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Abstract: In this paper, we will describe a topological model for elementary particles based on
3-manifolds. Here, we will use Thurston’s geometrization theorem to get a simple picture: fermions
as hyperbolic knot complements (a complement C(K) = S3 \ (K × D2) of a knot K carrying a
hyperbolic geometry) and bosons as torus bundles. In particular, hyperbolic 3-manifolds have
a close connection to number theory (Bloch group, algebraic K-theory, quaternionic trace fields),
which will be used in the description of fermions. Here, we choose the description of 3-manifolds
by branched covers. Every 3-manifold can be described by a 3-fold branched cover of S3 branched
along a knot. In case of knot complements, one will obtain a 3-fold branched cover of the 3-disk D3

branched along a 3-braid or 3-braids describing fermions. The whole approach will uncover new
symmetries as induced by quantum and discrete groups. Using the Drinfeld–Turaev quantization,
we will also construct a quantization so that quantum states correspond to knots. Particle properties
like the electric charge must be expressed by topology, and we will obtain the right spectrum of
possible values. Finally, we will get a connection to recent models of Furey, Stoica and Gresnigt using
octonionic and quaternionic algebras with relations to 3-braids (Bilson–Thompson model).

Keywords: standard model of elementary particles; 4-manifold topology; particles as 3-Braids; branched
coverings; knots and links; charge as Hirzebruch defect; umbral moonshine; number of generations

1. Introduction

General relativity (GR) deepens our view on space-time. In parallel, the appearance of quantum
field theory (QFT) gives us a different view of particles, fields and the measurement process.
One approach for the unification of QFT and GR, to a quantum gravity, starts with a proposal
to quantize GR and its underlying structure, space-time. Here, there is a unique opinion in the
community about the relation between geometry and quantum theory: the geometry as used in GR is
classical and should emerge from a quantum gravity in the usual limit that Planck’s constant tends
to zero. Most theories went a step further and try to get the spacetime directly from quantum theory.
As a consequence, the used model of a smooth manifold cannot be used to describe quantum gravity.
However, currently, there is no real sign for a discrete spacetime structure or higher dimensions
in current experiments [1]. Therefore, in this work, we conjecture that the model of spacetime as
a smooth 4-manifold can be also used in the quantum gravitational regime. As a consequence,
one has to find geometrical/topological representations for quantities in QFT (submanifolds for
particles or fields, etc.) as well in order to quantize GR. In this paper, we will tackle this problem
to get a geometrical/topological description of the standard model of elementary particle physics.
Recently, there were efforts by Furey [2–5], Gresnigt [6–8] and Stoica [9] to use octonions and Clifford
algebras to get a coherent model to describe the particle generations in the standard model. In the
past, the stability of matter was related to topology like in the approach of Lord Kelvin [10] with
knotted aether vortices. The proposal to derive matter from space was considered by Clifford as well
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by Einstein, Eddington, Schrödinger and Wheeler with only partial success (see [11,12]). Giulini [13]
discussed the status of geometrodynamics in establishing particle properties like spin from spacetime
by using special solutions of general relativity. The usage of knots and links to model particles,
like the electron, neutrinos, etc., was firstly observed by Jehle [14]. The phenomenological description
of particle properties by using the quantum group SUq(n) is given in the work of Gavrilik [15].
Here, the (deformation) parameter q of SUq(n) was linked with the flavor mixing angle (Cabibbo angle).
Furthermore, torus knots as given by 2-braids were associated with vector mesons (vector quarkonia)
of different flavors. Later, Finkelstein [16] used the representation of knots by quantum groups for his
particle model. Similar ideas are discussed in the model of Bilson–Thompson [17] in its loop theoretic
extension [18]. Even for the Bilson–Thompson model, Gresnigt found a link between Furey’s approach
and this model. However, some properties of the Bilson–Thompson model remained mysterious,
like the definition of the charge. Open is also the meaning of the braiding. If there is a connection
between spacetime and matter, then one has to construct the known fermions and bosons directly.
Here, it seems that the main problem is the determination of the underlying spacetime. In this paper,
we will follow this way with an heuristic argument for the spacetime to be the K3 surface in Section 3.
Then, we will analyze this spacetime by using branched covers to find two suitable substructures, a knot
complement representing the fermions and a link complement to represent the bosons. Here, we profit
from ideas by Duston [19–21] as well from the work of Denicola, Marcolli and al-Yasry [22]. As a
byproduct, we also found interesting relations to octonions. The representation of the knot and link
complements by branched covers gives the link to the original Bilson–Thompson model [17] but also
to Gresnigt’s work [6]. In Section 5, we will discuss the electric charge and construct the corresponding
operator by using the underlying U(1) gauge theory by using the Hirzebruch defect. Finally, we will
obtain the correct charge spectrum: fermions carry the charges 0,± 1

3 ,± 2
3 ,±1 in units of the unit charge

e. Here, the factor 1
3 is related to 4-dimensional topology (Hirzebruch signature theorem). In Section 6,

we will discuss the independence of the particular braid from the particle. The braid is connected with
the state of the particle as shown by using the Drinfeld–Turaev quantization. Finally, we finish the
paper with some speculations about the number of generations, given by the number of S2 × S2 parts
in the spacetime (K3 surface), and a global symmetry, the group PGL(3, 4) of 3× 3 matrices of the
4-element field F4, induced from the K3 surface by using umbral moonshine.

Before we start with the description of the model, we will discuss the key arguments and scope
of the model. The model is based on a smooth spacetime that is described by a smooth 4-manifold.
First, it is argued that this spacetime is the K3 surface where the evolution of the cosmos is submanifold.
By using this model, the calculation of cosmic parameters (cosmological constant, inflation parameters,
etc.) matches with the experimental results. For the following, we use the characterization of 4-manifold
(i.e., the spacetime) by surfaces that are connected to complements of links and knots (3-manifolds with
boundary). Interestingly, both 3-manifolds have a meaning by our previous work: knot complements
are fermions and link complements are bosons. Here, we find a representation of both 3-manifolds
by braids of three strands (3-braids), which is the connection to the work of Bilson–Thompson and
Gresnigt. In case of the K3 surface as spacetime, the surfaces mentioned above are arranged with a
strong connection to octonions, which is the link to Furey’s work. To connect fermions, one needs a
special class of link complements, so-called torus bundles, which can be interpreted as gauge fields.
Interestingly, there are only three classes of torus bundles and we were able to connect them with the
gauge groups U(1), SU(2), SU(3). The main result of the paper is definition and interpretation of the
electric charge. The electric charge is a topological invariant (Hirzebruch defect). For the fermions
(knot complements), we obtained the spectrum {0,±1,±2,±3} which agrees with the observation
(normalized in e/3 units). The discussion about the quantization of the model and the number of
generations closes the paper.

The model uses a classical spacetime. Quantum properties are not included in an obvious way.
We obtained the correct charge spectrum, but we do not know the direct connection between knot
complement and fermion (electron, neutrino, quark). There are ideas to use a quantization by a change
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of the smoothness structure, known as Smooth Quantum Gravity [23]. In principle, the number of
generations is connected with the spacetime. We got the minimal value of three generations, but it is
only a lower bound. The model produces only the particles of the standard model. No supersymmetry
or other extensions of the standard model can be derived by this model. Currently, we also have no
idea to calculate the coupling constants and masses. It seems that these parameters are connected with
the topological property of the spacetime.

2. Preliminaries: Branched Coverings of 3- and 4-Manifolds

According to Alexander (see [24] for instance), every manifold Mn can be represented as p-fold
branched covering π : Mn → Sn along an n− 2 dimensional subcomplex Nn−2 ⊂ Sn, the branching
set. In detail, the map π is a covering except for the branching set, i.e., for every point b ∈ Sn \ Nn−2

the map π−1(b) consists of p points and the neighborhood U(b) is homeomorphic to one component
π−1U(b). Then, Mn \ π−1(Nn−2)→ Sn \ Nn−2 is a p−fold covering. Usually, Nn−2 has the structure
of a simplicial subcomplex. The p−fold covering is completely determined by the representation
π1(Sn \ Nn−2)→ Sp in the permutation group Sp of p symbols. Before going into the details, we will
look at some examples. First, there are no branched coverings for 1-manifolds except for a trivial
one. The first interesting example is given by a compact 2-manifold, i.e., by a surface of genus g.
Here, the branching set consists of a finite number of points (0-dimensional branching set). The
branching set of 3-manifolds is a one-dimensional, complex and we will later see that knots and links
are the appropriated structures. In case of 4-manifolds, one has a two-dimensional complex as a
branching set that was shown to be a surface. These facts are easy to understand, but one parameter of
a branched covering is open: how many folds are minimally needed to represent every manifold in a
fixed dimension, or, how large is p minimally for a manifold of dimension n?

2.1. As Warmup: Branched Coverings of 2-Manifolds

Let us start with the simplest case, the surface. By results of Riemann and Hurwitz, every surface
can be represented by a 2-fold covering of S2. As example, let us take the torus T2 with the 2-fold
covering T2 → S2 branched along four points. The idea of the construction is simple: choose a
symmetry axis so that the genus g surface can be generated by a rotation (see Figure 1).

Figure 1. 2-fold covering of torus, α is the equator and the four-point branching set.

This axis meets the surface in 4g points which are the branching points of the covering.

2.2. Branched Coverings of 3-Manifolds

For a 3-manifold, one has a one-dimensional, branching set and a result of Alexander states that
this branching set is a link with a finite number of components. Later, Hirsch, Hilden and Montesinos
[25–27] obtained independently the result that every closed, compact 3-manifold can be represented
as a 3-fold branched covering of the 3-sphere branched along a knot. As an example, consider the
Poincare sphere Σ(2, 3, 5) that can be represented by a 3-fold covering Σ(2, 3, 5)→ S3 branched along
the (2, 5) or (5, 2) torus knot. Now, let us consider a closed, compact 3-manifold N3 with a 3-fold
branched covering N3 → S3 branched along a knot K. It means that the map N3 \ K → S3 \ K is a real
3 : 1 map. Interestingly, there is a diffeomorphism between N3 \ K and S3 \ K so that the 3 : 1 covering
map is now given by S3 \ K → S3 \ K. Furthermore, the 3-fold covering is completely determined by
the map π1(S3 \ K)→ S3, the representation of the fundamental group into the permutation group S3
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of three letters. A simple extension of the S3 by considering the order of the permutations gives the
braid group B3 of three strands. In principle, the minimal number of folds p = 3 is the root for the
description of particles by 3-braids, as shown later on.

2.3. Branched Covering of 4-Manifolds

In a similar manner, one would expect that every 4-manifold M4 can be represented as 4-fold
branched covering of S4 branched along a surface. Piergallini [28] was able to show something similar,
but the surface is only immersed and admits a finite number of singularities (cusps and nodes). If one
adds an additional sheet, getting a 5-fold branched covering, then one can omit these singularities
(thus getting a locally flat embedded surface) [29]. For a better understanding, we will discuss the
way to this result shortly. In [28], Piergallini considered the possible transformations or changes of
the branching set for a 3-manifold N3, i.e., the knot. Amazingly, he found two possible changes (see
Figure 2).

Figure 2. Branching set changes, Left: Move 1, Right: Move 2 (so-called Montesino moves).

All changes do not affect the underlying 3-manifold N3, i.e., he found different knots and links
representing the same 3-manifold as a 3-fold branched cover. Then, he used this result to find a
branched covering for a 4-manifold. For that purpose, he introduced the concept of an additional
leaf or fold in the covering, i.e., if a 3-manifold N3 is represented by a 3-fold covering, then it is also
represented by a 4-fold covering. Then, he extended this 4-fold covering of N3 to a 4-fold covering of
N3 × [0, 1] (i.e., a trivial cobordism). At the same time, the knot K1 as branching set of N3at one side of
N3 × [0, 1] (i.e., N3 × {0}) is related to the changed knot K2 as branching set of N3 on the other side of
N3 × [0, 1] (i.e., N3 × {1}). For the covering of N3 × [0, 1], one will get a surface with two boundaries,
the disjoint union K1 t K2 of the two branching knots. This procedure can be done for the two possible
changes [30]. For the first change, Piergallini got the trefoil knot at the boundary, whereas, for the
second case, he obtained the Hopf link (see the Figures 3).

Figure 3. Boundary of the branching set change—Left: Move 1 leading to the Trefoil knot, Right: Move
2 leading to the Hopf link.

In dimension 4, one will get the cone over the trefoil, also known as cusp, and the cone over the
Hopf link, also known as node, as singularities of the surface as a branching set of the 4-manifold.
Expressed differently, the trefoil knot is the link of the cusp singularity z2 + w3; the Hopf link (oriented
correctly) is the link of the node singularity z2 + w2. As explained in the previous subsection, we have
to consider the two fundamental groups GP = π1(S3 \ {tre f oil}) and GWW = π1(S3 \ {Hop f }) for
the corresponding branched cover. Both groups are known and can be simply calculated to be

GP = 〈a, b | aba = bab〉 = B3 GWW = 〈a, b, c | ab−1a−1b〉 = Z⊕Z, (1)

which is a surprising result. From the point of 4-manifolds we will get two possible 3-manifolds as
boundary of the singularities: a 3-manifold (knot complement) with one boundary and a 3-manifold
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(link complement) with two boundaries. These two 3-manifolds can be simply interpreted: the knot
complement has one boundary component and can be seen as a fermion (see also [31]) and the link
complement has two boundary components and can be interpreted as interaction (see also [32]).

2.4. Branched Coverings of Knot Complements

Now, we will describe the case of a 3-manifold (the knot complement) with boundary a torus T2.
First, we will change the 2-fold covering of the torus to a 3-fold covering by adding a trivial sheet. For
that purpose, we consider the 2-fold branched covering T2 → S2 and add a 2-sphere T2#S2 → S2#S2

which changes nothing (S#S2 is diffeomorphic to S for every surface S). However, at the same time,
we will obtain a 3-fold covering (see Figure 4).

Figure 4. 3-fold covering torus.

For a 3-manifold Σ with boundary T2, one has to consider a branched covering Σ → S3 \
D3(3-sphere with one puncture or p punctures for p boundary components). For the construction of
the covering, one needs another representation of a 3-manifold, the Heegard decomposition. There, one
considers two handle bodies Hg, H′g of genus g, i.e., the sum of g copies of the solid torus D2 × S1. The
gluing Hg ∪φ H′g of these handle bodies along the boundary using a diffeomorphism φ : ∂Hg → ∂H′g(to
be precise: φ is an element of the mapping class group) produces every compact, closed 3-manifold.
For the 3-sphere, one obtains a decomposition H1 ∪ H′1 using two solid tori where the meridian of H1

is mapped to the longitude of H′1 and vice versa. Hg can be obtained by a branched covering Hg → D3

with a branching set g + 2 arcs (see Figure 5).

Figure 5. Covering of the handle body.

The diffeomorphism φ is represented by a braid connecting the two handle bodies where the
braid closes above and below to get a link. In case of a 3-manifold with a boundary, the braid closes
only on one side and we obtain a braid again (or, more generally, a tangle), see Figure 6.

Figure 6. Left: branching set of knot complement (6-plat), Right: 3-Braid as 6-Braid.

The underlying braid must be also a 3-braid but represented as a 6-braid.

3. Reconstructing a Spacetime: The K3 Surface and Particle Physics

After so many years of experimental research, the standard model of particle physics and of
cosmology as well general relativity are confirmed with high precision. There is no real contradicting
result which shows the necessity to introduce new physics. An exception may be cosmology with
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the unknown components of dark matter and dark energy. However, this situation is by no means
satisfying. Both standard models have a bunch of free parameters (19 parameters in particle physics,
for instance). If there is no sign for new physics, how did we get these parameters? Here, we will
argue that these parameters can be determined by topology. However, at first glance, this idea seems
hopeless. There are infinitely many suitable topologies for the spacetime, seen as 4-manifold, and, for
the space, seen as 3-manifold. Here, we will go a different way. Why not try to determine the spaceM
of all possible spacetime-events? Thus, let me start with a definition: letM be the space of all possible
spacetime events, i.e., the set of all spacetime events carrying a manifold structure. In principle,M can
be identified with the spacetime. Then, a specific physical situation is an embedding of a 3-manifold
intoM, a dynamics is an embedding of a cobordism between 3-manifolds intoM. Here, we assume
implicitly that everything can be geometrically/topologically expressed as submanifolds (see [31,32]).
In the following, we will try to discuss this approach and how far one can go. Some heuristic arguments
are rather obvious:

1. M is a smooth 4-manifold,
2. any sequence of spacetime event has to converge to a spacetime event and
3. any loop (time-like or not) must be contracted.

A dynamics is a mapping of a spacetime event to a new spacetime event. It is usually smooth
(differential equations), motivating the first argument. The second argument expresses the fact that
any initial spacetime event must converge to a final spacetime event, or the limit of any sequence of
spacetime events must converge to a spacetime event. Then,M is a compact, smooth 4-manifold. The
usual spacetime is an open subset ofM. The third argument above is motivated to neglect time-like
loops. The spacetime is an open subset ofM or the spacetime is embedded inM. Now, consider
a loop in the spacetime. By changing the embedding via diffeomorphisms (this procedure is called
isotopy), every loop is contractable. Therefore, this argument implies that there is no time-like loops
(implying causality). Finally,M is a compact, simply connected, smooth 4-manifold.

Now, we will restrictM in a manner so that we are able to determine it. For the following, we
implicitly assume that the equations of general relativity are valid without any restrictions. Then, the
vacuum equations are equivalent to

Rµν = 0,

demanding Ricci-flatness. However, as shown in [33,34] and in recent years in [23,31,32], the coupling
to matter can be described by a change of the smoothness structure. Therefore, the modification of the
smoothness structure will produce matter (or sources of gravity). However, at the same time, we need
a smoothness structure that can be interpreted as a vacuum given by a Ricci-flat metric. Therefore, we
will demand that

1. M has to admit a smoothness structure with Ricci-flat metric representing the vacuum.

Interestingly, these four demands are restrictive enough to determine the topology ofM. With
the help of Yau’s seminal work [35], we will obtain that M is homeomorphic to the K3 surface, using
Yaus’s work that there is only one compact, simply connected Ricci-flat 4-manifold. However, it is
known by the work of LeBrun [36] that there are non-Ricci-flat smoothness structures. In the next step,
we will determine the smoothness structure ofM. For that purpose, we will present some deep results
in differential topology of 4-manifolds:

• there is a compact, contactable submanifold A ⊂ M (called Akbulut cork) so that cutting out
Aand reglue it (by an involution) will produce a new smoothness structure,

• M splits topologically into

|E8 ⊕ E8|#
(

S2 × S2
)

#
(

S2 × S2
)

#
(

S2 × S2
)

︸ ︷︷ ︸
3(S2×S2)

= 2|E8|#3(S2 × S2) (2)
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two copies of the E8 manifold and three copies of S2 × S2 and
• the 3-sphere S3 is a submanifold of A.

In [37], we already discussed this case. Interestingly, there is always a topological 4-manifold
for all combinations of E8 and S2 × S2, but not all topological 4-manifolds are smooth manifolds. Let
us consider the 4-manifold that splits topologically into p copies of the |E8|manifold and q copies of
S2 × S2 or

p|E8|#q
(

S2 × S2
)

.

Then, this 4-manifold is smoothable for every q but p = 0 and the first combination for p 6= 0 is the
pair of numbers p = 2, q = 3 (which is the K3 surface). Any other combination (p = 2, q < 3 or every q
and p = 1) is forbidden as shown by Donaldson [38].

Now, we consider the smooth K3 surface that is Ricci-flat, simply connected, smooth. The main
part in the following discussion will be the use of the smoothness condition. As discussed above,
the smoothness structure is determined by the Akbulut cork A. Furthermore, as argued above, the
smoothness structure is strongly related to the appearance of matter and this process is strongly
connected to the evolution of our cosmos. It is known as reheating after the inflationary phase.
Therefore, the Akbulut cork (including its embedding) should represent the inflationary phase with
reheating.

The Akbulut cork is built from a homology 3-sphere that will become the boundary ∂A. The
difference to a usual 3-sphere S3 is given by the so-called fundamental group, the equivalence class of
closed loops up to deformation (homotopy) with concatenation as group operation. In principle, one
constructs a cobordism between S3 and the homology 3-sphere ∂A. All elements of the fundamental
group will be killed by adding appropriate disks. At the end, one can add a 4-disk to get the full
contractable cork A. After this short discussion, we are able to identify the first topological transition:
if the cosmos starts as small 3-sphere (conjectural of Planck size), then the space changes to ∂A, or

S3 → ∂A.

The topology of ∂A depends strongly on the topology ofM. In case of the K3 surface, ∂A is known to
be a Brieskorn spheres, precisely the 3-manifold

Σ(2, 5, 7) =
{

x, y, z ∈ C | x2 + y5 + z7 = 0 |x|2 + |y|2 + |z|2 = 1
}

.

The embedding of the Akbulut cork is essential for the following results. In [39], it was shown
that the embedded cork admits a hyperbolic geometry if the underlying K3 surface has an exotic
smoothness structure. This simple property has far-reaching consequences. Hyperbolic manifolds of
dimension three or higher are rigid, i.e., geometric properties like volume or curvature are topological
invariants (Mostow-Prasad rigidity). If we assume that the cork A represents the cosmic evolution,
then geometric properties like the curvature of ∂A or the change of the size after the transition S3 → ∂A
are connected with topological properties of the embedded cork A and of the underlying K3 surface
by using Mostow–Prasad rigidity. This simple idea opens the door to explicit calculations. In case of
the transition S3 → ∂A = Σ(2, 5, 7), the corresponding results can be found in [39]. If one assumes a
Planck-size (LP) 3-sphere at the Big Bang, then the scale a of Σ(2, 5, 7) changes like

a = LP · exp
(

3
2 · CS(Σ(2, 5, 7))

)
with the Chern–Simons invariant

CS(Σ(2, 5, 7)) =
9

4 · (2 · 5 · 7) =
9

280
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and the Planck scale of order 10−34m changes to 10−15m. Obviously, this transition has an exponential
or inflationary behavior. Surprisingly, the number of e-folds can be explicitly calculated (see [40]) to be

N =
3

2 · CS(Σ(2, 5, 7))
+ ln(8π2) ≈ 51, (3)

and we also obtain the energy and time scale of this transition (see [40,41])

EGUT =
EP

1 + N + N2

2 + N3

6

≈ 1015GeV t = tP

(
1 + N +

N2

2
+

N3

6

)
≈ 10−39s (4)

right at the conjectured scale of the Grand Unified Theory (GUT) (EP, tP Planck energy and time,
respectively). In our recent work [41], this transition was analyzed in a detailed manner. There, it was
shown that the transition can be described by a scalar field model which conformally agrees (as shown
in [42]) with the Starobinsky-R2 theory [43]. However, then, the dimension-less free parameter α ·M−2

P
as well as spectral tilt ns and the tensor-scalar ratio r can be determined to be

α ·M−2
P = 1 + N +

N2

2
+

N3

6
≈ 10−5, ns ≈ 0.961 r ≈ 0.0046,

using equation (3), which is in good agreement with current measurements. The embedding of the
cork A is based on the topological structure of the K3 surface M. As discussed above, M splits
topologically into a 4-manifold |E8 ⊕ E8| and the sum of three copies of S2 × S2 (see [44]). In the
topological splitting (2), the 4-manifold |E8 ⊕ E8| has a boundary that is the sum of two Poincaré
spheres P#P. Here, we used the fact that a smooth 4-manifold of type |E8| must have a boundary
(which is the Poincaré sphere P); otherwise, it would contradict the Donaldson’s theorem [38]. Then,
any closed version of |E8⊕ E8| does not exist and this fact is the reason for the existence of an exotic R4.
To express it differently, the neighborhood of the embedded cork lies between the 3-manifold Σ(2, 5, 7)
(boundary of the cork) and the sum of two Poincaré spheres P#P. Therefore, we have two topological
transitions resulting from the embedding

S3 cork−→ Σ(2, 5, 7)
gluing−→ P#P . (5)

The transition Σ(2, 5, 7) → P#P has a different character as discussed in [39]. A direct consequence
is the appearance of a cosmological constant as a direct consequence of the topological invariance
of the curvature of a hyperbolic manifold. With respect to the critical density, the final formula for
normalized cosmological constant, denoted by ΩΛ, reads

ΩΛ =
c5

24π2hGH2
0
· exp

(
− 3

CS(Σ(2, 5, 7))
− 3

CS(P#P)
− χ(A)

4

)
.

The Chern–Simons invariants CS(P#P) = 1
60 , CS(Σ(2, 5, 7)) = 9

280 and the Euler characteristics of the
cork χ(A) = 1 together with the Hubble constant (see [45,46] combined with [47])

(H0)Planck+Hubble = 69, 2
km

s ·Mpc

gives the value
ΩΛ ≈ 0.7029,

which is in excellent agreement with the measurements. The numerical results above illustrate
the power of the main idea to use topology to fit the parameter in the standard model of
cosmology. Interestingly, these parameters are also important for particle physics. The existence
of two transitions (5) implies in the formalism above the existence of two different energy scales, the
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GUT scale of the first transition and a scale of Higgs mass order 126GeV for the second transition.
These two scales are the right input for the see-saw mechanism to generate a tiny neutrino mass (see
[40]). Secondly, the formalism also provides a favor regarding the existence of a right-handed neutrino.
The energy scale of the two transitions S3 → Σ(2, 5, 7)→ P#P can be expressed as a mass (via Mc2),
and we obtain

M =

√
4h̄c
G

exp
(
− 1

2·CS(P#P)

)
1 + N + N2

2 + N3

6

 ≈ 126.4GeV, (6)

which agrees with the mass of the Higgs boson (see [40]). Then, the Higgs boson can be expressed as
the result of a topological transition (see [48]). Now, we will use the two energy scales to generate the
neutrino mass. For that purpose, we start with the non-diagonal mass matrix(

0 M
M B

)

with two mass scales B and M fulfilling M� B. This matrix has eigenvalues

λ1 ≈ B λ2 ≈ −
M2

B

so that λ1 is the mass of the right-handed neutrino, and λ2 represents the mass of the left-handed
neutrino. Now, we will use the two scales (4) and (6)

B ≈ 0.67 · 1015GeV, M ≈ 126.4GeV,

and we will obtain for the neutrino mass

m =
M2

B
≈ 0.024eV,

which is in good agreement with the constraints from the PLANCK mission.
These results seem to support our view that the K3 surface can be the underlying spacetime (as

seen as the set of all possible spacetime events). The evolution of the cosmos is a suitable subset of
this space.

4. From K3 Surfaces to Octonions, 3-Braids and Particles

The results of the previous section illustrated the power of the approach and its relation to particle
physics. In this section, we will discuss the topological reasons and the relation to the models of Furey,
Gresnigt and Bilson–Thompson. In these models, 3-braids, octonions and quaternions play a key role.
Therefore, we have to understand how these structures will naturally appear in the K3 surface.

4.1. K3 Surfaces and Octonions

The starting point for the description of any K3 surface is the topological splitting (2)

2|E8|#3(S2 × S2).

The K3 surface is a closed, compact, simply connected 4-manifold. According to Freedman [49], the
topology is uniquely given by the intersection form, a quadratic form on the second homology
characterizing the intersections of the generators as given by surfaces. The K3 surface has the
intersection form

QK3 = E8 ⊕ E8 ⊕ (⊕3

(
0 1
1 0

)
) := 2E8 ⊕ 3H, (7)
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with the the matrix E8:

E8 =



2 1 0 0 0 0 0 0
1 2 1 0 0 0 0 0
0 1 2 1 0 0 0 0
0 0 1 2 1 0 0 0
0 0 0 1 2 1 0 1
0 0 0 0 1 2 1 0
0 0 0 0 0 1 2 0
0 0 0 0 1 0 0 2


. (8)

This matrix is also the Cartan matrix of the Lie algebra E8 and here is where the connection to the
octonions starts. For this purpose, we have to deal with the root system of the Lie algebra E8. Consider
a semi-simple Lie algebra G and its Cartan subalgebra H = (H1, . . . , Hr), where r is the rank of G. This
subalgebra is usually considered in the Cartan basis with the non-Hermitian generators Ek and their
conjugates E−k. Ek is associated with the root vector r(k)m such that

[Hm, E±k] = ±r(k)m E±m.

When the rank r is 1; 2; 4 or 8, we can combine the operators Hm and the vectors r(k)m (or eigenvalues)
into elements of a division algebra with imaginary units ei:

H = H0 + ei Hi r(k) = r(k)0 + eir
(k)
i

so that
[H, E±k] = ±r(k)E±k.

For the Lie algebras of the groups SU(2), O(4), O(8), one can construct the real numbers R, the complex
numbers C and the quaternions H, respectively. Interestingly, the triality of the O(8) group reflects the
symmetry of the three quaternionic units ei = −iσi, where σi are the Pauli matrices. The case of E8 was
worked out by Coxeter [50] in connection with 8-dimensional regular solids and corresponds to the
octonions O. There are 240 rational points on the unit sphere S7 represented by integer octonions that
correspond to the 240 roots of E8. We first introduce octonionic imaginary units eα (α = 1, . . . , 7) with
the multiplication rule

eαeβ = −δαβ + ψαβγeγ,

with ψαβγ as a third rank antisymmetric tensor that is non-zero and equal to one for the index triples
123, 246, 435, 367, 651, 572, 714. Now, we define the special element

h =
1
2
(e1 + e2 + e3 + e7) .

Then, 1; e7; e2; e6, together with h; eh; e2h; e7h correspond to one possible set of principal positive roots.
These elements are also forming the Dynkin diagram of the root system of the E8. The matrix E8 in
Equation (8) above is the Cartan matrix with entry (i, j) defined by

2
〈ri, rj〉
〈ri, ri〉

the scalar products between the root vectors ri. Then, the whole approach showed that simple
combinations of the octonionic imaginary units are corresponding to generators of the second
homology groups for a 4-manifold having the matrix E8 as an intersection form. In case of the
K3 surface, one has the intersection form containing the matrix E8 ⊕ E8 which corresponds to two
copies of octonions O×O. Here, there is a link to the recent work [8] of complex sedions. Now, every
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element of O is related to a surface (unique up to homotopy). In the next section, we will present a
connection of these surfaces to spinors.

4.2. From Immersed Surfaces in K3 Surfaces to Fermions and Knot Complements

In the previous subsection, we described a relation between the octonions and a system of
eight intersecting surfaces in the K3 surface. In this system of surfaces, every surface has two
self-intersections (the diagonal of the matrix (8)). Therefore, every surface is not embedded but
immersed in the K3 surface. For immersed surfaces, there is a whole theory, called Weierstrass
representation, with a close connection between immersed surfaces and spinors. The following
discussion is borrowed from [32], and we will present it here again for completeness. First, we start
with the immersion I : Σ→ R3 of a surface Σ into R3. This immersion I can be defined by a spinor ϕ

on Σ fulfilling the Dirac equation
Dϕ = Hϕ, (9)

with |ϕ|2 = 1 (or an arbitrary constant) (see Theorem 1 of [51]). A spinor bundle over a surface splits
into two sub-bundles S = S+ ⊕ S−, representing spinors of different helicity, with the corresponding
splitting of the spinor ϕ in components

ϕ =

(
ϕ+

ϕ−

)
,

and we have the Dirac equation

Dϕ =

(
0 ∂z

∂z̄ 0

)(
ϕ+

ϕ−

)
= H

(
ϕ+

ϕ−

)

with respect to the coordinates (z, z̄) on Σ. In dimension 3, the spinor bundle has the same fiber
dimension as the spinor bundle S (but without a splitting S = S+ ⊕ S−into two sub-bundles). Now,
we define the extended spinor φ over the 3-torus Σ× [0, 1] via the restriction φ|T2 = ϕ. The spinor φ is
constant along the normal vector ∂Nφ = 0 fulfilling the three-dimensional Dirac equation

D3Dφ =

(
∂N ∂z

∂z̄ −∂N

)
φ = Hφ (10)

induced from the Dirac equation (9) via restriction and where |φ|2 = const. In this picture, we shift the
description from surfaces to 3-manifolds. The description above showed that the essential information
is contained in the surface, but fermions are at least three-dimensional objects: fermions and bosons
appear beginning with dimension 3 (irreducible representation of the group SO(3) as given by the lift
to SU(2)). In dimension 2, we have anyons with a spin of any rational number. However, how did we
get the corresponding 3-manifold representing the fermion?

To answer this question, we consider the branched covering of the K3 surface M. As explained
above, it must be a 4-fold covering M→ S4 branched along a surface with singularities of two types
cusp and fold. The cusp can be described as a cone over the trefoil knot, whereas the fold is the cone
over the Hopf link (see Figure 9 in [30]). Now, we consider a 4-manifold with boundary, for instance
by cutting out a 4-disk D4 form M to get 4-manifold M \ D4 with boundary ∂(M \ D4) = S3, the
3-sphere. Then, the branched covering of M induced a branched covering of the boundary ∂M, so
that the branching set of M, a surface, induces a branching set of ∂M, a knot or link. In our case, the
singularities of the surface (cusp and fold) given as cones over the trefoil knot and Hopf link will
correspond to the trefoil knot and Hopf link in the 3-sphere. Then, the branched covering is given
by the mappings of the complements S3 \ {tre f oil} and S3 \ {Hop f − link} to the permutation group
S3. We see the appearance of these two complements as a sign to use these structures as particles and
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interactions. The complement of the knot is a 3-manifold with one boundary component. In contrast,
the complement of the link looks like a cylinder T2 × [0, 1] which can connect two knot complements.
Therefore, we have the conjecture that knot complements are fermions and link complements are
bosons.

4.3. Fermions as Knot Complements

In this section, we will discuss the topological reasons for the identification of knot complements
with fermions. In our paper [31], we obtained a relation between an embedded 3-manifold and a
spinor in the spacetime. The main idea can be simply described by the following line of argumentation.
Let ι : Σ ↪→ M be an embedding of the 3-manifold Σ into the 4-manifold M with the normal vector ~N
so that a small neighborhood Uε of ι(Σ) ⊂ M looks like Uε = ι(Σ)× [0, ε]. Every 3-manifold admits
a spin structure with a SPIN BUNDLE, i.e., a principal Spin(3) = SU(2) bundle (spin bundle) as a
lift of the frame bundle (principal SO(3) bundle associated with the tangent bundle). Furthermore,
there is a (complex) vector bundle associated with the spin bundle (by a representation of the spin
group), called SPINOR BUNDLE SΣ. Now, we meet the usual definition in physics: a section in the
spinor bundle is called a spinor field (or a spinor). In general, the unitary representation of the spin
group in D dimensions is 2[D/2]-dimensional. From the representational point of view, a spinor in four
dimensions is a pair of spinors in dimension 3. Therefore, the spinor bundle SM of the 4-manifold
splits into two sub-bundles S±M where one sub-bundle, say S+

M, can be related to the spinor bundle SΣ

of the 3-manifold. Then, the spinor bundles are related by SΣ = ι∗S+
M with the same relation φ = ι∗Φ

for the spinors (φ ∈ Γ(SΣ) and Φ ∈ Γ(S+
M)). Let ∇M

X ,∇Σ
X be the covariant derivatives in the spinor

bundles along a vector field X as section of the bundle TΣ. Then, we have the formula

∇M
X (Φ) = ∇Σ

Xφ− 1
2
(∇X~N) · ~N · φ (11)

with the embedding φ 7→
(

0
φ

)
= Φ of the spinor spaces from the relation φ = ι∗Φ. Here, we

remark that, of course, there are two possible embeddings. For later use, we will use the left-handed
version. The expression ∇X~N is the second fundamental form of the embedding where the trace
tr(∇X~N) = 2H is related to the mean curvature H. Then, from (11), one obtains the following relation
between the corresponding Dirac operators

DMΦ = DΣφ− Hφ (12)

with the Dirac operator DΣ on the 3-manifold Σ. In [32], we extend the spinor representation of an
immersed surface into the 3-space to the immersion of a 3-manifold into a 4-manifold according to the
work in [51]. Then, the spinor φ defines directly the embedding (via an integral representation) of the
3-manifold. Then, the restricted spinor Φ|Σ = φ is parallel transported along the normal vector and
Φ is constant along the normal direction (reflecting the product structure of Uε). However, then the
spinor Φ has to fulfill

DMΦ = 0 (13)

in Uε i.e., Φ is a parallel spinor. Finally, we get

DΣφ = Hφ (14)

with the extra condition |φ|2 = const. (see [51] for the explicit construction of the spinor with |φ|2 =

const. from the restriction of Φ). The idea of the paper [31] was the usage of the Einstein–Hilbert action
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for a spacetime with boundary Σ. The boundary term is the integral of the mean curvature for the
boundary; see [52,53]. Then by the relation (14) we will obtain

ˆ

Σ

H
√

h d3x =

ˆ

Σ

φ̄ DΣφ
√

hd3x (15)

using |φ|2 = const. As shown in [31], the extension of the spinor φ to the 4-dimensional spinor Φ by
using the embedding

Φ =

(
0
φ

)
(16)

can be only seen as embedding, if (and only if) the 4-dimensional Dirac equation

DMΦ = 0 (17)

on M is fulfilled (using relation (12)). This Dirac equation is obtained by varying the action

δ

ˆ

M

Φ̄DMΦ
√

g d4x = 0. (18)

In [31], we went a step further and discussed the topology of the 3-manifold leading to a fermion. On
general grounds, one can show that a fermion is given by a knot complement admitting a hyperbolic
structure. However, for hyperbolic manifolds (of dimension greater than 2), one has the important
property of Mostow rigidity where geometric expressions like the volume are topological invariants.
This rigidity is a property which we should expect for fermions. The usual matter is seen as dust matter
(incompressible p = 0). The scaling behavior of the energy density ρ for dust matter is determined by
the time-dependent scaling parameter a to be ρ ∼ a−3. Thus, if one represents matter by very small
regions in the space equipped with a geometric structure, then this scaling can be generated by an
invariance of these small regions with respect to a rescaling. Mostow rigidity now singles out the
hyperbolic geometry (and the hyperbolic 3-manifold as the corresponding small region) to have the
correct behavior. All other geometries allow a scaling at least along one direction. Finally, Fermions are
represented by hyperbolic knot complements.

4.4. Torus Bundle as Gauge Fields

Now, we have the following situation: two knot complements C(K1) and C(K2) can be connected
by a so-called tube T(K1, K2) along the boundary, a torus. This tube T(K1, K2) can be described by
the complement of a link with two components defined by the knots K1, K2. In the simplest case, it is
the 3-manifold T2 × [0, 1]. The knot complements are fermions. Therefore, both knot complements
have to carry a hyperbolic structure, i.a. a space of constant negative curvature. The frame bundle of
a 3-manifold is always trivial, so that we need a flat connection of this bundle to describe this space.
Let Isom(H3) = SO(3, 1) be the isometry group of the three-dimensional hyperbolic space. There are
suitable subgroups G1, G2 ⊂ Isom(H3) so that (the interior of)C(K1) is diffeomorphic to Isom(H3)/G1

(and similar with C(K2)). As usual, the space of all flat SO(3, 1) connections of C(K1) is the space of
all representations π1(C(K1)) → SO(3, 1), where SO(3, 1) acts in the adjoint representation on this
space (as gauge transformations). We note the fact that every SO(3, 1) connections lifts uniquely to a
SL(2,C) connection. Now, near the boundary, we have a flat SL(2,C) connection in C(K1) which is
connected to a flat SL(2,C) connection in C(K2) by T(K1, K2). The action for a flat connection A with



Symmetry 2019, 11, 1298 14 of 26

values in the Lie algebra g of the Lie group G as a subgroup of the SL(2,C) in a 3-manfold Σ (with
vanishing curvature F = DA = 0) is given by

ˆ

Σ

A ∧ F

also known as background field model (BF model). By a small redefinition of the connection, one can
also choose the Chern–Simons action:

CS(A, Σ) =
ˆ

Σ

(
A ∧ dA +

2
3

A ∧ A ∧ A
)

.

The variation of the Chern–Simons action CS(A, Σ) gets flat connections DA = 0 as solutions. The
flow of solutions A(t) in T(K1, K2)× [0, 1] (parametrized by the variable t) between the flat connection
A(0) in T(K1, K2)× {0} to the flat connection A(1) in T(K1, K2)× {1} will be given by the gradient
flow equation (see [54] for instance)

d
dt

A(t) = ± ∗ F(A) = ± ∗ DA, (19)

where the coordinate t is normal to T(K1, K2). Therefore, we are able to introduce a connection Ã in
T(K1, K2)× [0, 1] so that the covariant derivative in the t-direction agrees with ∂/∂t. Then, we have for
the curvature F̃ = DÃ where the fourth component is given by F̃4µ = dÃµ/dt. Thus, we will get the
instanton equation with (anti-)self-dual curvature

F̃ = ± ∗ F̃ .

However, now we have to extend the Chern–Simons action (of the 3-manifold) to the 4-manifold. It
follows that

CS(A, T(K1, K2)× {1})− CS(A, T(K1, K2)× {0}) =
ˆ

T(K1,K2)×[0,1]

tr(F̃ ∧ F̃)

i.e., we obtain the second Chern class and finally

SEH([0, 1]× T(K1, K2)) =

ˆ

T(K1,K2)×[0,1]

tr(F̃ ∧ F̃) = ±
ˆ

T(K1,K2)×[0,1]

tr( F̃ ∧ ∗F̃)

i.e., the action of the gauge field. The whole procedure remains true for an extension, i.e.,

SEH(R× T(K1, K2)) = ±
ˆ

T(K1,K2)×R

tr( F̃ ∧ ∗F̃) . (20)

The gauge field action (20) is only defined along the tubes T(K1, K2). For the extension of the action to
the whole 4-manifold M, we need some non-trivial facts from the theory of 3-manifolds. We presented
the ideas in [32]. Finally, we obtain the gauge field action

ˆ

M

tr(F̃ ∧ ∗F̃). (21)

Now, we will discuss the possible gauge group. Again, for completeness, we will present the
argumentation in [32] again. The gauge field in the action (21) has values in the Lie algebra of
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the maximal compact subgroup SU(2) of SL(2,C). However, in the derivation of the action, we used
the connecting tube T(K1, K2) between two tori, which is a cobordism. This cobordism T(K1, K2) is
also known as torus bundle (see [55] Theorem 1.15), which can be always decomposed into three
elementary pieces—finite order, Dehn twist and the so-called Anosov map (named after the russian
mathematician Dmitri Anosov).

The idea of this construction is very simple: one starts with two trivial cobordisms T2 × [0, 1]
and glues them together by using a diffeomorphism g : T2 → T2, which we call gluing diffeomorphism.
From the geometrical point of view, we have to distinguish between three different types of torus
bundles. The three types of torus bundles are distinguished by the splitting of the tangent bundle:

• finite order (orders 2, 3, 4, 6): the tangent bundle is three-dimensional,
• Dehn-twist (left/right twist): the tangent bundle is a sum of a two-dimensional and a

one-dimensional bundle,
• Anosov: the tangent bundle is a sum of three one-dimensional bundles.

Following Thurston’s geometrization program (see [56]), these three torus bundles are admitting
a geometric structure, i.e., it has a metric of constant curvature. Apart from this geometric
properties, all torus bundles are determined by the gluing diffeomorphism g : T2 → T2, which
also determines the fundamental group of the torus bundle. Therefore, this gluing diffeomorphism
also has an influence on the structure of the diffeomorphism group of the torus bundle, which will be
discussed now. From the physical point of view, we have two types of diffeomorphisms: local and
global. Any coordinate transformation can be described by an infinitesimal or local diffeomorphism
(coordinate transformation). In contrast, there are global diffeomorphisms like an orientation reversing
diffeomorphism. Two diffeomorphisms not connected via a sequence of local diffeomorphism are part
of different connecting components of the diffeomorphism group, i.e., the set of isotopy classes
π0(Di f f (M)) (also called the mapping class group). Isotopy classes are important in order to
understand the configuration space topology of general relativity (see Giulini [57]). In principle,
the state space in geometrodynamics is the set of all isotopy classes, where every class represents one
physical situation, or isotopy classes label two different physical situations. By definition, the two
3-manifolds in different isotopy classes cannot be connected by a sequence of local diffeomorphisms
(local coordinate transformations). Again, these two different isotopy classes represent two different
physical situations; see [13] for the relation of isotopy classes to particle properties like spin. In
case of the torus bundle, we consider the isotopy classes π0(Di f f (M, ∂M)) relative to the boundary
represented by the automorphisms of the fundamental group. Using the geometrization program, we
obtain a relation between the isotopy classes π0(Di f f (M, ∂M)) and the isometry classes (connecting
components of the isometry group) with respect to the geometric structure of the torus bundle (see, for
instance, [58,59]). Then, the isotopy classes of the torus bundles are given by

• finite order: 2 isotopy classes (= no/even twist or odd twist),
• Dehn-twist: 2 isotopy classes (= left or right Dehn twists),
• Anosov: 8 isotopy classes (= all possible orientations of the three line bundles forming the tangent

bundle).

From the geometrical point of view, we can rearrange the scheme above:

• torus bundle with no/even twists: one isotopy class,
• torus bundle with twist (Dehn twist or odd finite twist): three isotopy classes,
• torus bundle with Anosov map: eight isotopy classes.

This information creates a starting point for the discussion on how to derive the gauge group.
Given a Lie group G with Lie algebra g, the rank of g is the dimension of the maximal abelian
subalgebra, also called Cartan algebra (see above for a definition). It is the same as the dimension of the
maximal torus Tn ⊂ G. The curvature F of the gauge field takes values in the adjoint representation
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of the Lie algebra and the action tr(F ∧ ∗F) forms an element of the Cartan subalgebra (the Casimir
operator). However, each isotopy class contributes to the action and therefore we have to take the sum
over all possible isotopy classes. Let ta be the generator in the adjoint representation; then, we obtain
for the Lie algebra part of the action tr(F ∧ ∗F)

• torus bundle with no twists: one isotopy class with t2,
• torus bundle with twist: three isotopy classes with t2

1 + t2
2 + t2

3,
• torus bundle with Anosov map: eight isotopy classes with ∑8

a=1 t2
a.

The Lie algebra with one generator t corresponds uniquely to the Lie group U(1) where the three
generators t1, t2, t3 form the Lie algebra of the SU(2) group. Then, the last case with eight generators
ta has to correspond to the Lie algebra of the SU(3) group. We remark the similarity with an idea from
brane theory: n parallel branes (each decorated with an U(1) theory) are described by an U(n) gauge
theory (see [60]). Finally, we obtain the maximal group U(1)× SU(2)× SU(3) as a gauge group for all
possible torus bundles (in the model: connecting tubes between the solid tori).

At the end, we will speculate about the identification of the isotopy classes for the torus bundle
with the vector bosons in the gauge field theory. Obviously, the isotopy class of the torus bundle
with no twist must be the photon. Then, the isotopy class of the other bundle of finite order should
be identified with the Z0 boson and the two isotopy classes of the Dehn twist bundles are the W±

bosons. Here, we remark that this identification is consistent with the definition of the charge lateron.
Furthermore, we remark that this scheme contains automatically the mixing between the photon and
the Z0 boson (the corresponding torus bundle are both of finite order). The isotopy classes of the
Anosov map bundle have to correspond to the eight gluons. Later, we expect that these ideas will lead
to an additional relation for the scattering amplitudes induced by the geometry of the torus bundles.

4.5. Fermions, Bosons and 3-Braids

In the previous subsection, we identified the hyperbolic knot complement with a fermion and the
torus bundle between them as gauge bosons. The first natural question is then: which knot is related
to a fermion like the electron? However, this question is meaningless in our approach. The knot/link
complements are induced from the singularities of the branching set of the 4-fold branched covering
of the K3 surface. However, these singularities are another expression of the change of the branching
set of the 3-manifolds. With other words: the branching set, a knot or link, of a 3-manifold is not
unique. There are transformations of the branching sets representing the same 3-manifold. Therefore,
these complements are not uniquely connected to particles/fermions. Later, we will see that the knots
represent mainly the state. However, what are the invariant properties? For that purpose, we will
study the branched covering of the knot/link complement to understand the invariant properties.

Let C(K) = S3 \ (K× D2) be a knot complement which is a compact 3-manifold with boundary
∂C(K) = T2 the 2-torus. C(K) is given by a 3-fold branched covering C(K) → D3 inducing a 3-fold
branched covering of the boundary ∂C(K) → ∂D3 or T2 → S2. The 3-fold covering T2 → S2 has
six points as a branching set, the end points of a 6-plat or tangle (see Figure 7). In a similar manner,
let C(L) = C(K1, K2) = S3 \

(
L× D2) be a link complement of a link with two linked knots K1, K2

(the two linking components). C(L) is a compact 3-manifold with two boundaries given by two tori.
Then, the 3-fold branched covering C(L)→ S3 \

(
D3 t D3) induces again 3-fold branched coverings

T2 → S2 of the two boundaries. Every covering T2 → S2 has six points as a branching set again.
The corresponding branching set of C(L) is a braid of six strands but represented as a 3-braid (see
Figure 7).
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Figure 7. Branching sets—Left: 6-Plat for the knot cpomplement, Center: a 3-Braid as 6-Braid as
example, Right: 6-Braid for the link complement

Finally, bosons and fermions are represented as 3-braids. Our model agrees with the Bilson–Thompson
model but with the exception that we do not fix the braid. In particular, we do not believe that the
difference between an electron and myon is given by a different braid.

5. Electric Charge and Quasimodularity

We argued above that all knot complements admitting a hyperbolic geometry (geometry of
negative, constant scalar curvature) have the properties of fermions, i.e., spin 1

2 , are pressureless p = 0
in cosmology and fulfill the Dirac equation (see also the previous section for the action functional).
However, a particle can carry charges (electrical or others like color, etc.).

5.1. Electric Charge as Dehn Twist of the Boundary

We described above the knot complement as a branched covering branched along a braid. What
is the meaning of a charge in this description? Let us start with the case of an electric charge. Given a
complex line bundle over C(K)× (0, 1) with connection A and curvature F = dA, we then have the
Maxwell equations:

dF = 0 d ∗ F = ∗j,

with the Hodge operator ∗ and the 4-current 1-form j. The electric charge Qe is given by

Qe =

ˆ

∂C(K)=T2

∗F

in the temporal gauge (normal to the boundary of C(K)) using d ∗ F = ∗j and Stokes theorem. The
magnetic charge Qm is defined in an analogous way

Qm =

ˆ

∂C(K)=T2

F = 0,

but it is zero because of dF = 0. By the formulas above, we obtain a restriction of the complex line
bundle to the boundary ∂C(K) = T2. A complex line bundle over T2 is determined by the twists of the
fibers w.r.t. the lattice Z2 in the definition of the torus T2 = C/Z2. However, which twist is related to
the electric charge? Consider a cylinder S1 × [0, 1] and identify the ends of the interval to get T2 again.
A complex line bundle over S1 × [0, 1] with curvature F gives the integral

ˆ

S1×[0,1]

F =

ˆ

S1×{1}

A−
ˆ

S1×{0}

A

using F = dA, which is only non-trivial if the two integrals differ. It can be realized by a twist of one
side (say S1 × {1}), also called a Dehn twist. Dually by using d ∗ F = ∗j, we get

Qe =

ˆ

[0,1]

∗j =
ˆ

[0,1]

d ∗ F = ∗F|1 − ∗F|0,
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which is non-zero by a Dehn twist along [0, 1]. Therefore, charges can be detected by Dehn twists
along the boundary. A Dehn twist along the meridian represents the magnetic charge, whereas a
Dehn twist along the longitude is an electric charge. The number of twists is the charge, i.e., we
obtain automatically a quantization of the electric and magnetic charge. Furthermore, there is a
simple algebraic description of the twists, which agrees with the description of electromagnetic
duality using SL(2,Z). As noted above, the torus can be obtained by T2 = C/Z2 w.r.t. the lattice Z2.
An automorphism of the torus is given by a the group SL(2,Z) acting via rational transformations on
C, i.e., (

a b
c d

)
∈ SL(2,Z), ad− bc = 1→

(
a b
c d

)
· z =

az + b
cz + d

.

Then, the two possible Dehn twists are given by

z 7→ z + 1,

z 7→ −1
z

,

which is known from electromagnetic duality. However, this group also has another meaning. Let
Di f f (T2) be the diffeomorphism group of the torus. All coordinate transformations, known as
diffeomorphisms connected to the identity, are forming a (normal) subgroup Di f f0(T2) ⊂ Di f f (T2).
Then, the factor space MCG(T2) = Di f f (T2)/Di f f0(T2) is a group, known as a mapping classes
group, and generated by Dehn twists, i.e., MCG(T2) = SL(2,Z) or the mapping class group is the
modular group. An element of the mapping class group is a global diffeomorphism (also called isotopy)
that cannot be described by coordinate transformations, i.e., full twists cannot be undone by a sequence
of infinitesimal rotations. Then, different charges belong to different mapping (or isotopy) classes. Up
to now, we have a full symmetry between electric and magnetic charges (geometrically expressed by
the torus). Now, we will show that this behavior changed for the extension to the knot complement.
Technically, it will be expressed by a change from modular to quasimodular functions.

5.2. Electric Charge as a Frame of the Knot Complement

However, what does change in the knot complement and in the branched covering? As a toy
example, we consider the complement of the unknot D2× S1. Then, the Dehn twist along the meridian
of the boundary torus will be trivialized. By a result of McCullough (see for instance [61]), every
Dehn twist along the longitude induces a diffeomorphism of the solid torus. Then, the complement
of the unknot can carry an electric charge (by a Dehn twist) but no magnetic charge. This result can
be generalized to all knot complements (which are homologically equivalent to the solid torus). The
effect on the branched covering can also be obtained by considering the boundary. The boundary is
a torus written as two-fold branched covering branched along 4 points. A Dehn twist is given by a
permutation of the branching points that leads to a twist of the braid as a branching set of the knot
complement (see Figure 8).

Figure 8. Dehn twist represented by a braid.
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We obtain again the quantization of the electric charge as the number of Dehn twists.
However, more is true: the isotopy classes of the boundary determine the isotopy classes of the

hyperbolic knot complement up to a finite subgroup [59]. The mapping class group MCG(C(K))
consists of a disjoint union of isotopy classes of framings, i.e., trivializations of the tangent bundle
TC(K) seen as sections of the frame bundle (SO(3) principal bundle) up to homotopy. Therefore, the
change of the number of Dehn twists at the boundary induces a change of the framing for the knot
complement. However, there is also a direct way using obstruction theory. In [62], we described
the quantization of the electric charge by using exotic smoothness as a substitute for a magnetic
monopole. A magnetic monopole is a substitute for an element in the cohomology H2(S2,Z) leading
to the quantization of the electric charge

Qm ·Qe =
ch̄
2
· n, n ∈ Z

for the magnetic charge Qm and for the electric charge Qe. Using the canonical isomorphism

H2(S2,Z) ' H3(S3,Z),

we can transform the monopole class (as first Chern class of a complex line bundle) into a class in
H3(S3,Z). Now, let P be a principal SO(3) bundle over S3, called the frame bundle. The obstruction for
a section in this bundle lies at H4(S3, π3(SO(3))) = 0, where the vanishing of the cocycle guarantees
the existence. The number of sections is given by the elements in H3(S3, π3(SO(3))) = H3(S3,Z)
using π3(SO(3)) = Z. By Hodge duality, we obtain the same line of argumentation for the class ∗F
getting the electric charge (using also the quantization condition). The class in H3(S3,Z) can be related
to a relative class in the 4-manifold S3 × [0, 1], i.e.,

H3(S3,Z) ' H4(S3 × [0, 1], S3 × ∂[0, 1],Z)

called the relative Pontrjagin class p1. Now, we extend the whole discussion to an arbitrary 3-manifold
Σ, which we identify with Σ = C(K) ∪ (D2 × S1). Using this 4-dimensional interpretation, we obtain
the framing as the Hirzebruch defect [63]. For that purpose, we consider the 4-manifold M with
∂M = Σ. Let σ(M) be the signature of M, i.e., the number of positive minus negative eigenvalues of
the intersection form of M. Furthermore, let p1(M, Σ) be the relative Pontrjagin class as an element of
H4(M, ∂M = Σ,Z). Then, the Hirzebruch defect h is given by

h = 3σ(M)− p1(M, Σ) = Qe (22)

and identified with the framing, i.e., with the charge. This definition is motivated by the Hirzebruchs
signature formula for a closed 4-manifold relating the signature σ(M) and the first Pontrjagin class
p1(M) (of the tangent bundle TM) via σ(M) = 1

3 p1(M) (see [64]).

5.3. The Charge Spectrum

Now, we will discuss the expression (22) for the electric charge. By the argumentation above, the
relative Pontrjagin class gives an integer expressing the framing of the knot complement for a fixed
time. The appearance of the signature σ(M) added a 4-dimensional element which describes more
complex cases with many components. In [65], this case was also considered with a similar result: this
formula is valid for links where σ(M) is now the signature of the linking matrix and p1 is the sum of
framings for each component. The signature can be minimally changed by ±1 leading to a change of
the charge by ±3. Therefore, the minimal change for one component can be

Qe mod 3Z = {0,±1,±2,±3} ,
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i.e., we obtain a spectrum containing four possible values. If we normalize the charge to be a multiple
of e/3, then we have the charge spectrum

Qe =

{
0,±1

3
e,±2

3
e,±e

}
in agreement with the experiment. Then, we have the description of one particle generation: two
leptons (neutrino of charge 0 and lepton of charge −1) and two quarks (quark of charge − 1

3 and quark
of charge + 2

3 ).

5.4. Vanishing of the Magnetic Charge and Quasimodularity

One may wonder whether there is no magnetic charge anymore. Our argument is only partially
satisfying because there are many incompressible surfaces inside of a hyperbolic knot complement
serving as representatives for magnetic charges. Therefore, we need a stronger argument why the
symmetry between electric and magnetic charge is broken. As explained above, the Dehn twists of the
boundary torus are the generators of the mapping class (or isotopy) group. According to Atiyah [63],
the framing can be used to define a central extension Γ̂

1→ Z→ Γ̂→ Γ→ 1

of the mapping class group Γ so that there is a section s : Γ→ Γ̂ inducing a splitting of the sequence
above. This section defines a canonical 2-cocycle c for the central extension that is given by the
signature of the corresponding 4-manifold (see [63] for the details). However, in case of the torus, for
the group Γ = SL(2,Z), there is no non-zero homomorphism Γ → Z and so the splitting s1 : Γ → Γ̂
is unique. Therefore, the canonical section s is not a homomorphism and the framing (used in the
definition of this section) leads to a breaking of the modular invariance i.e., the invariance w.r.t. Γ.
This fact is simply expressed by considering the difference of the two sections s(γ) and s1(γ) for
γ ∈ Γ, which is given by the logarithm of the Dedekind η−function, related to quasimodular functions.
Thus, our definition of the electric charge breaks explicitly the electro-magnetic duality and we get a
vanishing magnetic charge.

6. Drinfeld–Turaev Quantization and Quantum States

In [66,67], we discussed the appearance of quantum states from knots known as Turaev–Drinfeld
quantization. The idea for the following construction can be simply expressed. We start with two
3-manifolds and consider a cobordism between them. This cobordism is a 4-manifold with a branched
covering branched over a surface with self-intersections. Here, it is enough to restrict to a special class
of these surfaces, so-called ribbon surfaces (see [68]). The 3-manifolds are chosen to be hyperbolic knot
complements, denoted by Y1, Y2. A hyperbolic structure is defined by a homomorphism π1(Yi) →
SL(2,C) (∈ Hom(π1(Yi), SL(2,C))) up to conjugation. Now, we extend this structure to the entire
cobordism, denoted by Cob(Y1, Y2). The branching set of Cob(Y1, Y2) is a surface S with non-trivial
fundamental group π1(S). This surface can be changed without any change of Cob(Y1, Y2). One
change can be described as crossing change. Now, we have all ingredients for the Drinfeld–Turaev
quantization:

• The surface S (branching set of Cob(Y1, Y2)) is inducing a representation π1(S)→ SL(2,C).
• The space of all representations X(S, SL(2,C)) = Hom(π1(S), SL(2,C))/SL(2,C) has a

natural Poisson structure (induced by the bilinear on the group) and the Poisson algebra
(X(S, SL(2,C), { }) of complex functions over them is the algebra of observables.

• The Skein module K−1(S× [0, 1]) (i.e., t = −1) has the structure of an algebra isomorphic to the
Poisson algebra (X(S, SL(2,C)), { }). (see also [69,70]).
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• The skein algebra Kt(S× [0, 1]) is the quantization of the Poisson algebra (X(S, SL(2,C)), { })
with the deformation parameter t = exp(h/4) (see also [69]) .

To understand these statements, we have to introduce the skein module Kt(M) of a 3-manifold
M (see [71]). For that purpose, we consider the set of links L(M) in M up to isotopy and construct
the vector space CL(M) with basis L(M). Then, one can define CL[[t]] as ring of formal polynomials
having coefficients in CL(M). Now, we consider the link diagram of a link, i.e., the projection of the
link to the R2 having the crossings in mind. Choose a disk in R2 so that one crossing is inside this disk.
If the three links differ by the three crossings Loo, Lo, L∞ (see Figure 9) inside of the disk, then these
links are skein related.

Figure 9. Crossings L∞, Lo, Loo.

Then, in CL[[t]], one writes the skein relation L∞ − tLo − t−1Loo which depends only on the
group SL(2,C). Furthermore, let L tO be the disjoint union of the link with a circle. Then, one writes
the framing relation L tO + (t2 + t−2)L. Let S(M) be the smallest submodule of CL[[t]] containing
both relations. Then, we define the Kauffman bracket skein module by Kt(M) = CL[[t]]/S(M). The
modification of S by using the skein relations is one of the allowed changes of the branching set to
keep Cob(Y1, Y2).

Now, we list the following general results about this module:

• The module K−1(M) for t = −1 is a commutative algebra.
• Let S be a surface. Then, Kt(S× [0, 1]) carries the structure of an algebra.

The algebra structure of Kt(S× [0, 1]) can be simply seen by using the diffeomorphism between
the sum S× [0, 1]∪S S× [0, 1] along S and S× [0, 1]. Then, the product ab of two elements a, b ∈ Kt(S×
[0, 1]) is a link in S× [0, 1] ∪S S× [0, 1] corresponding to a link in S× [0, 1] via the diffeomorphism.
The algebra Kt(S× [0, 1]) is in general non-commutative for t 6= −1. For the following, we will omit
the interval [0, 1] and denote the skein algebra by Kt(S).

As shown in [23,66,72], the skein algebra serves as the observable algebra of a quantum field
theory. For this approach via branched coverings, the branching sets of knot complements (representing
the fermions) are special braids (6-plats, see above). Any different braid is a different state or better
than a different quantum state but not a different particle. As explained above, the charge spectrum is
enough to describe one generation of particles (two leptons, two quarks). The appearance of different
generations will be discussed below.

7. Fermions and Number Theory

In this section, we will present some ideas to uncover some explicit relations between fermions,
given as hyperbolic knot complements, and number theory, notable quaternionic trace fields and
algebraic K theory/Bloch group. However, we first need some definitions.

A quaternion algebra over a field F is a four-dimensional central simple F-algebra. A quaternion
algebra has a basis 1, i, j, ij where i2, j2 ∈ F× and ij = −ji. A subgroup of PSL(2,C), the isometry
group of the three-dimensional hyperbolic space isomorphic to the Lorentz group SO(3, 1), is said
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to be derived from a quaternion algebra if it can be obtained through the following construction.
Let F be a number field that has exactly two embeddings into C whose image is not contained in R.
Let A be a quaternion algebra over F such that, for any embedding τ : F → R, the algebra A⊗τ R is
isomorphic to the quaternions. Let O1 be the group of elements in the order of A with a 1. An order
of a quaternionic algebra A is a finitely generated submodule O of A of reduced norm 1 and let Γ
be its image in the 2× 2 matrices M2(C) via φ : A → M2(C). We then consider the Kleinian group
obtained as the image inPSL(2,C) of φ(O1). This subgroup is called an arithmetic Kleinian group. An
arithmetic hyperbolic three-manifold is the quotient of hyperbolic space H3 by an arithmetic Kleinian
group. The complement of the figure 8 knot is one example of an arithmetic hyperbolic 3-manifold.

This class of 3-manifolds shows the strong relation between quaternions and 3-manifolds. We
discussed above the relation between the K3 surface and the octonions. The starting point for the use of
number theory in Kleinian groups is Mostow’s rigidity theorem. A consequence of this theorem is that
the matrix entries in SL(2,C) of a finite covolume Kleinian group Γ may be taken to lie in a number
field that is a finite extension of Q. However, it is true that there is a strong relation between certain
number theoretic functions (Bloch–Wigner function, dilogarithm) and the volume of the hyperbolic
3-manifolds: the volume is the sum over all Bloch–Wigner functions for the ideal tetrahedrons forming
this 3-manifold. For more information about the relation between hyperbolic 3-manifolds and number
theory, consult the book [73]. We hope to use this relation in the future to obtain more properties of
fermions by using number theory.

8. The K3 Surface and the Number of Generations

In Section 4.1, we discussed a relation between the K3 surface and octonions by using the
intersection form. Here, we use only the E8 matrix, i.e., the Cartan matrix of the Lie algebra E8. In this
section, we will speculate about the other part

H =

(
0 −1
−1 0

)

of the intersection form (now with a different orientation). H is the intersection form of the 4-manifold
S2 × S2. To express it explicitly, there are homology classes α, β ∈ H2(S2 × S2) with α2 = β2 = 0 and
α · β = −1. Therefore, every S2 of this manifold has no self-intersections. For the topology of the
K3 surface with intersection form (7), this form has the desired form, but, as explained above, we
will change the smoothness structure. The central idea is the usage of Casson handles CH for the
4-manifolds S2 × S2 \ pt, the one-point complement of S2 × S2. Here, the homology classes α, β are
given (up to homotopy) by α2, β2 = 0 mod 2 and α · β = −1; see [74]. However, then one has α2 = 2n.
Interestingly, the existence of a spin structure is connected to the property that the squares of the
homology classes are even. Here, we will consider the simplest realization which has non-zero squares,
i.e., we get the form

H̃ =

(
2 −1
−1 2

)
. (23)

This form cannot be an intersection form because H̃ has determinant 3. Therefore, only the H̃ mod 2
reduction has the meaning to be an intersection. However, for the moment, we will consider H̃
and apply the same construction as for the E8, i.e., we see H̃ as the Cartan matrix for a Lie algebra.
In this case, we get the Lie algebra of SU(3) or the color group. The whole discussion uses some
hand-waving arguments, but it is a sign that the 3

(
S2 × S2) part of the K3 surfaces is connected with

the generations. Every part S2 × S2 has one color group and realizes the electric charge spectrum
0,± 1

3 ,± 2
3 ,±1. Thus, every S2 × S2 is the 4-dimensional expression for one generation. This result

agrees with the discussion in [31] where we generate fermions from a Casson handle. Let us assume
that the number of generations is given by the number of S2 × S2 summands. How many generations
are possible? Here, we have the surprising result: if the underlying spacetime is a smooth manifold, then
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the minimal number of generations must be three! A spacetime with only one or two generations is not a
smooth manifold. Then, the K3 surface is the minimal model.

We will close this paper with another speculation, a global symmetry induced from the K3
surface. Starting point is the intersection form again. From the point of number theory, this
form is an even unimodular positive-definite lattices of rank 24, the so-called Niemeier lattice. In
2010, Eguchi–Ooguri–Tachikawa observed that the elliptic genus of the K3 surface decomposes into
irreducible characters of the N = 4 superconformal algebra. The corresponding q-series is a mock
modular form related to the sporadic group M24, the Mathieu group, a simple group of order 244823040.
The whole theory is known as Mathieu moonshine or umbral moonshine [75]. The interesting point
here is the maximal subgroup of M24, the split extension of PGL(3, 4) by S3. The group is the projective
group of 3× 3 matrices with values in the field of four elements. It seems that this maximal subgroup
acts in some sense on the K3 surface, and we conjecture that this group acts on the S2 × S2 part. If our
idea of a relation between the three generations and the 3

(
S2 × S2) part of the K3 surfaces is true, then

we hope to get the mixing matrix for quarks and neutrinos from this action.

9. Conclusions and Outlook

In this paper, we presented a top-down approach to fermions and bosons, in particular the
standard model. What was done in the paper?

• We constructed a spacetime, the K3 surface and derive some numbers like the cosmological
constant or some energy scales and neutrino masses agreeing with experimental data.

• We derived from a representation of K3 surfaces by branched covering a simple picture: fermions
are hyperbolic knot complements, whereas bosons are link complements (torus bundles).

• We obtained the gauge group from this picture (at least in principle).
• We derived the correct charge spectrum and obtained one generation.
• We conjectured about the number of generations and global symmetry (the PGL(3, 4)) to get the

mixing between the generations.

What are the consequences for physics? The model only has a few direct consequences. We
introduced fermions and bosons in a geometric way. Except for the right-handed neutrino (needed
for the see-saw mechanism to generate the masses), we only got the fermions and gauge bosons of
the standard model. No extension is needed. The usage of torus bundles for the gauge bosons should
generate additional relations for the corresponding scattering amplitudes. The appearance of the global
symmetry PGL(3, 4) should be related the mixing of quarks and neutrinos. In [40], we also discussed
the appearance of an asymmetry between particles and anti-particles induced by the topology of the
spacetime. This idea is also valid in this model, but we cannot match it to the observations.

Is there an outline on some new experiments derived by this model? Currently, this model makes
some predictions about the neutrino masses, charge spectrum and the existence of a right-handed
neutrino. However, these predictions can be checked by a better measurement in known experiments.
Now, there are no new ideas about special experiments connected with this model.

Among these results, there are, of course, many open points of the kind: what is the color and
weak charge? How can we implement the Higgs mechanism? What is mass? For the Higgs mechanism,
we had found a possible scheme in our previous work [40,76], but it is only a beginning. Many aspects
of this paper are related to the ideas of Furey and Gresnigt. It is a future project to extend it and bridge
our approach with these ideas.
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