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Abstract: We consider the model of Dirac fermions coupled to gravity as proposed, in which
superluminal velocities of particles are admitted. In this model an extra term is added to the
conventional Hamiltonian that originates from Planck physics. Due to this term, a closed Fermi
surface is formed in equilibrium inside the black hole. In this paper we propose the covariant
formulation of this model and analyse its classical limit. We consider the dynamics of gravitational
collapse. It appears that the Einstein equations admit a solution identical to that of ordinary
general relativity. Next, we consider the motion of particles in the presence of a black hole.
Numerical solutions of the equations of motion are found which demonstrate that the particles
are able to escape from the black hole.

Keywords: black hole; Painlevé-Gullstrand coordinates; Dirac fermions; superluminal velocity

1. Introduction

The Schwarzschild black hole (BH) solution [1,2] may be brought to a form, which is especially
useful for the consideration of the motion of matter. This is the so-called Painlevé-Gullstrand (PG)
black hole [3,4]. In the corresponding reference frame space–time looks like flat space falling down to
the center of the BH with velocity that depends on the distance to the center. Such a representation
also exists for the Reissner-Nordstrom BH and even for the Kerr BH [5,6]. The structure of the BH
solution in the PG reference frame prompts to consider the analogy to the motion of a fluid in the
laboratory. Such an analogy has been considered in the framework of the theory of 3He superfluid in
[7]. It allows to calculate in a demonstrative way Hawking radiation [8] (see also, for example, [9–12]
and references therein).

The consideration of Dirac fermions in the PG reference frame leads to the unexpected observation
that inside the BH the fermion states with vanishing energy form the surface in momentum space.
In equilibrium, at vanishing temperature, it becomes the Fermi surface and separates the region
of occupied quantum states from the region of the vacant ones. For the ordinary Dirac fermions
such a surface is open and infinite. The analogy with condensed matter physics suggests that the
particle Hamiltonian is to be modified in such a way so that the resulting Fermi surface will become
finite and closed. It has been proposed in [13] that such a modification occurs due to Planck physics.
The corresponding term has been added to the Dirac Hamiltonian. It leads to several consequences for
BH physics. First of all, the analogy to the BH in the PG reference frame has been found within the
class of the recently discovered materials called Weyl semimetals [14–21]. Bloch electrons within those
materials behave similarly to the elementary particles. In the special type of such materials called
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the type II Weyl semimetals (WSII) [22–24] the dependence of energy of electrons on momenta [25]
possesses an analogy to that of the particles in the interior of the BH [26,27].

In [28–30] it was noticed that if a closed finite Fermi surface inside the BH is formed, there should
exist particles that escape from the BH without tunneling. In the present paper we take a step back and
consider the model proposed in [13] on the classical level. We suppose that a careful consideration of
the classical dynamics should precede the more sophisticated discussion of the quantum BH, although
the extra term added to the particle Hamiltonian becomes relevant at Planck energies.

This extra term contains the time—like four—vector nµ. In the Painlevé-Gullstrand reference
frame it marks the direction of time. In the covariant theory there should be no such preferred direction
of time. We assume that it appears as a result of a dynamical symmetry breaking. This symmetry
breaking, in turn, results in the appearance of the massless Goldstone modes. Here we shall not discuss
the physics of those massless excitations.

First of all, we propose the covariant formulation of the discussed model. It contains the vector
field nµ, which, after the spontaneous breakdown, acquires its particular value that points in the
direction of time in the Painlevé-Gullstrand reference frame. The classical equations of motion
for the corresponding point—like particles admit motion with superluminal velocity. Therefore,
unsurprisingly, the particles may escape from the black hole already at the classical level. For the
discussion of the theories that admit superluminal velocity of particles we refer to [31,32].

The paper is organized as follows. First of all, in Section 2 we recall the general properties of the
Dirac fermions in the PG reference frame in the presence of the charged BH. In Section 3 we propose
the covariant formulation of the model of [13] and derive its classical limit. In Section 4 we derive the
expression for the stress–energy tensor of the noninteracting particles in the PG reference frame. In
Section 5 the gravitational collapse in this model is considered. In Section 6 we present the results of
the numerical solution of the classical equations of motion for the motion of particles in the presence of
the existing black hole (at the stage when the gravitation collapse is finished). The physical significance
of the results is dicussed in the concluding Section 7. Throughout the paper we use the units with
c = h̄ = 1.

2. Dirac Fermions in the Black Hole in the Painleve–Gullstrand Reference Frame

In the present paper we will be interested in neutral black holes. However, we start our
consideration from the ansatz that corresponds to a charged black hole [5,6] (see also [33,34]).
The charge is assumed to be small, so that it modifies the BH solution in the small vicinity of the
BH center. We will add also another modification in the small vicinity of the center, which will
cause the metric to be regular everywhere. Thus we start from the charged black hole metric in the
PG coordinates

ds2 = dt2 − (dr− v(r)dt)2. (1)

Here the expression

v = − 1
mP

r
r

√
2M

r
− Q2

r2 (2)

may be considered as a velocity of space falling towards the center of the BH. Q is the charge of the
BH, mP is the Plank mass, while M is the BH mass.

The vielbein is given by

Eµ
a =

(
1 v
0 1

)
, (3)

and the inverse vielbein ea
µ is

ea
µ =

(
1 −v
0 1

)
. (4)
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The metric is equal to
gµν = ea

µeb
νηab,

where ηab = diag (1,−1,−1,−1).
The action for the Weyl fermions has the form

SR,L =
∫

d4x det−1(E) ψ̄R,L(x)
(

iE0
0∂t ±

i
2

σa
[

Ek
a∂k + ∂kEk

a

])
ψR,L(x)

=
∫

d4x ψ̄R,L(x)
(

i∂t − HR,L(−i∂)
)

ψR,L(x), (5)

where symbols R (L) mark the right-handed/left-handed fermions. Here σa are the Pauli matrices.
Their Hamiltonians are

HR,L(p) = ±pσ− pv. (6)

The Dirac mass term mixes the right-handed and the left-handed fermions

Sm = −m ∑
R,L

∫
d4x det−1(E) ψ̄R,L(x)ψL,R(x)

= −m
∫

d4x ∑
R,L

ψ̄R,L(x)ψL,R(x). (7)

It appears that the spin connection does not enter this action. Next, following [13], we introduce
the term that breaks the Lorentz invariance:

SP = − 1
µ ∑

R,L

∫
d4x det−1(E)

[
±
(
~∂ψ̄R,L(x)

)(
~∂ψL,R(x)

)]
. (8)

Here parameter µ is assumed to be of the order of the Plank mass. For r < r0 = Q2

2M the velocity
v becomes imaginary. It is pausible that due to the interaction with matter the dependence of v on r
is modified within the BH, and v remains real and tends to zero at r = 0 (see also [5]). In the present
paper we model this form of v via the following modification

v(r) =
1

mP

√
2M

r + ε
− Q2

(r + ε)2 (9)

with

ε =
Q2

2M
.

The resulting form of v(r) is represented in Figure 1 in the system of units with mP = 1 at
M = mP

2 and Q = 0.4. This modification changes the form of the gravitational field only close to the
center of the black hole. It is expected that in the small vicinity of the center of the black hole the
Einstein equations are to be modified because otherwise the value of v becomes imaginary, which
is unphysical. Equation (9) is not derived from any particular equations of motion and, therefore,
represents a modification of the metric that follows from the requirement that v remains real.
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Figure 1. Velocity of “vacuum” (vertical axis) as a function of r (horizontal axis) for Q = 0.4 and
M = 0.5 mP.

The two horizons are placed at

r+ =
M +

√
M2 −Q2m2

P

m2
P

− ε (10)

and

r− =
M−

√
M2 −Q2m2

P

m2
P

− ε. (11)

For r > r+ one has ordinary Dirac fermions with mass m of Equation (7). The horizons given by
Equations (10) and (11) are defined as the surfaces, where the vacuum velocity becomes equal to the
speed of light. At m = 0 the Fermi point appears. Between the two horizons r− < r < r+ at m = 0
there is the type II Dirac point, while |v| is larger than the speed of light. Notice that this, in itself, yet
does not mean that the velocity of real particles does exceeds the speed of light [35]. In fact, a particle
with a conventional action that does not break Lorentz invariance still moves with a velocity smaller
than the speed of light. A “Vacuum velocity” v exceeding the speed of light then guarantees that such
a particle cannot escape from the BH interior. However, as we will see below, the Lorentz breaking
term in the action of Equation (8) leads to the superluminal motion of the particle excitation, and to its
ability to escape from the BH.

Neglecting the derivatives of v we come to the following expression for the particle energy

E(p) = ±

√
m2 + p2 +

p4

µ2 − pr̂ v(r). (12)

Thus, assuming that v varies slowly, we come to the conclusion that between the two horizons
the particle energy vanishes along the closed surface in momentum space. Its form is represented in
Figure 2 for a particular choice of the parameters. It is worth mentioning that the Hamiltonian of the
form of Equation (12) admits motion with the superluminal velocity on the classical level. Therefore,
unsurprisingly, in the considered model the particles are able to escape from the black hole.
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Figure 2. The typical Fermi surface form in the plane (pr, p⊥) within the black hole at the values of
parameters M = 0.5 mP, m = 0.01 mP, µ = mP and Q = 0.4. Here the vertical axis corresponds to
pr while the horizontal axis corresponds to p⊥. For these values the external horizon is placed at
r+ = 0.64/mP. We represent the Fermi surface at r = 0.5/mP.

Notice again that the only meaning of parameters Q and ε in Equation (9) is the modification of
the neutral black hole solution in the small vicinity of r = 0. This modification regularizes the theory
close to the center of the black hole. Far from r = 0 the gravitational field corresponds to the one of the
neutral black hole.

3. Covariant Formulation of the Theory and Its Classical Limit

Here we propose the covariant modification of the model of [13] considered in the previous
section. Namely, we consider the Dirac field Ψ with action

S =
∫

d4x det−1(E)
(

Ψ̄(x)γ0
[
iγaEν

a Dν −m
]
Ψ(x)

+
1
µ

[
DσΨ̄(x)

]
γ0γ5hσνDνΨ(x)

)
. (13)

Here we denote Dµ = ∂µ + 1
8 ωabµ[γ

a, γb] and hµν = gµν − nµnν. The spin connection is given by

ωabµ =
1
2
(cabc − ccab + cbca)Ec

µ.

Here cabc = ηadEµ
b Eν

c ∂[νed
µ]

; gµν = ea
µeb

νηab. For the details see References [36–39]. By n we denote
the vector field. Its action may be taken in the form

Sn =
∫

d4x det−1(E)
(

DµnνDµnν − λ(n2 − 1)2
)

. (14)



Symmetry 2019, 11, 1294 6 of 16

At sufficiently large values of λ this vector field becomes non-propagating. Its vacuum average
gives rise to the spontaneous breakdown of Lorentz symmetry. Neglecting spin degrees of freedom we
will finally come to the dispersion of the form of Equation (12). The 4-vector n in the PainleveGullstrand
reference frame is constant and marks the time direction:

nµ = (1, 0, 0, 0).

Correspondingly, nµ = (1,−v, 0, 0). The appearance of this vector breaks the group of general
coordinate transformations in four-dimensional space–time to the group of general coordinate
transformations in three-dimensional space. As a result three massless Goldstone modes would
appear corresponding to the broken boosts if there are no gauge bosons. However, if a dynamical
gravity with an independent spin connection field is considered (this means that we consider the
fluctuations of both metric and spin connection around the classical solution of the Palatini equation;
this equation is also known as the Einstein equation written in the first order formalism), then the
mentioned Goldstone bosons are eaten by the dynamical field of the spin connection thus giving rise to
an effective mass term for the latter. The same mechanism may also have its incarnation in Riemannian
gravity, in which the spin connection is expressed uniquely through the metric. This, however, remains
out of the scope of the present paper. Notice that in massive gravity a certain modification of the BH
evaporation process has been predicted [40–42] (see also [43]).

The only component of the spin connection (in spherical coordinates) is ωr0r = −ω0rr = −v′(r).
This term disappears from the first term in the Painlevé-Gullstrand reference frame. However, it is
essential for the calculation of the stress–energy tensor .

The first step towards the classical theory is the consideration of the above model with the spin
neglected. This corresponds to the consideration of the scalar field instead of the Dirac spinor and the
corresponding action. Hence the theory is that of a scalar field Φ with the action

S =
1
2

∫
d4x

√
−g Φ̄(x)

( 1√−g
∂σ

√
−ggσν∂ν

+m2 +
( 1

µ
√−g

∂σ

√
−ghσν∂ν

)2)
Φ(x). (15)

There is no precise correspondence between Equations (13) and (15). In the transition the spin
degrees of freedom and the corresponding terms in the lagrangian were neglected. The variation of
this action with respect to Φ gives the wave equation( 1√−g

∂σ

√
−ggσν∂ν + m2 +

( 1
µ
√−g

∂σ

√
−ghσν∂ν

)2)
Φ(x) = 0.

In the semiclassical limit we substitute −i∂k by momentum p and i∂0 by energy E . This gives the
following relation for pµ = (E ,−p)

(
pµgµν pν −m2 −

( 1
µ

pσhσν pν

)2)
= 0. (16)

In the Painlevé-Gullstrand reference frame we get

E2 − 2Evp + (vp)2 − p2 −m2 − p4

µ2 = 0. (17)

This equation gives rise to the classical particle Hamiltonian of [13] given by Equation (12).
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4. The Stress–Energy Tensor of the Non-Interacting Classical Particles

4.1. General Expression for the Stress–Energy Tensor

In this section we consider matter that consists of the non-interacting particles. Our aim is to
consider the gravitational collapse. Therefore, following [44] we consider the generalization of the
Painlevé-Gullstrand spacetime:

ds2 = dt2 − (dr− v(r)dt)2, (18)

with

v = − 1
mP

r
r

√
2m(t, r)

r
= − r

r
v(r, t) (19)

Function m(t, r) enters Equation (19) that defines the vacuum velocity. The latter, in turn enters
Equation (18) for the metric. If we substitute the ansatz for metric of Equation (18) to the Einstein
equations, we obtain equation for the function m(t, r). It is to be obtained through the solution of
Einstein equations.

While we are going to calculate the stress–energy tensor of the classical system, we prefer to start
from the model of the scalar field with action Equation (15). We will calculate the stress–energy tensor
of the corresponding quantum system and take the classical limit at the end of the calculation. We
are to calculate the stress–energy tensor through the variation of action with respect to the variation
of metric

δS =
1
2

∫
Tµνδgµν

√
−gd4x

Notice that δ
√−g = − 1

2 gµν
√−gδgµν. In a similar way we calculate the current density as

δS = −
∫

JµδAµ

√
−gd4x

In the semiclassical limit the oscillating factors in the radial wave functions are given by Φ(r, t) ∼
eiS ∼ e−iE t+i

∫ r
r0

p(r̄)dr̄ while the electric current may be identified with the product of the particle density
ρ and the velocity of substance. This leads to the following semiclassical relation in the generalized
Painlevé-Gullstrand reference frame

ρ(x, t) ≈ Φ∗(x, t)
(
E(x, t)− v(x, t) · p(x, t)

)
Φ(x, t))

ρ(x, t)V(x, t) ≈ Φ∗(x, t)
(
(E(x, t)− v(x, t) · p(x, t)) v(x, t) + p(x, t)

(
1 + 2

|p(x, t)|2
µ2

))
Φ(x, t)

Here ρ(x, t) is the particle density. The number of particles in a small volume Ω around the given
space–time point is equal to

∫
Ω d3xρ(x, t). It is supposed that all these particles have equal values

of energy E(x, t), velocity V(x, t) = r̂V(x, t), and momentum p(x, t) = r̂p(x, t). Those quantities are
related to each other via the classical equations of motion

V(x, t) =
p(x, t) + 2p3(x, t)/µ2√
m2 + p2(x, t) + p4(x,t)

µ2

− v(x, t)

dp(x, t)
dt

= p(x, t)
dv(x, t)

dr
. (20)
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The above equations enable us to relate the absolute value of Φ with the physical quantities ρ and
V. In an arbitrary reference frame we have the similar relation

jσ =
1√−g

ρ(x, t)
dxσ

dt
∼ Φ∗(x)

(
gσν pν −

( 2
µ2 pλhλν pν

)
hσν pν

)
Φ(x)

= gσν|Φ(x)|2
(

pν(1− 2(p2 − (pn)2)/µ2) + 2nν(p2 − (pn)2)(pn)/µ2
)

.
(21)

Here
ρ(x, t) = ∑

a
δ(x− xa(t))

is the density of particles. Therefore, in the Painlevé-Gullstrand coordinates we identify

|Φ(x, t)|2 =
ρ(x, t)
p0(x, t)

while in the arbitrary reference frame

|Φ|2 =
(jp)

p2 − 2 (p2−(pn)2)2

µ2

=
(jp)

m2 − (p2−(pn)2)2

µ2

.

In the same limit the stress–energy tensor is given by

Tσν ∼ Φ∗(x)(pσ pν −
gσν

2
(p2 −m2))Φ(x)

+ Φ∗(x)
1

µ2

( gσν

2

(
pρ pλhρλ

)2
− 2

[
p2 − (pn)2

]
pσ pν

)
Φ(x).

(22)

The equations of motion give

Tσν ∼ Φ∗(x)
(

pσ pν

{
1− 2

µ2

[
p2 − (pn)2

]})
Φ(x)

=
p · j

p2 − 2
µ2

(
p2 − (pn)2

)2 pσ pν

{
1− 2

µ2

[
p2 − (pn)2

]}
.

(23)

4.2. The Stress–Energy Tensor in the Limit µ→ ∞

Let us demonstrate how Equation (23) gives rise to the conventional stress–energy tensor of the
non-interacting particles in the limit µ→ ∞. We have

Tµν =
(jp)
p2 pµ pν =

ρ

p0 pµ pν.

In the generalized PG reference frame we have

jµ = (ρ, ρV), p0 = E − vp =
m√

1− (V− v)2
, {−pk} = p =

m(V− v)√
1− (V− v)2

{pk} = mV√
1− (V− v)2

, (jp) = ρm
√

1− (V− v)2.
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This gives

T00 = ρp0 = ρ
m√

1− (V− v)2
= ρm

dt
ds

= ρm
ds
dt

u0u0

T0k = ρpk = ρ
mVk√

1− (V− v)2
= ρm

ds
dt

u0uk (24)

T jk =
ρ

p0 pj pk = ρ
mV jVk√

1− (V− v)2
= ρm

ds
dt

ujuk.

Here uj is the four-velocity of the particles/substance. We come to the conventional expression

Tµν = εuµuν (25)

where ε = ρm ds
dt is the energy density in the rest frame of the medium (notice that ρ is the particle

density in the given reference frame while ρ ds
dt is the particle density in the rest frame).

4.3. Expression for the Stress–Energy Tensor for Finite µ, in the Case When the Substance Is Co-Moving with
the Space Flow

In the general case the following expression for the stress–energy tensor should be obtained

Tσν = uσuν fu(u, n, µ, ε) + nσnν fn(u, n, µ, ε) + (uσnν + uνnσ) fun(u, n, µ, ε) + gσν fg(u, n, µ, ε). (26)

The scalar functions fu, fn, fun, fg depend on the four-velocity u, the four-vector n, the constant µ,
and the energy density ε = ρmds/dt. In the important particular case, when velocity of substance V
everywhere is equal to v, the classical equations of motion give p = 0 and we obtain the especially
simple result

Tµν = εuµuν.

5. Description of the Gravitational Collapse in the Generalized Painlevé-Gullstrand Coordinates

In this section we consider the gravitational collapse of matter that consists of the non-interacting
neutral particles (for the discussion of the collapse of the charged matter see, e.g., [45]). Those particles
being placed into the Painlevé-Gullstrand spacetime have the Hamiltonian

H(p) = ±

√
m2 + p2 +

p4

µ2 + p · v(r, t). (27)

The generalization of the PG spacetime [44] has the following metric

ds2 = dt2 − (dr− v(r, t)dt)2, (28)

with

v = − 1
mP

r
r

√
2m(t, r)

r
= −v (r, t) r̂. (29)

The function m(t, r) is to be obtained through the solution of Einstein equation.
It was shown above that the noninteracting matter with the Hamiltonian of [13] has stress–energy

tensor equal to that of the conventional matter in the generalized Painlevé-Gullstrand coordinates
in the important particular case, when at each point the velocity of matter is precisely equal to v.
The problem for the gravitational collapse of matter with this stress–energy tensor is solved in [44].
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For the noninteracting particles (perfect fluid) in the above particular case the energy–momentum
tensor Tµ

ν has the form
Tµν = εuµuν. (30)

Here ε is the energy density, and uµ = (1, −v(t, r), 0, 0) the radial four-velocity of the fluid.
Correspondingly uµ = (1, 0, 0, 0). For the definiteness let us assume that v is directed along the x
axis. Then

gµν =


1 −v 0 0
−v v2 − 1 0 0
0 0 −1 0
0 0 0 −1

 , gµν =

(
1− v2 v

vT −1

)
. (31)

It follows from the derivation of [44] that

m(t, r) = 4πm3
P

∫ r

0
ε(t, y)y2dy (32)

and
ε =

1
6πmPt2 , t < 0. (33)

We come to the following pattern of the gravitational collapse. If the velocity of matter at the
starting moment t0 is equal to the function v(r, t0) of the generalized Painlevé-Gullstrand reference
frame, and everywhere the three-momentum of the particles vanishes at t = t0, then the Einstein
equations have the solution given by Equations (32) and (33). Thus, matter contracts towards the
center of the BH together with the “falling” space. This gives

m(t, r) =
2r3

9t2 m2
P, v(t, r) =

2r
3|t| .

As a result, the position of the horizon (where the velocity equals 1) depends on time

rh = 3|t|/2.

One can see that at each finite value of t the velocity of space fall vanishes for r = 0 only.
The space–time metric remains regular everywhere.

The collapse of dust placed within a sphere leads at t → −0 to the formation of the ordinary
PainlevéGullstrand BH (see [44]). In the next section we will consider the classical motion of particles
in the formed BH regularized in the small vicinity of its center as explained in Section 2.

6. Classical Dynamics of Particles

In this section we discuss the dynamics of the single particle moving in the radial direction in the
presence of the existing black hole. In the Gullstrand-Painleve coordinates metric does not depend on
time. The classical Hamiltonian of the particle in the presence of the black hole has the form

H(p) = ±

√
m2 + p2 +

p4

µ2 − pr̂ v(r). (34)

For the radial motion the corresponding classical equations are

dr
dt

=
p + 2p3/µ2√
m2 + p2 + p4

µ2

− v(r)

dp
dt

= p
dv(r)

dr
. (35)
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The Fermi surface for the particular value of r crosses the axis of radial momentum at

p±/µ =

√√√√v2(r)− 1
2

±

√
(v2(r)− 1)2

4
− m2

µ
.

One can see that the Fermi surface is not formed immediately behind the external horizon. Instead,
it is formed at

v(r) ≥
√

1 + 2m/µ.

The typical classical trajectories of the particles are calculated and represented in Figures 3–5.
The particles that fall together with the “vacuum” reach the center of the black hole and stay there.
However, if the initial momentum is nonzero, the particles that have fallen down to the black hole
receive large values of radial momentum in a small vicinity of the BH center. As a result, they escape
from the BH. If the initial momentum was directed to the center of the BH, then the particle traverses
the BH and escapes it from a diametrically opposite point. If the initial momentum is in the opposite
direction, then its velocity reverses the sign close to the center of the BH, the particle is turned back.
In the exterior of the black hole the momentum is decreased, and the particle velocity changes the sign
again. The particle falls down again thus forming oscillations.

coordinate

momentum

horizon

0.0 0.5 1.0 1.5 2.0

-0.5

0.0

0.5

1.0

time

r(0)=1.2/μ, p(0)=0

Figure 3. The radial trajectory of the particle that falls down to the black hole (red solid line):
The dependence of radial coordinate r in the units of 1/mP on time (in the same units); radial
momentum pr in the units of mP as a function of time (dashed blue line). The vertical axis corresponds to
r and pr, while the horizontal axis corresponds to time. Values of parameters: M = 0.5 mP, m = 0.1 mP

and µ = mP, while Q = 0.4. The external horizon is represented by the dotted green line. The particle
starts falling at r(0) = 1.2/µ and p(0) = 0. One can see that this particle falls together with “vacuum”.
It reaches the center of the BH and stays there.
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coordinate

momentum

horizon

0 5 10 15 20

-0.5

0.0

0.5

1.0

time

r(0)=1.2/μ, p(0)=0.1μ

Figure 4. The radial trajectory of the particle that falls down to the black hole and escapes from it
(red solid line): The dependence of radial coordinate r in the units of 1/mP on time (in the same
units); radial momentum pr in the units of mP as a function of time (dashed blue line). The vertical
axis corresponds to r and pr, while the horizontal axis corresponds to time. Values of parameters:
M = 0.5 mP, m = 0.1 mP, µ = mP and Q = 0.4. The external horizon is represented by the dotted green
line. The particle starts falling at r(0) = 1.2/µ and p(0) = 0.1µ. This particle falls more slow than
“vacuum”. It reaches the vicinity of the center of the BH. There the repulsion force pushes it away, it
escapes from the BH, then falls again, etc.

coordinate

momentum

horizon

0 1 2 3 4

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

time

r(0)=1.2/μ, p(0)=-0.1μ

Figure 5. The radial trajectory of the particle that traverses the black hole (red solid line):
The dependence of radial coordinate r in the units of 1/mP on time (in the same units); radial
momentum pr in the units of mP as a function of time (dashed blue line). The vertical axis corresponds to
r and pr, while the horizontal axis corresponds to time. Values of parameters: M = 0.5 mP, m = 0.1 mP,
µ = mP and Q = 0.4. The external horizon is represented by the dotted green line. The particle starts
falling at r(0) = 1.2/µ and p(0) = −0.1µ. This particle falls faster than “vacuum”. It reaches the center
of the BH and crosses it. The repulsion force accelerates it, and the particle escapes at the diametrically
opposite point.
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Our numerical data allow to estimate the typical time period of those oscillation for m � µ ∼
mP � M (when the amplitude is of the order of the horizon)

T ∼ 20 M/µ2 (36)

(see Figure 6). The region of parameters that leads to Equation (36) corresponds to the situation typical
for the large black holes with masses much larger than the plank mass. The value of the oscillation
period for the elementary particle in the presence of the solar mass BH (in seconds) is

T� ∼ 20
2 · 1030Kg

4 · 10−16Kg2
h̄
c2 ∼ 10−4s.

50 100 150 200

t

5

10

15

r

Figure 6. The radial trajectory of the particle that falls down to the black hole and escapes from it: The
dependence of radial coordinate r in the units of 1/mP on time. The vertical axis corresponds to r,
while the horizontal axis corresponds to time. Values of parameters: M = 6 mP, m = 0.01 mP, µ = mP

and Q = 0.1. The external horizon h is not represented here, but the motion starts at r(0) = 1.2 h
and p(0) = 0.01 µ. It is supposed that this figure represents qualitatively the typical trajectory for
M� µ ∼ mP � m.

7. Conclusions

To conclude, in the present paper we consider the model of noninteracting Dirac fermions with
the modified Hamiltonian proposed in [13]. In this model the extra ∼p2 term is added to the Dirac
Hamiltonian. First of all, we propose the covariant generalization of this model. The resulting field
theory is defined in terms of the Dirac spinor field. It depends on the background field nν that equals
nµ = (1, 0, 0, 0) in the Painlevé-Gullstrand reference frame. The field n points into the direction of time
in this coordinate system. It appears as a result of the spontaneous symmetry breaking.

Next, we consider the classical limit of the obtained system. First, neglecting the spin we come to
the theory of the scalar field with a certain action (depending on n). Next, we consider the semiclassical
approximation within this theory, which gives both the classical particle Hamiltonian of [13], and the
implicitly defined expression for the stress–energy tensor of medium that consists of the noninteracting
particles. It appears that the Einstein equations admit the gravitational collapse solution identical to
that of the system of the conventional noninteracting particles. This solution describes the dust falling
together with space–time.

Finally, we describe the dynamics of particles in the presence of the existing black holes. It appears
that only those particles remain inside the BH, which fall with velocity v entering the expression for
the Painlevé Gullstrand metric. The particles that fall towards the center of the BH with nonzero
momentum either pass through the BH and reach infinity or turn back at the small vicinity of the
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BH center, escape from the BH, and proceed the oscillatory motion. Therefore, this means that the
particles are able to move with the velocity larger than the speed of light. While the considered theory
is manifestly covariant (as explained in Section 3), the geodesic lines are already not the solutions of the
classical equations of motion of point-like particles. The solutions of those equations may correspond
to the space-like pieces of the particle worldlines, which does not contradict the general covariance.

According to our estimates for the BH with the solar mass the typical period of the mentioned
oscillations (when interactions are neglected) is smaller than one second. This means that if the effective
Hamiltonian of particles indeed receives the considered contribution from Planck physics, then we
cannot ignore it in the dynamics: Matter that has fallen to the BH escapes from it within the observable
period of time.

We started our consideration from the model of Dirac fermions. However, then the system is
considered classically. This means, that both spin and nontrivial statistics are neglected. In that sense
our results are valid both for the fermionic particles and for the bosonic particles in the presence of
black holes, and also for both bosonic and fermionic matter participating in the gravitational collapse.

It is worth mentioning that close to the center of the BH quantum effects may become
important. The classical analysis presented here describes completely the motion of particles if
the modification of the metric of Equation (9) occurs at distances much larger than the inverse Plank
mass. Otherwise quantum effects will become relevant. However, even then the classical analysis
remains important and represents a first step towards the development of a quantum description.
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