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Abstract: The aim of the present work is to classify the Noether-like operators of two-dimensional
physical systems whose dynamics is governed by a pair of Lane-Emden equations. Considering
first-order Lagrangians for these systems, we construct corresponding first integrals. It is seen that
for a number of forms of arbitrary functions appearing in the set of equations, the Noether-like
operators also fulfill the classical Noether symmetry condition for the pairs of real Lagrangians
and the generated first integrals are reminiscent of those we obtain from the complex Lagrangian
approach. We also investigate the cases in which the underlying systems are reducible via quadrature.
We derive some interesting results about the nonlinear systems under consideration and also find
that the algebra of Noether-like operators is Abelian in a few cases.

Keywords: complex Lagrangian approach; coupled Lane-Emden systems; Noether-like operators;
first integrals

1. Introduction

The famous generalized Lane-Emden (LE) equation

d2y
dx2 +

n
x

dy
dx

+ F(y) = 0, (1)

where n is a real constant and F(y) is a continuous function of y, has been used to formulate
many problems in mathematical physics and astrophysics. For instance, for n = 2 and F(y) = yr

(where r = 0, 1 & 5) it has diverse applications in applied mathematics particularly in the
field of stellar dynamics [1]. In the case F(y) = (y2 − A)3/2, the above equation was used to
study the gravitational potential of degenerate white dwarf star [1]. Moreover, for other forms of
F(y) = ey, e−y, Equation (1) describes isothermal gas spheres and in the theory of thermionic currents
respectively [2–6]. Therefore, in having intriguing mathematical and physical properties, Equation (1)
has been investigated from various other aspects as well. For example, a number of techniques have
been employed which include power series, differential transformation, numerical, perturbation and
Adomian decomposition to seek solutions of the above equation [7–9]. A pretty comprehensive review
on this equation by Wang is also available who mentioned more than 140 references related to it [10].
In the recent past, the authors [11] considered the above equation in variational form and classify it
with respect to Noether symmetries and presented the solution by constructing the corresponding
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first integrals. Furthermore, some other related work on Lie symmetries towards finding solution of
LE-type equations can also be seen in [12].

A natural two-dimensional extension of (1) can be expressed as

d2 f
dx2 +

n
x

f ′ + P(x)F( f , g) = 0,

d2g
dx2 +

n
x

g′ + P(x)G( f , g) = 0,
(2)

in which the functions F and G provide couplings in the above system. This pair of LE-equations
appears in various practical situations, for example, its use in the modeling of chemical reaction,
population evolution and pattern formation, etc. [13]. Due to its widespread applications, the above
system has been studied by many authors. For specific forms of P(x), F( f , g), G( f , g) for example,
P(x) = 1 and F( f , g) = F(g), G( f , g) = G( f ), etc., a considerable amount of work has been done on
establishing the existence and uniqueness results of LE-systems (2) as well as other relevant classes
in [14–17]. Similarly, for the above stated forms of P(x), F and G along with few more, ample literature
on the classification of the above system with respect to Lie symmetries, Noether symmetries and
production of associated first integrals is available. In this regard, the interested reader is referred
to [18–21] (and references in these papers for more details). Seeking the symmetry properties and
conservation laws of LE-system (2) with respect to different cases which we present here is novel. It is
essential as it generates further interest in researchers who can apply it to a more specific scenario as,
e.g., in [18] for P(x) = 1. Moreover, unless this more general approach is presented in the literature,
the application of (2) in specific cases can likely be overlooked due to its intrinsic difficult nature.
Although we are considering only two forms of the function P(x) which are power laws and related
to the index n in (2) (the first in a general manner and the second as −2n), there may be others in
classifying LE-systems with respect to Noether symmetries and conservation laws. That is why the
presentation of this new system of LE-equations is significant in terms of widening the possible scope
of theoretical investigation as well as applications of (2).

The search of new conservation laws for systems of dynamical equations has important
physical consequences. The main objective of the present work is to perform Noether-like operator
classification of the generalized version of LE-system (2) with respect to first-order Lagrangians.
We take P(x) as a non-constant power law function and F( f , g), G( f , g) in their most general forms
and derive conservation laws of the ensuing systems. To the best of our knowledge, this investigation
of group theoretic properties of (2) has not been performed as yet. We apply the complex Lagrangian
formalism which has been recognized as a legitimate technique to perform this classification of a class
of systems of LE-equations.

The outline of the paper is as follows: The next section constitutes some basic expressions which
we use in the sequel. In Section 3, we classify (2) with respect to Noether-like operators and find
related first integrals. The cases in which the Noether-like operators become Noether symmetries are
also discussed in detail. Finally, Section 4 concludes the discussion.

2. Basic Definitions and Expressions for Noether-Like Operators and Conservation Laws

The determination of symmetries of a coupled system of nonlinear ordinary differential equations
(ODEs) which leave the action integral, up to a gauge function, invariant is a nontrivial task.
The authors [22–24] have introduced a complex Lagrangian approach to uncover the relationship
between symmetries and first integrals of coupled systems of nonlinear equations. As we proceed we
see how this new technique helps in reducing the complexity of the problem and offers a great deal
of information about the inverse problem, algebraic properties and first integrals of the underlying
systems of LE-equations. Here, we describe some salient features of Noether-like operators and
first integrals of two Euler-Lagrange equations which are taken from [23,24] and will be used in the
forthcoming section.
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Suppose we have a physical system whose dynamics is governed by a pair of coupled
nonlinear ODEs

f ′′ = F(x, f , g, f ′, g′),

g′′ = G(x, f , g, f ′, g′).
(3)

We assume that the above system (3) has a complex structure and can be mapped to a base
equation u′′ = W(x, u, u′) via transformations u = f + ig and W = F + iG (see for example [22–24],
for more details). Following this approach a number of studies have been done in finding the
symmetries, linearization, reduction of order and conservation laws for a wide class of systems of two
nonlinear equations as shown in (3) [25–28]. We assume that the system (3) possesses a variational
form, i.e., there exists a pair of first-order Lagrangians L1(x, f , g, f ′, g′) and L2(x, f , g, f ′, g′) such that
L = L1 + iL2 and which can be retrieved from the pair of Euler-Lagrange-type equations

∂L1

∂ f
+

∂L2

∂g
− d

dx

(
∂L1

∂ f ′
+

∂L2

∂g′

)
= 0,

∂L2

∂ f
− ∂L1

∂g
− d

dx

(
∂L2

∂ f ′
− ∂L1

∂g′

)
= 0.

(4)

Noether-like symmetry conditions:

The operators X1 and X2 given by

X1 = ξ1(x, f , g)
∂

∂x
+ η1(x, f , g)

∂

∂ f
+ η2(x, f , g)

∂

∂g

and
X2 = ξ2(x, f , g)

∂

∂x
+ η2(x, f , g)

∂

∂ f
− η1(x, f , g)

∂

∂g

are said to be Noether-like operators with respect to the Lagrangians L1 and L2 if the following
conditions for appropriate gauge functions A1, A2 hold

X(1)
1 L1 − X(1)

2 L2 + (Dxξ1)L1 − (Dxξ2)L2 = Dx A1,

X(1)
1 L2 − X(1)

2 L1 + (Dxξ1)L2 + (Dxξ2)L1 = Dx A2,
(5)

where Dx denotes the total derivative with respect to x.

Noether-like Theorem:

If L1 and L2 are two real Lagrangians of system (3) and X1 and X2 are the associated Noether-like
operators, then the following expressions

I1 = ξ1L1 − ξ2L2 +
∂L1

∂ f ′
(η1 − f ′ξ1 − g′η2)−

∂L2

∂ f ′
(η2 − f ′ξ2 − g′ξ1)− A1,

I2 = ξ1L2 + ξ2L1 +
∂L2

∂ f ′
(η1 − f ′ξ1 − g′ξ2) +

∂L1

∂ f ′
(η2 − f ′ξ2 − g′ξ1)− A2.

(6)

provide two conserved quantities for the coupled Euler-Lagrange system (3). For its proof, one is
referred to [24].

3. Classification of Lane-Emden System w.r.t Noether-Like Operators and Corresponding
First Integrals

It is quite well-known that first integrals (constants of the motion) are of great importance in the
analysis of behavior of the underlying systems. The celebrated Noether’s theorem [29] provides a
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simple procedure for production of conserved quantities of Euler-Lagrange systems once the related
Noether symmetry generators are available. We see that these operators not only provide conserved
quantities but also reduce the equation via quadrature.

In this section we intend to perform a complete classification of the two-dimensional LE-system (2)
admitting a variational form with respect to Noether-like operators and establish first integrals by
choosing P(x) as non-constant functions with arbitrary forms of F and G. We point out here that this
investigation has not been carried out before. We commence by assuming that the dynamical system
represented by the LE-equations (2) admits the following pair of first-order Lagrangians

L1 =
1
2

xn( f ′2 − g′2)− xnP(x)
∫
(Fd f − Gdg),

L2 = xn( f ′g′)− xnP(x)
∫
(Gd f + Fdg).

(7)

We find eight cases and present the results in a simple and straightforward manner. We observe
that for many cases the Noether-like operators also fulfill the classical Noether symmetry condition
and the constructed first integrals are the same as those we obtain by employing the complex
Lagrangian approach. We provide two Cases A. and B.

A. P(X) = Xα−1

Now by assuming this specific form of P(x) and different values of n and α in (2) and accordingly
in (7), we proceed as:

Case 1. Herein P(x) = 1. If we take F( f , g) and G( f , g) as linear functions of f and g, we obtain a
system of linear equations which can further be converted into the simplest two-dimensional system
f ′′ = g′′ = 0. With these choices we find by employing (5) and (6), nine Noether-like operators and
ten first integrals as shown in the following table.

Noether-Like Operators First Integrals

∂x
I1,1 = f ′2 − g′2

I1,2 = f ′g′

∂ f , I2,1 = f ′

∂g I2,2 = g′

x∂ f , I3,1 = x f ′ − f
x∂g I3,2 = xg′ − g

2x∂x + f ∂ f + g∂g, I4,1 = −x( f ′2 − g′2) + f f ′ − gg′

g∂ f − f ∂g I4,2 = −x f ′g′ + f g′ + f ′g

x2∂x + x
(

f ∂ f + g∂g

)
, I5,1 = x( f f ′ − gg′)− x2

2 ( f ′2 − g′2)− 1
2 ( f 2 − g2)

x
(

g∂ f − f ∂g

)
I5,2 = x( f g′ + f ′g)− x2 f ′g′ − f g

For details the reader can see [24].
Case 2. Here n and α are related as n = 1−α

2 , and F( f , g), G( f , g) are arbitrary. From Equation (5)

with the aid of (7), we obtain ξ1 = x
1−α

2 , η1 = η2 = 0 with A1, A2 as constants. Only one Noether-like
operator exists, viz., X = x

1−α
2 ∂

∂x . Therefore, by utilizing this operator with the related Lagrangians
in (6), we deduce the following first integrals.

I1 =
1
2

x1−α( f ′2 − g′2) +
∫
(Fd f − Gdg),

I2 = x1−α( f ′g′) +
∫
(Gd f + Fdg).

(8)
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It is worth seeing that the operator X also fulfills the classical Noether symmetry condition and
the resulting Noetherian integrals are reminiscent of those given in (8).

Case 3. F( f , g) = α1
2 ln( f 2 + g2) + γ f + δ, α1 6= 0 and G( f , g) = α1 arctan

(
g/ f

)
+ γg, α1 6= 0.

If n = 1−α
2 , we obtain ξ1 = x

1−α
2 , ξ2 = 0 and η1 = η2 = 0 while A1 = A2 = k, k a constant. This case is

subsumed in Case 2.
Case 4. For this case, let us take F = ( f 2 + g2)r/2 cos θ, G = ( f 2 + g2)r/2 sin θ, where

θ = arctan
(

g/ f
)

. We discuss the following subcases.

Case 4.1 If n = r+2α+1
r−1 , we determine from the Noether-like symmetry conditions (5) ξ1 = x,

ξ2 = 0 and η1 = α+1
1−r f , η2 = α+1

1−r g while A1 and A2 appear as constants. Hence the Noether-like
operators take the form

X1 = x
∂

∂x
+
(1 + α

1− r

)
f

∂

∂ f
+
(1 + α

1− r

)
g

∂

∂g
and X2 =

1 + α

1− r

(
g

∂

∂ f
− f

∂

∂g

)
.

Now utilization of (6) with X1, X2 gives rise to the following two integrals for (2):

I1 =
1
2

x
2(α+r)

r−1 ( f ′2 − g′2) +
α1

r + 1
x

(r+1)(α+1)
r−1 ( f 2 + g2)

r+1
2 cos θ − α + 1

1− r
x

r+2α+1
r−1 ( f f ′ − gg′),

I2 = x
2(α+r)

r−1 f ′g′ +
α1

r + 1
x

(r+1)(α+1)
r−1 ( f 2 + g2)

r+1
2 sin θ − α + 1

1− r
x

r+2α+1
r−1 ( f g′ + f ′g),

(9)

Using the transformations f = w1x
α+1
1−r and g = w2x

α+1
1−r , the pair of integrals (9) can be converted

into integrable form as∫ dw
±
√
(α + 1)2(1− r)−2w2 − 2α1(1 + r)−1w1+r − 2K1

= ln xK2, (10)

where K1 and K2 are constants.
Case 4.2 If n = r+α+2

r+1 with r 6= −1, Equation (5) provides ξ1 = x
r−α
r+1 , ξ2 = 0, η1 = − α+1

r+1 x−
α+1
r+1 f ,

η2 = − α+1
r+1 x−

α+1
r+1 g and the related gauge functions are A1 = (α+1)2

2(r+1)2 ( f 2 − g2) + C, A2 = (α+1)2

(r+1)2 f g,
where C is constant. Now the Noether-like therorem (6) along with these operators and corresponding
Lagrangians, reveal the first integrals

I1 =
1
2

x2( f ′2− g′2) +
( α1

r + 1

)
x1+α( f 2 + g2)

r+1
2 cos θ +

(α+ 1
r + 1

)
x( f f ′− gg′) +

1
2

(α+ 1
r + 1

)2
( f 2− g2),

I2 = x2 f ′g′+
( α1

r + 1

)
x1+α( f 2 + g2)

r+1
2 sin θ +

(α+ 1
r + 1

)
x( f g′+ f ′g) +

(α+ 1
r + 1

)2
f g,

(11)

for the ensuing systems of LE-equations. Moreover, by applying the transformations f = w1x−
α+1
r+1

and g = w2x−
α+1
r+1 , we can convert the pair of I1, I2 given in (11) in the form∫ dw

±
√

K1 − 2α1(r + 1)−1wr+1
=
( r + 1

α + 1

)
x

α+1
r+1 + K2, (12)

where K1 and K2 are arbitrary constants.
Case 4.3 Here for n = 1−α

2 , we find that ξ1 = x
1−α

2 and η1 = η2 = 0 with A, A2 as constants.
This falls in Case 2.

Case 5. F, G being quadratic functions of f and g, i.e., F1( f , g) = α1( f 2 − g2) + α2 f + α3 and
F2( f , g) = 2α1 f g + α2g, α1 6= 0, we have the following four subcases.

Case 5.1 If n = 2α + 3, α2 = 0 and α3 = 0, we find that ξ1 = x, ξ2 = 0, η1 = −(α + 1) f , η2 =

−(α + 1)g and A1, A2 are constants. This case is covered in Case 5.1.
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Case 5.2 By taking n = 2α + 3, α 6= −1, α2
2 = 4α1α3, Equation (5) with (7) yields

ξ1 = x, ξ2 = 0, η1 = −(1 + α)( f + α2
2α1

), η2 = −(1 + α)g, and A1 = α2α3
6α1

x3α+3, A2 = 0. So two
Noether-like operators are found which are of the form

X1 = x
∂

∂x
− (1 + α)

[
(

α2

2α1
+ f )

∂

∂ f
+ g

∂

∂g

]
and X2 = (1 + α)

[
− g

∂

∂ f
+ (

α2

2α1
+ f )

∂

∂g

]
.

Insertion of these operators X1 and X2 in (6) along with pair of real Lagrangians (7), we deduce
the following first integrals

I1 =
1
2

x2α+4( f ′2 − g′2) +
1
3

α1x3α+3( f 3 − 3 f g2) +
1
2

α2x3α+3( f 2 − g2) + α3x3α+3 f + (α + 1)x2α+3×

( f f ′ − gg′) + (α + 1)
α2

2α1
x2α+3 f ′ +

( α + 1
3α + 3

)(α2α3

2α1

)
x3α+3

I2 = x2α+4 f ′g′ +
1
3

α1x3α+3(3 f 2g− g3) + α2x3α+3( f g) + α3x3α+3g + (α + 1)x2α+3( f g′ + f ′g)+

(α + 1)
α2

2α1
x2α+3g′.

(13)

On closer view it is found that the operator X1 is also a Noether symmetry for the LE-system (2)
and the classical Noether theorem along with (7) produces the first integrals identical to (13). From the
commutation relations, it can be checked that the operators X1 and X2 form an Abelian algebra,
i.e., [X1, X2] = 0.

Moreover, by introducing w1 = x1+α f + α2
2α1

xα+1 and w1 = xα+1g, where w = f + ig, Equation (13)
can be transformed into the following first-order variable separable form

C =
1
2
(α + 1)2w2 − 1

2
x2w′2 − 1

3
α1w3. (14)

Case 5.3 n = α+4
3 , n 6= 1−α

2 ,−1, α2 = 0 and α3 = 0, we get ξ1 = x
2−α

3 , η1 = − α+1
3 x−

α+1
3 f ,

η2 = − α+1
3 x−

α+1
3 g and A1 = (α+1)2

18 ( f 2 − g2) + c, A2 = (α+1)2

9 f g, where c is a constant. This case can
be absorbed in Case 5.2 shown below.

Case 5.4 If n = 1−α
2 with n1 6= α+4

3 and α2, α3 are arbitrary constants, we find ξ1 = x
1−α

2 , ξ2 =

0, & η1, η2 = 0. This subcase is contained in Case 2.
Case 6. For the choices F( f , g) = α1 exp(α2 f ) cos(α2g) + α3 f + δ and G( f , g) =

α1 exp(α2 f ) sin(α2g) + α3g, where α1 6= 0, α2 6= 0, we consider two subcases here.
Case 6.1 If n = 1−α

2 , Equation (5) gives ξ1 = x
1−α

2 with η1 = η2 = 0 and A1 = A2 = k, k a constant.
This reduces to Case 2.

Case 6.2 If n = 1, α 6= −1, α3 = 0 and δ = 0, from the Noether-like symmetry condition (5) on
using (7) we determine that ξ1 = x, ξ2 = 0 and η1 = − α+1

α2
, η2 = 0 with A1 = A2 = k, k a constant.

Therefore we have two Noether-like operators, X1 = x ∂
∂x −

α+1
α2

∂
∂ f , X2 = α+1

α2
∂

∂g . Utilization of these
operators X1 and X2 along with the particular pair of real Lagrangians (7) in Equation (6) provides the
two first integrals

I1 =
1
2

x2( f ′2 − g′2) +
1
α2

x1+α exp(α2 f ) cos(α2g) +
(α + 1)

α2
x f ′

I2 = x2 f ′g′ +
1
α2

x1+α exp(α2 f ) sin(α2g) +
(α + 1)

α2
xg′.

(15)

One can check that the Noether-like operators X in this case is a Noether symmetry of the
corresponding Euler-Lagrange equation (2) and the standard Noether’s theorem provides the same
first integrals as given in (15) while the associated Lagrangians L1 and L2 are found in (7). Use of
transformation u = α+1

α2
ln(w/x) can easily express (15) in an integrable form
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∫ dw

±
√

1− 2α1α2(α + 1)−2wα+1 + 2K1α2
2(α + 1)−2

= ln xK2 (16)

where K1 and K2 are integration constants. We find that Lie algebra of these operators is Abelian,
i.e., [X1, X2] = 0.

Case 7 For n 6= 1−α
2 , and F and G are arbitrary but not of the forms presented in the cases,

1, 3, 4, 5, 6, the pair of equations (5) yields ξ1 = ξ2 = 0, η1 = η2 = 0 with A1 = A2 = constant, so in
this case no Noether-like operator exists and we cannot find first integrals of the underlying system of
Euler-Lagrange equations.

B. P(X) = βX−2n, n 6= 1, β a Constant

By assuming this specific form of P(x) in (2) and accordingly in (7), we find that:
Case 1. For F = exp(β1 f ) cos(β1g) and G = exp(β1 f ) sin(β1g), Equation (5) with the associated

Lagrangians provides a single Noether-like operator X = xn ∂
∂x with gauge terms A1 = A2 = 0. So with

this operator X, and invocation of (6) with the aid of (7) gives rise to the following conserved quantities

I1 =
1
2

x2n( f ′2 − g′2)− β

β1
exp(β1 f ) cos(β1g)

I2 = x2n f ′g′ − β

β1
exp(β1 f ) sin(β1g),

(17)

for the system (2). Moreover, we find that the operator X is also a Noether symmetry generator of the
variational system (2). Hence the application of the classical Noether’s theorem with Lagrangians (7)
yields the two first integrals which are identical to (17). Furthermore, (17) can be cast in an integrable
form as ∫ du

±
√

2C1 − 2 exp(β1u)/β1
=

x1−n

1− n
+ C2, (18)

where u = f + ig.
As a consequence of the above two cases 3.1 and 3.2 we can summarize all the independent cases

in which Noether-like operators and related first integrals exist in the Table 1:

Table 1. Noether-like operators and first integrals.

Cases Noether-Like Operators First Integrals

Case A-2 X = x
1−α

2 ∂
∂x

I1 = 1
2 x1−α( f ′2 − g′2) +

∫
(Fd f − Gdg)

I2 = x1−α( f ′g′) +
∫
(Gd f + Fdg)

Case A-4.1 X1 = x ∂
∂x +

(
1+α
1−r

)
f ∂

∂ f +
(

1+α
1−r

)
g ∂

∂g
I1 = 1

2 x
2(α+r)

r−1 ( f ′2 − g′2) + α1
r+1 x

(r+1)(α+1)
r−1 ( f 2 + g2)

r+1
2 cos θ−

α+1
1−r x

r+2α+1
r−1 ( f f ′ − gg′)

X2 = 1+α
1−r

(
g ∂

∂ f − f ∂
∂g

) I2 = x
2(α+r)

r−1 f ′g′ + α1
r+1 x

(r+1)(α+1)
r−1 ( f 2 + g2)

r+1
2 sin θ−

α+1
1−r x

r+2α+1
r−1 ( f g′ + f ′g)

Case A-4.2
X1 = x

r−α
r+1 ∂

∂x −(
1+α
1+r

)
x−

α+1
r+1 f ∂

∂ f −
(

1+α
1+r

)
x−

α+1
r+1 g ∂

∂g

I1 = 1
2 x2( f ′2 − g′2) +

(
α1

r+1

)
x1+α( f 2 + g2)

r+1
2 cos θ+(

1+α
1+r

)
x−

α+1
r+1 g ∂

∂g

X2 =−
(

1+α
1+r

)
x−

α+1
r+1 g ∂

∂f+
(

1+α
1+r

)
x−

α+1
r+1 f ∂

∂g
I2 = x2 f ′g′ +

(
α1

r+1

)
x1+α( f 2 + g2)

r+1
2 sin θ+(

α+1
r+1

)
x( f g′ + f ′g) +

(
α+1
r+1

)2
f g

Case A-5.2

X1 = x ∂
∂x − (1 + α)

(
( α2

2α1
+ f ) ∂

∂ f

)
−

(1 + α)
(

g ∂
∂g

) I1 = 1
2x2α+4(f′2−g′2)+ 1

3α1x3α+3(f3−3fg2)+1
2α2x3α+3(f2−g2)+α3x3α+3 f +

(α+1)x2α+3×(f f′−gg′)+(α+1) α2
2α1

x2α+3 f′+
(

α+1
3α+3

)
×
(

α2α3
2α1

)
x3α+3

X2 = (1+α)
(
−g ∂

∂f +( α2
2α1

+ f) ∂
∂g

) I2 = x2α+4 f ′g′ + 1
3 α1x3α+3(3 f 2g− g3)+α2x3α+3( f g) +

α3x3α+3g+(α + 1)x2α+3( f g′ + f ′g) + (α + 1) α2
2α1

x2α+3g′
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Table 1. Cont.

Cases Noether-Like Operators First Integrals

Case A-6.2
X1 = x ∂

∂x −
α+1
α2

∂
∂ f I1 = 1

2x2(f′2−g′2)+ 1
α2

x1+α exp(α2 f)cos(α2g)+(α+1)
α2

xf′

X2 = α+1
α2

∂
∂g I2 = x2 f ′g′ + 1

α2
x1+α exp(α2 f ) sin(α2g) + (α+1)

α2
xg′

Case B-1 X = xn ∂
∂x

I1 = 1
2 x2n( f ′2 − g′2)− β

β1
exp(β1 f ) cos(β1g)

I2 = x2n f ′g′ − β
β1

exp(β1 f ) sin(β1g)

4. Conclusions

Though ample literature on the discussion of Noether symmetries and corresponding first
integrals for scalar ODEs is available, there is still paucity of work done on operators and associated
conserved quantities of two-dimensional systems of nonlinear ODEs. In this work we have used the
complex Lagrangian formulation to study integral properties of a wide class of dynamical problems
which are expressible as a two-dimensional LE-system. We have performed the classification of a
generalized class of LE-systems with respect to Noether-like operators and established first integrals.
To the best of our knowledge this classification has not been performed so far and we have investigated
eight classes of the generalized version of LE-system. Amongst the eight classes only eight are found to
be independent and the algebra of Noether-like operators is Abelian in few cases. Moreover, we have
seen that the five cases amongst the seven are those which possess the same first integrals if either we
utilize the first-order Lagrangians in the Noether-like theorem or as in the classical Noether’s theorem.
We also point out here that in few cases the pairs of first integrals can also be transformed via quadrature.
To conclude our discussion we mention that for coupled systems of two nonlinear LE-equations,
the construction of Lagrangian will of course be a highly difficult task. However, we have seen here
that the complex Lagrangian approach can remarkably minimize the complexity of the problem and
nontrivial results can be achieved for a wide class of Euler-Lagrange systems as we have seen in the
LE-system. Lastly, we have discussed the generalized LE-system by introducing various forms of
F( f , g) and G( f , g) and by considering only two forms of P(x). Thus, in future work if one wants
to study the role of P(x) with multiple forms, this analysis may be helpful to explore even more
properties of LE-systems and their applications.
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