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1. Introduction

One and higher dimensional Boussinesq equations are generally used in coastal and ocean
engineering, modelling tidal oscillations and tsunami wave modelling. These equations are classified
as hyperbolic equations, like nonlinear shallow water equations, and they were originally derived as a
model for water waves. They in fact describe the irrotational motion of an incompressible fluid in the
long wave limit and they are described by the Navier-Stokes equations. Boussinesq equations also
appear as acoustic, elastic, electromagnetic or gravitational waves. Some developments of Boussinesq
equations for one and multi-dimensional spaces can be found, for example, in Wei et al. [1], Madsen
and Schaffer [2], Guido Schneider [3], Nwogu [4] and Kirby [5].

During the last three decades, many methods have been developed and used to solve
these equations, such as homotopy analysis and homotopy perturbation methods (Francisco and
Fernández [6], Gupta and Saha [7] and Dianhen et al. [8]), the analytic method [9], the modified
decomposition method (Wazwaz [10], Fang et al. [11] and Basem and Attili [12]) the Laplace Adomian
Decomposition Method (Hardik et al. [13], Zhang et al. [14], Liang et al. [15]) the transformed
rational function method (Wang [16], Engui [17]) the integral transform method (Charles et al. [18])
the energy integral method (Joseph [19], Mesloub [20]) the inverse scattering method (Peter et al. [21])
and other different numerical methods were used to investigate problems dealing with Boussinesq
equations, see for example, Jang [22], Iskandar and Jain [23], Bratsos [24], Dehghan and Salehi [25],
Boussinesq [26], and Onorato et al. [27]. For the bifurcation of solutions and possible applications
of Boussinesq equations, we may refer to References [28,29]. The purpose of the main result of this
work is to use the modified double Laplace decomposition method for solving a singular generalized
modified linear Boussinesq equation and a singular nonlinear Boussinesq equation. We also obtain
an a priori estimate for the solution and we provide some examples to validate and illustrate the
modified double Laplace decomposition method.

This paper is organized as follows—in Section 2, we introduce some tools to be used in the
subsequent sections. In Section 3, we set and pose the first problem dealing with an initial boundary
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value problem for a singular modified linear Boussinesq equation with Bessel operator. Section 4
is devoted to establishing an a priori bound for the solution of problem (14)–(16) from which we
deduce the uniqueness of its solutions in a weighted Sobolev space. In Section 5, we discuss the use of
the modified double Laplace decomposition method for solving the posed problem (14)–(16) and an
example is considered to illustrate the method. In Section 6, we consider an initial value problem for
the one dimensional singular nonlinear Boussinesq equation. We have again used the modified double
Laplace decomposition method to obtain the solution of this nonlinear problem and an example is
given to confirm the validity of the method in the last section.

2. Preliminaries

(1) Function spaces: Let L2
ρ(Q) be the weighted L2(Q) Hilbert space of square integrable functions

on Q = (0, 1)× (0, T), T < ∞, with scalar product

(ϕ, ψ)L2
ρ(Q) =

∫
Q

xϕψdxdt, ρ = x, (1)

and with the associated finite norm

‖ϕ‖2
L2

ρ(Q) =
∫

Q
xϕ2dxdt, (2)

and let W1,1
2,ρ [30] be the weighted Hilbert space consisting of the elements ϕ of L2

ρ(Q) having first order

generalized derivatives square summable on Q. The space W1,1
2,ρ (Q) is equipped with the scalar product

(ϕ, ψ)W1,1
2,ρ (Q)

= (ϕ, ψ)L2
ρ(Q) + (ϕx, ψx)L2

ρ(Q) + (ϕt, ψt)L2
ρ(Q), (3)

and the associated norm is

‖ϕ‖2
W1,1

2,ρ (Q)
= ‖ϕ‖2

L2
ρ(Q) + ‖ϕx‖2

L2
ρ(Q) + ‖ϕt‖2

L2
ρ(Q) . (4)

We also use the weighted spaces on (0, 1), such as L2
ρ((0, 1)) and W1

2,ρ((0, 1)), whose definitions
are analogous to the spaces on Q.

(2) Double Laplace transform [31] The double Laplace transform F(p, s) of a function f (x, t) is
defined by

LxLt [ f (x, t)] = F(p, s) =
∫ ∞

0
e−px

∫ ∞

0
e−st f (x, t)dt dx, (5)

where x, t > 0 and p, s are complex values, and further double Laplace transform of the first order
partial derivatives for a function u is given by

LxLt

[
∂u(x, t)

∂x

]
= pU(p, s)−U(0, s). (6)
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where U(p, s) is the double Laplace transform of u(x, t). Similarly, the double Laplace transform for
second partial derivative with respect to x and t are defined by

LxLt

[
∂2u(x, t)

∂2x

]
= p2U(p, s)− pU(0, s)− ∂U(0, s)

∂x
,

LxLt

[
∂2u(x, t)

∂2t

]
= s2U(p, s)− sU(p, 0)− ∂U(p, 0)

∂t
. (7)

The double Laplace transform of the functions x ∂2ψ

∂t2 and x f (x, t) are respectively given by

LxLt

(
x

∂2ψ

∂t2

)
= − d

dp

[
s2Ψ(p, s)− sΨ(p, 0)−Ψt(p, 0)

]
, (8)

and

LxLt (x f (x, t)) = −dF (p, s)
dp

, (9)

The double Laplace transform of the non-constant coefficient second order partial derivative

xn ∂2ψ

∂t2 and the function xn f (x, t) are given by

LxLt

(
xn ∂2ψ

∂t2

)
= (−1)n d

dp

[
s2Ψ(p, s)− sΨ(p, 0)−Ψt(p, 0)

]
, (10)

LxLt (xn f (x, t)) = (−1)n d
dp

[LxLt f (x, t)] = (−1)n dnF (p, s)
dpn , (11)

where n = 1, 2, 3, . . .
The inverse double Laplace transform L−1

p L−1
s [F (p, s)] = f (x, t) is defined by the complex double

integral formula

L−1
p L−1

s [F (p, s)] = f (x, t) =
1

2πi

∫ c+i∞

c−i∞
epxdp

1
2πi

∫ d+i∞

d−i∞
estds, (12)

where F (p, s) must be an analytic function for all p and s in the region defined by the inequalities
Rep ≥ c and Res ≥ d, where c and d are real constants to be chosen suitably.

(3) Young’s inequality with ε [30]: For any ε > 0 , we have the inequality

ab ≤ 1
p
|εa|p + p− 1

p

∣∣∣∣ bε
∣∣∣∣

p
p−1

, a, b ∈ R, p > 1 (13)

which is the generalization of Cauchy inequality with ε.

(4) Gronwall’s Lemma [32]: If fi(τ)(i = 1, 2, 3) are nonnegative functions on (0, T), and f1(τ),
f2(τ) are integrable functions , and f3(τ) is non-decreasing on (0, T), then if

=τ f1 + f2(τ) ≤ f3(τ) + c=τ f2
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then
=τ f1 + f2(τ) ≤ exp(cτ). f3(τ)

where

=τ g(t) =
τ∫

0

g(t)dt.

(5) Poincaré type inequalities [33]

(i)
∫ l

0
(=x (ξu))2 dx ≤ l3

2
‖u(., t)‖2

L2
ρ(0,l),

(ii)
∫ l

0

(
=2

x (ξu)
)2

dx ≤ l2

2
‖=x (ξu)‖2

L2(0,l),

(iii)
∫ l

0
x (=x (ξu))2 dx ≤ l ‖=x (ξu)‖2

L2(0,l) ,

where

=x (ξu(ξ, t)) =
∫ x

0
ξu (ξ, t) dξ, =2

x (ξu(ξ, t)) =
∫ x

0

∫ ξ

0
ηu (η, t) dηdξ.

3. Problem Setting for a Singular Generalized Improved Modified Linear Boussinesq Equation

In the rectangle Q = (0, 1) × (0, T), T < ∞, we consider an initial boundary value problem
for the singular generalized improved modified linear Boussinesq equation with damping and with
Bessel operator

Lψ =
∂2ψ

∂t2 −
1
x

∂

∂x

(
x

∂ψ

∂x

)
− 1

x
∂2

∂x∂t

(
x

∂ψ

∂x

)
− 1

x
∂3

∂x∂t2

(
x

∂ψ

∂x

)
= f (x, t) , (14)

ψ (x, 0) = f1 (x) ,
∂ψ (x, 0)

∂t
= f2 (x) , x ∈ (0, 1), (15)

{
ψ(1, t) = 0, t ∈ (0, T),
ψ(0, t) = 0, t ∈ (0, T),

(16)

where f1 (x) , f2 (x) , and f (x, t) are given functions that satisfy certain conditions which will be
specified later on. We obtain an a priori estimate for the solution of problem (14)–(16) and use the
modified double Laplace decomposition method for solving it.

4. A Priori Estimate for the Solution of Problem (14)–(16)

In this section, we establish an a priori estimate for the solution of problem (14)–(16) from which
we deduce the uniqueness of the solution.

Theorem 1. The solution ψ of the initial boundary value problem (14)–(16) satisfies the a priori estimate

sup
0≤τ≤T

‖ψ(., τ)‖2
W1,1

2,ρ (0,l)

≤ 2e2T
(
‖ f1‖2

W1
2,ρ(0,l) + ‖ f2‖2

W1
2,ρ(0,l) + ‖ f ‖2

L2
ρ(Q)

)
. (17)
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Proof. We consider the scalar product in L2(Qτ) of the operators Lψ and Mψ,where Mψ = xψt,with
Qτ = (0, l)× (0, τ) , 0 ≤ τ ≤ T, 0 < l < ∞, we obtain

(Lψ, Mψ)L2(Qτ) = (ψtt, xψt)L2(Qτ) − ((xψx)x , ψt)L2(Qτ)

− ((xψx)xt , ψt)L2(Qτ) − ((xψx)xtt , ψt)L2(Qτ) . (18)

By using initial and boundary conditions (15) and (16), terms on the right hand side of (18) can be
evaluated as follows:

(ψtt, xψt)L2(Qτ) =
1
2
‖ψt(., τ)‖2

L2
ρ(0,1) −

1
2
‖ f2‖2

L2
ρ(0,1) , (19)

− ((xψx)x , ψt)L2(Qτ) =
1
2
‖ψx(., τ)‖2

L2
ρ(0,1) −

1
2

∥∥∥∥∂ f1

∂x

∥∥∥∥2

L2
ρ(0,1)

, (20)

− ((xψx)xt , ψt)L2(Qτ) = ‖ψxt‖2
L2

ρ(Qτ) , (21)

− ((xψx)xtt , ψt)L2(Qτ) =
1
2
‖ψxt(., τ)‖2

L2
ρ(0,1) −

1
2

∥∥∥∥∂ f2

∂x

∥∥∥∥2

L2
ρ(0,1)

. (22)

Combination of (18)–(22), and Cauchy -ε inequality lead to

‖ψt(., τ)‖2
L2

ρ(0,1) + ‖ψx(., τ)‖2
L2

ρ(0,1)

+ ‖ψxt(., τ)‖2
L2

ρ(0,1) + 2 ‖ψxt‖2
L2

ρ(Qτ)

≤ ‖ f2‖2
W1

2,ρ(0,1) +

∥∥∥∥∂ f1

∂x

∥∥∥∥2

L2
ρ(0,1)

+ ‖ψt‖2
L2

ρ(Qτ) + ‖ f ‖2
L2

ρ(Qτ) . (23)

We now consider the elementary inequality

‖ψ(., τ)‖2
L2

ρ(0,1) ≤ ‖ f1‖2
L2

ρ(0,1) + ‖ψt‖2
L2

ρ(Qτ) + ‖ψ‖
2
L2

ρ(Qτ) . (24)

By summing inequalities (23) and (24) side to side, we obtain

‖ψ(., τ)‖2
W1,1

2,ρ (0,1) + ‖ψxt(., τ)‖2
L2

ρ(0,1) + ‖ψxt‖2
L2

ρ(Qτ) (25)

≤ 2
(
‖ f2‖2

W1
2,ρ(0,1) + ‖ f1‖2

W1
2,ρ(0,1) + ‖ f ‖2

L2
ρ(Qτ) + ‖ψt‖2

L2
ρ(Qτ) + ‖ψ‖

2
L2

ρ(Qτ)

)
.

Application of Gronwall’s lemma [32] to inequality (25) with
=τ f1= ‖ψxt‖2

L2
ρ(Qτ) ,

f2(τ) = ‖ψt(., τ)‖2
L2

ρ(0,1) + ‖ψ(., τ)‖2
L2

ρ(0,1) ,

f3(τ) = ‖ f2‖2
W1

2,ρ(0,1) + ‖ f1‖2
W1

2,ρ(0,1) + ‖ f ‖2
L2

ρ(Qτ) ,
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gives

‖ψ(., τ)‖2
W1,1

2,ρ (0,1) + ‖ψxt(., τ)‖2
L2

ρ(0,1) + ‖ψxt‖2
L2

ρ(Qτ)

≤ 2e2τ

(
‖ f1‖2

W1
2,ρ(0,1) + ‖ f2‖2

W1
2,ρ(0,1) + ‖ f ‖2

L2
ρ(Qτ)

)
. (26)

By discarding the last two terms in the left-hand side of (26) and then taking the upper bound
for both sides with respect to τ over [0, T] of the obtained inequality, we obtain the following a priori
estimate for the solution of the posed problem (14)–(16)

sup
0≤τ≤T

‖ψ(., τ)‖2
W1,1

2,ρ (0,1)

≤ 2e2T
(
‖ f1‖2

W1
2,ρ(0,1) + ‖ f2‖2

W1
2,ρ(0,1) + ‖ f ‖2

L2
ρ(Q)

)
. (27)

5. The Modified Double Laplace Decomposition Method

The main aim of this section is to discuss the use of the modified double Laplace decomposition
method for solving the linear initial value problem (14) and (15).

By using (6)–(9), we obtain

dΨ
dp

=
dF1 (p)

sdp
+

dF2 (p)
s2dp

− 1
s2 LxLt

[
∂

∂x

(
x

∂ψ

∂x

)
+

∂2

∂x∂t

(
x

∂ψ

∂x

)]
− 1

s2 LxLt

[
∂3

∂x∂t2

(
x

∂ψ

∂x

)]
+

1
s2

dF (p, s)
dp

. (28)

Integration of both sides of Equation (28) from 0 to p with respect to p, yields

Ψ (p, s) =
F1 (p)

s
+

F2 (p)
s2 − 1

s2

∫ p

0
LxLt

[
∂

∂x

(
x

∂ψ

∂x

)
+

∂2

∂x∂t

(
x

∂ψ

∂x

)]
dp

− 1
s2

∫ p

0
LxLt

[
∂3

∂x∂t2

(
x

∂ψ

∂x

)]
dp +

F (p, s)
s2 , (29)

where F (p, s) , F1 (p) and F2 (p) are Laplace transform of the functions f (x, t) , f1 (x) and f2 (x)
respectively and the double Laplace transform with respect to x, t is defined by LxLt. Operating with
the double Laplace inverse on both sides of Equation (29), we obtain

ψ (x, t) = f1 (x) + t f2 (x)− L−1
p L−1

s

[
1
s2

∫ p

0
LxLt

[
∂

∂x

(
x

∂ψ

∂x

)
+

∂2

∂x∂t

(
x

∂ψ

∂x

)]
dp
]

−L−1
p L−1

s

[
1
s2

∫ p

0
LxLt

[
∂3

∂x∂t2

(
x

∂ψ

∂x

)]
dp− F (p, s)

s2

]
. (30)

The modified double Laplace decomposition method (MDLDM) defines the solutions ψ(x, t) by
the infinite series

ψ (x, t) =
∞

∑
n=0

ψn (x, t) . (31)
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Upon substitution of Equation (31) into (30), we get

∞

∑
n=0

ψn (x, t) = f1 (x) + t f2 (x)− L−1
p L−1

s

[
1
s2

∫ p

0
LxLt

[
∂

∂x

(
x

∂

∂x

(
∞

∑
n=0

ψn (x, t)

))]
dp

]

−L−1
p L−1

s

[
1
s2

∫ p

0
LxLt

[
∂2

∂x∂t

(
x

∂

∂x

(
∞

∑
n=0

ψn (x, t)

))]
dp

]

−L−1
p L−1

s

[
1
s2 LxLt

[
∂3

∂x∂t2

(
x

∂

∂x

(
∞

∑
n=0

ψn (x, t)

))]]

+L−1
p L−1

s

[
F (p, s)

s2

]
. (32)

On comparing both sides of (32), we get

ψ0 (x, t) = f1 (x) + t f2 (x) + L−1
p L−1

s

[
F (p, s)

s2

]
. (33)

In general, the recursive relation is given by

ψn+1 (x, t) = −L−1
p L−1

s

[
1
s2

∫ p

0
LxLt

[
∂

∂x

(
x

∂

∂x
(ψn (x, t))

)]
dp
]

−L−1
p L−1

s

[
1
s2

∫ p

0
LxLt

[
∂2

∂x∂t

(
x

∂

∂x
(ψn (x, t))

)]
dp
]

−L−1
p L−1

s

[
1
s2 LxLt

[
∂3

∂x∂t2

(
x

∂

∂x
(ψn (x, t))

)]]
, (34)

where L−1
p L−1

s is the double inverse Laplace transform with respect to p, s. Here we assume that the
double inverse Laplace transform with respect to p and s exists for each term in the right hand side of
Equations (33) and (34). To illustrate this method, we consider the following example.

Example 1. Consider the following singular generalized modified linear Boussinesq equation with
Bessel operator:

∂2ψ

∂t2 −
1
x

∂

∂x

(
x

∂ψ

∂x

)
− 1

x
∂2

∂x∂t

(
x

∂ψ

∂x

)
− 1

x
∂3

∂x∂t2

(
x

∂ψ

∂x

)
,

= −x2 sin t− 4 cos t, (35)

subject to the initial conditions

ψ (x, 0) = 0,
∂ψ (x, 0)

∂t
= x2. (36)

By multiplying Equation (35) by x and using the definition of partial derivatives of the double Laplace
transform and single Laplace transform for Equations (35) and (36), we obtain

dΨ
dp

= − 1
s2 LxLt

[
∂

∂x

(
x

∂ψ

∂x

)
+

∂2

∂x∂t

(
x

∂ψ

∂x

)
+

∂3

∂x∂t2

(
x

∂ψ

∂x

)]
+

6
p4s2 (s2 + 1)

+
4

p2s (s2 + 1)
− 6

p4s2 . (37)
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By integrating both sides of (37) from 0 to p with respect to p, we obtain

Ψ (p, s) = − 1
s2

∫ p

0
LxLt

[
∂

∂x

(
x

∂ψ

∂x

)
+

∂2

∂x∂t

(
x

∂ψ

∂x

)
+

∂3

∂x∂t2

(
x

∂ψ

∂x

)]
dp

− 2
p3s2 (s2 + 1)

− 4
ps (s2 + 1)

+
2

p3s2 . (38)

Application of the inverse double Laplace transform to (38), yields

ψ (x, t) = −L−1
p L−1

s

[
1
s2

∫ p

0
LxLt

[
∂

∂x

(
x

∂ψ

∂x

)
+

∂2

∂x∂t

(
x

∂ψ

∂x

)
+

∂3

∂x∂t2

(
x

∂ψ

∂x

)]
dp
]

+x2 sin t + 4 cos t− 4. (39)

Putting (31) into (39) to have

∞

∑
n=0

ψn (x, t) = −L−1
p L−1

s

[
1
s2

∫ p

0
LxLt

[
∂

∂x

(
x

∂

∂x

∞

∑
n=0

ψn (x, t)

)]
dp

]

−L−1
p L−1

s

[
1
s2

∫ p

0
LxLt

[
∂2

∂x∂t

(
x

∂

∂x

∞

∑
n=0

ψn (x, t)

)]
dp

]

−L−1
p L−1

s

[
1
s2

∫ p

0
LxLt

[
∂3

∂x∂t2

(
x

∂

∂x

∞

∑
n=0

ψn (x, t)

)]
dp

]
+x2 sin t + 4 cos t− 4. (40)

By modified Laplace decomposition method, we have

ψ0 = x2 sin t + 4 cos t− 4,

and

ψn+1 (x, t) = −L−1
p L−1

s

[
1
s2

∫ p

0
LxLt

[
∂

∂x

(
x

∂

∂x
ψn (x, t)

)]
dp
]

−L−1
p L−1

s

[
1
s2

∫ p

0
LxLt

[
∂2

∂x∂t

(
x

∂

∂x
ψn (x, t)

)]
dp
]

−L−1
p L−1

s

[
1
s2

∫ p

0
LxLt

[
∂3

∂x∂t2

(
x

∂

∂x
ψn (x, t)

)]
dp
]

.

Now the components of the series solution are

ψ1 = −L−1
p L−1

s

[
1
s2

∫ p

0
LxLt

[
∂

∂x

(
x

∂

∂x
ψ0 (x, t)

)]
dp
]

−L−1
p L−1

s

[
1
s2

∫ p

0
LxLt

[
∂2

∂x∂t

(
x

∂ψ0

∂x

)]
dp
]

−L−1
p L−1

s

[
1
s2

∫ p

0
LxLt

[
∂3

∂x∂t2

(
x

∂

∂x
ψ0 (x, t)

)]
dp
]

ψ1 = −L−1
p L−1

s

[
1
s2

∫ p

0
LxLt [4x cos t] dp

]
= −L−1

p L−1
s

[
−4

ps (s2 + 1)

]
= 4− 4 cos t.

and,

ψ2 = −L−1
p L−1

s

[
1
s2

∫ p

0
LxLt [0] dp

]
= 0.
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Eventually, the approximate solution of the unknown functions is given by

∞

∑
n=0

ψn (x, t) = ψ0 + ψ1 + ψ2 + . . . .

= x2 sin t + 4 cos t− 4 + 4− 4 cos t + 0.

Hence, the exact solution is given by
ψ (x, t) = x2 sin t.

6. A Nonlinear Singular Boussinesq Equation with Bessel Operator

In this section, we consider the following nonlinear singular one dimensional Boussinesq
equation [34]

ψtt −
1
x

∂

∂x
(xψx) + a(x)ψxxxx − b (x)ψxxtt + c (x)ψtψxx + d (x)ψxψxt

= f (x, t) , (41)

subject to the initial conditions

ψ (x, 0) = g1 (x) ,
∂ψ (x, 0)

∂t
= g2 (x) , (42)

where a(x), b (x) , c (x) and d (x) are given functions.
Multiplication of Equation (41) by x and application of double Laplace transform, give

LxLt

[
xψtt −

∂

∂x
(xψx) + xa(x)ψxxxx − xb (x)ψxxtt + xc (x)ψtψxx + xd (x)ψxψxt

]
= LxLt [x f (x, t)] . (43)

On using the differentiation property of double Laplace transform and initial conditions (42),
we get

dΨ
dp

=
dG1 (p)

sdp
+

dG2 (p)
s2dp

− 1
s2 LxLt

[
∂

∂x

(
x

∂ψ

∂x

)
− xa(x)ψxxxx + xb (x)ψxxtt

]
+

1
s2 LxLt [c (x)ψtψxx + d (x)ψxψxt] +

1
s2

dF (p, s)
dp

. (44)

By integrating both sides of (44) from 0 to p with respect to p, we have

Ψ (p, s) =
G1 (p)

s
+

G2 (p)
s2 +

1
s2

∫ p

0

dF (p, s)
dp

− 1
s2

∫ p

0
LxLt

[
∂

∂x

(
x

∂ψ

∂x

)]
dp

+
1
s2

∫ p

0
LxLt (xa(x)ψxxxx − xb (x)ψxxtt) dp

− 1
s2

∫ p

0
LxLt (xc (x)ψtψxx + xd (x)ψxψxt) dp. (45)
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Using double inverse Laplace transform, it follows from (45) that

ψ (x, t) = f1 (x) + t f2 (x) + L−1
p L−1

s

[
1
s2

∫ p

0

dF (p, s)
dp

]
−L−1

p L−1
s

[
1
s2

∫ p

0
LxLt

[
∂

∂x

(
x

∂ψ

∂x

)]
dp
]

+L−1
p L−1

s

[
1
s2

∫ p

0
LxLt [xa(x)ψxxxx − xb (x)ψxxtt] dp

]
−L−1

p L−1
s

[
1
s2

∫ p

0
LxLt [xc (x)ψtψxx + xd (x)ψxψxt] dp

]
. (46)

Moreover, the nonlinear terms N1 = ψtψxx and N2 = ψxψxt are defined by

N1 = ψtψxx =
∞

∑
n=0

An, N1 = ψxψxt =
∞

∑
n=0

Bn,

(47)

where the Adomian polynomials for An and Bn are defined by

An =
1
n!

(
dn

dλn

[
N1

n

∑
j=0

(
λjψj

)])
λ=0

, n = 0, 1, 2, . . . .

(48)

and

Bn =
1
n!

(
dn

dλn

[
N2

n

∑
j=0

(
λjψj

)])
λ=0

, n = 0, 1, 2, . . . .

(49)

By substitution of Equations (47)–(49) into (46), we obtain:

∞

∑
n=0

ψn (x, t) = f1 (x) + t f2 (x) + L−1
p L−1

s

[
1
s2

∫ p

0

dF (p, s)
dp

]

−L−1
p L−1

s

[
1
s2

∫ p

0
LxLt

[
∂

∂x

(
x

∂

∂x

(
∞

∑
n=0

ψn

))]
dp

]

+L−1
p L−1

s

[
1
s2

∫ p

0
LxLt

[
xa(x)

(
∞

∑
n=0

ψn

)
xxxx

− xb (x)

(
∞

∑
n=0

ψn

)
xxtt

]
dp

]

−L−1
p L−1

s

[
1
s2

∫ p

0
LxLt

[
xc (x)

∞

∑
n=0

An + xd (x)
∞

∑
n=0

Bn

]
dp

]
, (50)

where some few terms of An and Bn for n = 0, 1, 2, 3 are given by

A0 = ψ0tψ0xx

A1 = ψ0tψ1xx + ψ1tψ0xx

A2 = ψ0tψ2xx + ψ1tψ1xx + ψ2tψ0xx

A3 = ψ0tψ3xx + ψ1tψ2xx + ψ2tψ1xx + ψ3tψ0xx, (51)
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and

B0 = ψ0xψ0xt

B1 = ψ0xψ1xt + ψ1xψ0xt

B2 = ψ0xψ2xt + ψ1xψ1xt + ψ2xψ0xt.

B3 = ψ0xψ3xt + ψ1xψ2xt + ψ2xψ1xt + ψ3xψ0xt. (52)

Therefore, from (50) above, it follows that

ψ0 (x, t) = f1 (x) + t f2 (x) + L−1
p L−1

s

[
1
s2

∫ p

0

dF (p, s)
dp

]
,

and

ψn+1 (x, t) = −L−1
p L−1

s

[
1
s2

∫ p

0
LxLt

[
∂

∂x

(
x

∂

∂x
ψn

)]
dp
]

+L−1
p L−1

s

[
1
s2

∫ p

0
LxLt [xa(x) (ψn)xxxx − xb (x) (ψn)xxtt] dp

]
−L−1

p L−1
s

[
1
s2

∫ p

0
LxLt [xc (x) An + xd (x) Bn] dp

]
. (53)

To illustrate the used method, we consider the following example, where we let that
a (x) = b (x) = 1, c (x) = −4, d (x) = 2 and f (x, t) = −4t in Equation (41).

Example 2. We consider the nonlinear Boussinesq equation with Bessel operator

ψtt −
1
x

∂

∂x
(xψx) + ψxxxx − ψxxtt − 4ψtψxx + 2ψxψxt = −4t,

(54)

subject to the initial conditions

ψ (x, 0) = 0, ψt (x, 0) = x2.

(55)

The double Laplace decomposition method leads to the following:

ψ0 (x, t) = x2t− 2
3

t3,

and

ψn+1 (x, t) = −L−1
p L−1

s

[
1
s2

∫ p

0
LxLt

[
∂

∂x

(
x

∂

∂x
ψn

)]
dp
]

−L−1
p L−1

s

[
1
s2

∫ p

0
LxLt [x (ψn)xxxx − x (ψn)xxtt] dp

]
+L−1

p L−1
s

[
1
s2

∫ p

0
LxLt [4xAn − 2xBn] dp

]
. (56)
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The first iteration is given by

ψ1 (x, t) = −L−1
p L−1

s

[
1
s2

∫ p

0
LxLt

[
∂

∂x

(
x

∂ψ0

∂x

)]
dp
]

−L−1
p L−1

s

[
1
s2

∫ p

0
LxLt [x (ψ0)xxxx − xψ0xxtt] dp

]
+L−1

p L−1
s

[
1
s2

∫ p

0
LxLt [4xA0 − 2xB0] dp

]
, (57)

ψ1 (x, t) =
2
3

t3 − 4
5

t5.

(58)

The subsequent terms are given by

ψ2 (x, t) = −L−1
p L−1

s

[
1
s2

∫ p

0
LxLt

[
∂

∂x

(
x

∂ψ1

∂x

)]
dp
]

−L−1
p L−1

s

[
1
s2

∫ p

0
LxLt [x (ψ1)xxxx − xψ1xxtt] dp

]
+L−1

p L−1
s

[
1
s2

∫ p

0
LxLt [4xA1 − 2xB1] dp

]
= 0. (59)

and the rest terms are all zeros. Hence

ψ (x, t) = x2t.

(60)

7. Conclusions

A modified double Laplace decomposition method is presented to study a singular generalized
modified linear Boussinesq equation and a singular nonlinear Boussinesq equation. Some examples
are given to confirm the validity, efficiency and accuracy of the method. It is found that this method is
efficient and easier to apply to the studied linear and nonlinear Boussinesq models.
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