively.
The right-hand sides are chosen as B = (1 + i)[rand(n, 6), ones(n, 2)], so that the block size p = 8, and B is
rank deficiency. Here, i =

√
−1. Tables 2 and 3 give the results.

From Tables 2 and 3, we can see that for these rank-deficiency problems, the breakdown-free
algorithms perform better than the non-breakdown-free algorithms in CPU time and iteration number.
For the first type of problem, although the iterations of BFBCOCR are fewer than BFBCOCG, the CPU
time is nearly double because the matrices are all dense and the product number of matrix and block
vectors for BFBCOCR is one more than BFBCOCG per iteration. For the first two matrices of the second
type of problem, the difference between BFBCOCG and BFBCOCR is not obvious, the main reason
being that the matrices are sparse. However, for the third matrix helmdate_N160, only BFBCOCR
can solve the problem. This indicates that for the matrices from the discretization of the Helmholtz
equation, BFBCOCR performs the most robust compared to the other five algorithms.

https://github.com/Hsien-Ming-Ku/Test_matrices/tree/master/Example2
https://github.com/Hsien-Ming-Ku/Test_matrices/tree/master/Example2

Symmetry 2019, 11, 1302 7 of 9

Table 2. The numerical results for the first type from Example 1.

Algorithm cube1800 parallelepipede sphere2430
CPU Iter TRR CPU Iter TRR CPU Iter TRR

BCOCG † † † † † † † † †
BCOCR † † † † † † 4.4542 190 −10.2579

BCOCG_rq † † † † † † † † †
BCOCR_rq † † † † † † † † †
BFBCOCG 2.5071 161 −10.1050 3.5124 179 −10.2753 4.3642 172 −10.0783
BFBCOCR 4.4694 162 −10.3856 5.8695 164 −10.2095 8.8278 171 −10.1099

Table 3. The numerical results for the second type from Example 1.

Algorithm helmdate_N40 helmdate_N80 helmdate_N160
CPU Iter TRR CPU Iter TRR CPU Iter TRR

BCOCG † † † † † † † † †
BCOCR † † † † † † † † †

BCOCG_rq † † † † † † † † †
BCOCR_rq † † † † † † † † †
BFBCOCG 0.2599 155 −10.3166 2.0171 364 −10.0025 † † †
BFBCOCR 0.3132 173 −10.1085 1.9872 332 −10.3876 38.2284 876 −10.0528

Example 2. To make it fair, all algorithms compared in this example are preconditioned; they are the
preconditioned version sof the same six algorithms as in Example 1 and are denoted by PBCOCG, PBCOCR,
BFPBCOCG, BFPBCOCR, PBCOCG_rq, and PBCOCR_rq, respectively. The preconditioning strategy we used
is IC(3) in [13]. IC(3) produces LLT for a complex symmetric A, and if L is nonsingular, then we can use LLT

as a preconditioner. We test three matrices. The first matrix is bwg961b, which is from the NEP collection [14]
for electrical engineering and has dimension n = 961. The second and third matrices are helmdate_N40 and
helmdate_N80, respectively. The right-hand sides are chosen as B = (1 + i)[rand(n, 8), ones(n, 2)] so that the
block size p = 10, and B is rank deficiency. Numerical results are shown in Table 4 and Figure 1.

From the results, we can see that the breakdown-free algorithms perform better than
the non-breakdown-free algorithms. Especially in Figure 1, the convergence curve of the four
non-breakdown-free algorithms has not dropped, while the breakdown-free ones quickly drop to the
accuracy. For matrix bwg961b, from Table 4 and Figure 1 we can see that the convergence curves of
BFPBCOCG and BFPBCOCR are both downward-trending, while BFPBCOCG performs smoother.
For matrix helmdate_N40, the difference between BFPBCOCG and BFPBCOCR is not big. For matrix
helmdate_N80, BFPBCOCG does not converge, but BFPBCOCR converges quickly. This illustrates that
for the matrices from the discretization of the Helmholtz equation, BFPBCOCR has an advantage over
the other five preconditioned algorithms in terms of robustness.

Table 4. The numerical results for Example 2.

Algorithm dwg961b helmdate_N40 helmdate_N80
CPU Iter TRR CPU Iter TRR CPU Iter TRR

PBCOCG † † † † † † † † †
PBCOCR † † † † † † † † †

PBCOCG_rq † † † † † † † † †
PBCOCR_rq † † † † † † † † †
BFPBCOCG 1.7563 904 −10.0333 0.3238 91 −10.2684 † † †
BFPBCOCR † † † 0.4824 91 −10.0138 3.5199 197 −10.1141

Symmetry 2019, 11, 1302 8 of 9

Number of iteration
0 100 200 300 400 500 600 700 800 900 1000

R
el

at
iv

e
re

si
du

al
 F

-n
or

m

10-10

10-8

10-6

10-4

10-2

100

102

104

106
DWG961B

5

6

4

2
3

1

1 PBCOCG
2 PBCOCR
3 PBCOCG_rq
4 PBCOCG_rq
5 BFPBCOCG
6 BFPBCOCR

Number of iteration
0 10 20 30 40 50 60 70 80 90 100

R
el

at
iv

e
re

si
du

al
 F

-n
or

m

10-10

10-8

10-6

10-4

10-2

100

102

104
helmdate_N40

2

3

1

4

5

6

1 PBCOCG
2 PBCOCR
3 PBCOCG_rq
4 PBCOCR_rq
5 BFPBCOCG
6 BFPBCOCR

Figure 1. Relative residual F-norm for matrices dwg961b and helmdate_40N in Example 2.

4. Conclusions

In this paper, we presented a breakdown-free block conjugate orthogonal conjugate gradient
algorithm for complex symmetric linear systems with multiple right-hand sides. Based on the
orthogonality conditions, we gave its two new parameter matrices. The preconditioned version
is also proposed in detail. At the same time, we also present the breakdown-free version for the block
conjugate A-orthogonal conjugate residual method with its preconditioned version. From the numerical
examples, we realized that when the right-hand sides are rank deficiency, our four new algorithms
perform better than other algorithms. Moreover, for Helmholtz equation problems, BFBCOCR and
BFPBCOCR show more stable behavior than BFBCOCG and BFPCOCG; while for dense matrices
problems, BFBCOCG and BFPBCOCG converge faster than BFBCOCR and BFPBCOCR. However,
there is still a lack of theoretical analysis for the advantages of BFBCOCG and BFBCOCR, and even of
BFPBCOCG and BFPBCOCR. All of these require further investigations.

Author Contributions: X.-M.G. guided the process of the whole paper and reviewed the paper; S.-L.Z. provided
some innovative advice and reviewed the paper; H.-X.Z. deduced the theory, implemented the algorithms with
the numerical examples, and wrote the paper.

Funding: This work was financed by the National Nature Science Foundation of China (11701225 and 11801463),
the Fundamental Research Funds for the Central Universities (JBK1902028), and the Natural Science Foundation
of Jiangsu Province (BK20170173).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Gu, X.-M.; Carpentieri, B.; Huang, T.-Z.; Meng, J. Block variants of the COCG and COCR methods for
solving complex symmetric linear systems with multiple right-hand sides. In Numerical Mathematics and
Advanced Applications ENUMATH 2015; Karasözen, B., Manguoǧlu, M., Tezer-Sezgin, M., Göktepe, S.,
Uǧur, Ö., Eds.; Lecture Notes in Computational Science and Engineering 112; Springer International
Publishing: Cham, Switzerland, 2016; pp. 305–313.

2. Sogabe, T.; Zhang, S.-L. A COCR method for solving complex symmetric linear systems. J. Comput.
Appl. Math. 2007, 199, 297–303.

3. Gutknecht, M.H. Block Krylov space methods for linear systems with multiple right-hand sides:
An introduction. In Modern Mathematical Models, Methods and Algorithms for Real World Systems; Siddiqi, A.H.,
Duff, I.S., Christensen, O., Eds.; Anamaya Publishers: New Delhi, India, 2006; pp. 420–447. [CrossRef]

4. Zhang, J.; Zhao, J. A novel class of block methods based on the block AAT-Lanczos biorthogonalization
process for matrix equations. Int. J. Comput. Math. 2013, 90, 341–359.

5. Tadano, H.; Sakurai, T. A block Krylov subspace method for the contour integral method and its application
to molecular orbital computations. IPSJ Trans. Adv. Comput. Syst. 2009, 2, 10–18. (In Japanese) [CrossRef]

http://dx.doi.org/10.1016/j.cam.2005.07.032
http://dx.doi.org/10.1080/00207160.2012.718072

Symmetry 2019, 11, 1302 9 of 9

6. Van der Vorst, H.A.; Melissen, J.B.M. A Petrov-Galerkin type method for solving Ax = b, where A is
symmetric complex. IEEE Trans. Mag. 1990, 26, 706–708. [CrossRef]

7. Gu, X.-M.; Huang, T.-Z.; Li, L.; Li, H.-B.; Sogabe, T.; Clemens, M. Quasi-minimal residual variants of the
COCG and COCR methods for complex symmetric linear systems in electromagnetic simulations. IEEE Trans.
Microw. Theory Tech. 2014, 62, 2859–2867. [CrossRef]

8. Gu, X.-M.; Clemens, M.; Huang, T.-Z.; Li, L. The SCBiCG class of algorithms for complex symmetric linear
systems with applications in several electromagnetic model problems. Comput. Phys. Commun. 2015, 191,
52–64.

9. Broyden, C.G. A breakdown of the block CG method. Optim. Methods Softw. 1996, 7, 41–55. [CrossRef]
10. Ji, H.; Li, Y. A breakdown-free block conjugate gradient method. BIT Numer. Math. 2017, 57, 379–403.

[CrossRef]
11. Van der Vorst, H.A. Iterative Krylov Methods for Large Linear Systems; Cambridge University Press: Cambridge,

UK, 2003; pp. 173–178. [CrossRef]
12. Bayliss, A.; Goldstein, C.I.; Turkel, E. An iterative method for the Helmholtz equation. J. Comput. Phys. 1983,

49, 443–457. [CrossRef]
13. Meijerink, J.A.; Van der Vorst, H.A. An iterative solution method for linear systems of which the coefficient

matrix is a symmetric M-matrix. Math. Comp. 1977, 31, 148–162. [CrossRef]
14. Bai, Z.; Day, D.; Demmel, J.; Dongarra, J. A Test Matrix Collection for Non-Hermitian Eigenvalue Problems;

Technical Report CS-97-355; University of Tennessee: Knoxville, TN, USA, 1997.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1080/00207160.2012.718072
http://dx.doi.org/10.1080/00207160.2012.718072
http://dx.doi.org/10.1109/20.106415
http://dx.doi.org/10.1109/TMTT.2014.2365472
http://dx.doi.org/10.1016/j.cpc.2015.01.018
http://dx.doi.org/10.1080/10556789608805643
http://dx.doi.org/10.1007/s10543-016-0631-z
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	The Breakdown-Free Variants of BCOCG and BCOCR
	BCOCG and BCOCR
	BFBCOCG and BFBCOCR
	BFPBCOCG and BFPBCOCR

	Numerical Examples
	Conclusions
	References

