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Abstract: We communicate the responses of various physiological fluids containing hemoglobin and
other ionic constituents when they propagate in the presence of an electromagnetic body force field
with the mechanisms of heat generation and conduction. A fully developed mixed convective flow of
a Newtonian fluid takes place through a 2D vertical channel in the presence of an external magnetic
field acting in the direction normal to the flow. The inner surface of the channel is carpeted with a
thick mat of cilia, which propagates a sinusoidal metachronal wave travelling in the direction of flow.
Coupled, nonlinear governing Naiver-Stokes and temperature equations are simplified by utilizing
the creeping flow and long wavelength approximations. This enables us to formulate the exact
analytical solution of the temperature distribution; whereas, the velocity distribution is evaluated
from the momentum equations by using the Adomian decomposition method. In order to determine
the pumping characteristics, the formulae of volume flow rate and the pressure rise are also obtained.
Trapping due to the ciliary system is highlighted by graphing the stream function. The findings of the
present model have significant outputs, which can be applicable in the physiological transport of
human semen through the male reproduction system.

Keywords: cilia induced transport; Adomian decomposition method; viscous fluid; mixed convection

1. Introduction

Hair-like microscopic structures, which are recognized as cilia have featured roles in the transport
processes of various physiological systems in the human bodies. The mechanical activity of cilia
provides means for the locomotion of sperms and many other unicellular organisms and for the
propulsion of materials and objects across the ciliated surface in multicellular animals. The role of
cilia as a sensory organelle is recently admitted in addition to their capabilities in transportation,
alimentation, and reproductions [1–5]. In the human body, cilia are found, for example, in lung trachea
and bronchial tubes, where they remove mucus from the respiratory tract and the lungs; in fallopian
tubes, where they support the movements of cervical mucus and the gamete cells in the oviduct; in the
male reproductive system, where the cilia of ductile afferents propel sperm towards the epididymis;
and in the brain as well, where the ependymal cilia facilitate the transport of cerebrospinal fluid at

Symmetry 2019, 11, 1240; doi:10.3390/sym11101240 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0002-5539-4225
https://orcid.org/0000-0003-2413-0355
http://dx.doi.org/10.3390/sym11101240
http://www.mdpi.com/journal/symmetry
https://www.mdpi.com/2073-8994/11/10/1240?type=check_update&version=2


Symmetry 2019, 11, 1240 2 of 20

a small scale [6]. The structural defects in ciliary actions may cause multiple disorders affecting the
functions of various organs and tissues in the body [7].

According to their roles, we can classify cilia into two groups, (i) motile cilia and (ii) non-motile
cilia. The latter are also called primary cilia and perform as mechanoreceptor devices. In this study,
our focus will be on the propelling features of the motile cilia, which play prominent roles in numerous
physiological transport processes. In order to move fluids or objects, cilia are observed to beat in a
synchronous, periodic manner and create a wave called the metachronal wave [5–7]. It is experimentally
observed that cilia flick back and forth in an asymmetric fashion, which are classified as effective and
recovery strokes. Cilia sweep a relatively larger amount of fluid volume when they bend during the
effective stroke as compared to their movements during their recovery strokes. In this way, cilia create
a net fluid impulsion along the forward effective stroke direction. This captivating feature of cilia
motion has been now utilized in the fabrication of ciliary micro robots for drug delivery systems [8].
These above-mentioned notions of cilia have captured the attentions of many researchers during the
past decade (for details see references [9–19]).

Heat transfer in various physiological transport processes under the impact of an external
electro-magnetic field has many applications in clinical medications such as Hyperthermia therapy,
Radiofrequency therapy, MRI, X-rays, thermoregulation in testis, hemodialysis, and oxygenation and
in various other systems. These mechanisms have also large number of industrial applications such
as in the design of magnetic artificial cilia, which can be used in nano-drug supply systems, quick
disease diagnosis, and daily health monitoring. Mills et. al. [11] described that the cilia facilitate the
enhancement in the heat transport effects between the walls of micro-channels whose inner surfaces are
ciliated. Akbar et. al. [20] analyzed the heat transfer effects on the magnetohydrodynamics flow of a
Casson fluid instigated by ciliary motion. Some more recent studies, which present the impacts of heat
transfer, generation, and conduction on ciliary (as well as peristaltic) induced flows with and without
magneto hydro dynamic )MHD( have been reported in references [21–24]. It is now well known that in
many physiological situations, viscosity of the fluids notably changes with temperature (see [24–30]).
For example, in thermal therapies and Hyperthermia treatments, the temperature distributions in
tumors never remain uniform, i.e., the viscosity of the materials may change under high temperature
differences. Therefore, dependence of viscosity on temperature in such biological processes provides
a more realizable situation. Some recent studies about Newtonian and Non-Newtonian fluids with
thermal behavior can be seen in [31–37].

Heat transmission processes is required every time there is a change in temperature amongst
the boundaries or between the parts of a similar body. Heat transmission has various industrial
and engineering applications, which include energy production, the transmission of heat in tissues,
pasteurization process of food, fuel cells, and cooling the atomic reactor. Heat transmission is
used to elucidate the performance of various systems in industrial and engineering applications.
Therefore, recently numerous researchers and engineers have focused their struggle on Heat transfer
problems. The recent study about heat transfer problems related with different fluids and their
applications can be read in [38–50].

Our aim is to investigate the combined effects of heat transfer and magnetic field on the ciliary
induced flows in the human body when the fluid viscosity depends upon temperature according to
the Reynolds’ law of variable viscosity. The present model addresses the cilia driven transport of a
magnetohydrodynamic Newtonian fluid whose viscosity depends upon temperature inside a vertical
channel. The channel walls are kept at uniform temperatures and constant heat sources are present
along the body force. The mathematical model of this situation will make up an important problem
that can provide potential applications in bio-heat transfer and in nano-/micro-fluidic devices for drug
delivery systems. We hope that this model will be helpful to understand the transport mechanisms of
cilia in connection with the electromagnetic effects and heat transfer analysis of various physiological
systems in the human body.
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2. Statement of the Problem

In order to describe the physical model mathematically, we designate a vertical channel of uniform
width and coordinate system

(
X̃, Ỹ

)
, in which the X̃-axis forms the central axis of the channel and

the Ỹ-axis is perpendicular to it, as shown Figure 1. A fully developed mixed convective flow of an
electrically conducting Newtonian fluid is occurred in this channel in the presence of an electromagnetic
body force. The fluid viscosity is thermally variable and obeys the Reynolds’ law of viscosity. A ciliated
epithelium covers the inner surface of the channel whose collective beatings structure a travelling
wave known as metachronal wave over the ciliated surface. We delete the effects of the induced
magnetic field due to a negligibly small magnetic Reynolds number. The effects of electric field are
also ignored in this study, i.e., E=0. Utilizing these constraints, the body force (Lorentz force) due
to the magnetic field, J × B, will take the form σ(V×B×B) =

(
−σB2

0Ũ, 0, 0
)
. The current density

vector, J, is defined as J = σ(V×B) and the magnetic flux density vector B is given as B = (0, B0, 0),
where V =

(
Ũ, Ṽ, 0

)
is the velocity vector and σ is the electrical conductivity of the fluid. The channel

boundary is kept at uniform temperature T1, while at the centerline we use the well-known symmetry
condition for temperature.
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The mathematical equations for the present flow are defined as follows:

∂Ũ

∂X̃
+
∂Ṽ

∂Ỹ
= 0 (1)
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ρ
[
∂Ũ
∂̃t

+ Ũ ∂Ũ
∂X̃

+ Ṽ ∂Ũ
∂Ỹ

]
= − ∂P̃

∂X̃
+ 2 ∂

∂X̃

(
µ
(
T̃
)
∂Ũ
∂X̃

)
+ ∂

∂Ỹ

(
µ
(
T̃
)(
∂Ṽ
∂X̃

+ ∂Ũ
∂Ỹ

))
− σB2

0Ũ + ρgγ
(
T̃ − T̃0

)
(2)

ρ

∂Ṽ

∂̃t
+ Ũ

∂Ṽ

∂X̃
+ Ṽ

∂Ṽ

∂Ỹ

 = −∂P̃

∂Ỹ
+ 2

∂

∂Ỹ

µ(T̃)∂Ṽ

∂Ỹ

+ ∂

∂X̃

µ(T̃)∂Ṽ

∂X̃
+
∂Ũ

∂Ỹ

 (3)

ρCp

∂T̃

∂̃t
+ Ũ

∂T̃

∂X̃
+ Ṽ

∂T̃

∂Ỹ

 = K

 ∂2T̃

∂X̃2
+
∂2T̃

∂Ỹ2

+ Q̃0 (4)

In the above mathematical model, we have employed the following two assumptions: (i) in the
momentum equations, we have used the well-known Boussinesq approximation so that the density
variation is detained only in the buoyancy term; and (ii) in the energy equation, we have ignored the
effects of viscous dissipation. Here, Q0 represents the source term, µ(T) is the variable viscosity of the
fluid and the remaining terms have their well-known meanings. It is pointed out in many studies [3,9]
that the beating patterns of cilia are elliptical in nature whose parametric equations are expressed
mathematically as

X̃ = η̃1(X̃, t̃) = χ̃0 + dδε sin
(
2πλ−1

)(
X̃ − c̃t

)
(5)

Ỹ = η̃2(X̃, t̃) = ±
[
d + εd cos

(
2πλ−1

)(
X̃ − c̃t

)]
= ±H̃ (6)

In the above equations X̃ and Ỹ, respectively, describe the positions of the ciliary paths in the
horizontal and vertical directions, d is the mean distance from the centerline of the channel, ε is the
dimensionless measurement of cilia lengths, δ is the eccentricity measurement of the elliptical paths,
χ̃0 is the reference position. Furthermore, λ is the wavelength and c is the wave velocity.

With the help of Equations (5) and (6), we can determine the velocities of cilia tips along the
horizontal and vertical directions as

Ũ =
∂X̃

∂̃t

∣∣∣∣∣∣
X̃0

=
∂η̃1

∂̃t
+
∂η̃1

∂X̃

∂X̃

∂̃t
=
∂η̃1

∂̃t
+
∂η̃1

∂X̃
Ũ (7)

Ṽ =
∂Ỹ

∂̃t

∣∣∣∣∣∣
X̃0

=
∂η̃2

∂̃t
+
∂η̃2

∂X̃

∂X̃

∂̃t
=
∂η̃2

∂̃t
+
∂η̃2

∂X̃
Ũ (8)

Using Equations (5) and (6) in Equations (7) and (8) and then solving for Ũ and Ṽ, we arrive at

Ũ =
−2πλ−1

(
dδcε cos

(
2πλ−1

)(
X̃ − c̃t

))
1− 2πλ−1

(
dδε cos(2πλ−1)

(
X̃ − c̃t

)) , V =
2πλ−1

(
dcε sin

(
2πλ−1

)
(X − ct)

)
1− 2πλ−1(dδε cos(2πλ−1)(X − ct))

at Ỹ = ±H̃ (9)

The flow behaves as a steady state when we observe it in the wave frame (x, y) attached to the
metachronal wave of cilia, whereas it is unsteady in the fixed frame (X̃, Ỹ). These two frames are

x = X̃ − c̃t, y = Ỹ, u = Ũ − c, v = Ṽ, p(x) = P̃(X̃, t̃) (10)

For 2D steady flow, the velocity, pressure, and the temperature fields have the following patterns:

V = (u(x, y), v(x, y)), p = p(x, y), T = T(x, y) (11)
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Also, we redefine the boundary conditions as

∂u
∂y

= 0, v = 0 and
∂T
∂y

= 0 at y = 0, (12)

u + c =
−2πλ−1(dδcε cos(2πλ−1x))
1−2πλ−1(dδε cos(2πλ−1x)) , at T = T1

and y = ±H = d
(
1 + ε cos

(
2πλ−1x

)) (13)

v =
2πλ−1

(
dcε sin

(
2πλ−1x

))
1− 2πλ−1(dδε cos(2πλ−1x))

at y = ±H = d
(
1 + ε cos

(
2πλ−1x

))
, (14)

In order to normalize the governing equations, we allocate the following variables:

t∗ = ct
λ , y∗ = y

d , x∗ = x
λ , u∗ = u

c , v∗ = v
βc , h∗ = H

d , p∗ = d2p
cλµ0

, β = d
λ , θ∗ = T−T0

T1−T0
, Re =

ρcd
cµ0

,

µ∗(θ) =
µ(T)
µ0

, M2 =
σB2

0d
µ0

, St =
Q0d2

K(T1−T0)
, gt =

gργd2(T1−T0)
µ0c , Q∗ = Q

dc , ψ∗ = ψ
dc .

(15)

Here, Re (modified Reynolds number), β (wave number), and ε (dimensionless measure with
respect to the cilia length). We will now employ the above transformations along with Equations (12)
and (13) into Equations (1)–(6) and then exploit the creeping flow (i.e., Re→ 0) and the long wavelength
(i.e., β� 1) assumptions. Finally, the simplified system of equations we need to solve is written—after
dropping the asterisks—as

∂u
∂x

+
∂v
∂y

= 0 (16)

∂
∂y

[
µ(θ)

∂u
∂y

]
−M2(u + 1) + gtθ =

∂p
∂x

(17)

∂p
∂y

= 0 (18)

∂2θ

∂y2 + St = 0 (19)

The boundary conditions in dimensionless variables are manipulated as

u = −1− 2πδβε cos(2πx), θ = 1 at y = h = 1 + ε cos(2πx) (20)

∂u
∂y

= 0, v = 0 and
∂θ
∂y

= 0 at y = 0 (21)

In the above equations, gt (Grashof number), M (Hartmann number), and St (constant heat
source/sink parameter). In the present investigation, we define

µ(θ) = e1−αθ, µ(θ) = 1− αθ for α� 1 (22)

which reduces to the constant viscosity model when α = 0. Here, α represents the viscosity variation
parameter. Note that this choice of µ(θ) has been justified physiologically by several authors in their
recent articles [25–27].
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3. Solution Methodology

Equation (18) points out that p = p(x), so we can replace ∂p
∂x with dp

dx in Equation (17).
The temperature field of the fluid is obtained by solving the energy Equation (19), subjected to
the relevant boundary conditions on temperature as

θ = 1−
St

2

(
y2
− h2

)
(23)

Upon making use of Equations (22) and (23), the momentum Equation (17) will take the form

(1− α)
∂2u
∂y2 +

αSt

2

(
y2
− h2

)∂2u
∂y2 − αSty

∂u
∂y
−M2(u + 1) + gt

(
1−

St

2

(
y2
− h2

))
=

dp
dx

(24)

Obviously, Equation (24) does not admit an exact closed form solution. In order to solve it, we use
the well-known Adomian decomposition method. Accordingly, we rewrite it in the operator form in
the following way [27–30]:

Lyy(u) = −
1

(1− α)

[
αSt

2

(
y2
− h2

)
Lyy(u) − αStyLy(u) −M2(u + 1) + gt

(
1−

St

2

(
y2
− h2

))
−

dp
dx

]
(25)

where Lyy = ∂2

∂y2 . Since Lyy is a second order differential operator, L−1
yy will be a twofold integral

operator defined by

L−1
yy(.) =

y∫
0

y∫
0

(.)dydy (26)

Applying the inverse operator L−1
yy , Equation (25) can be written as

u = C(x)y + D(x)y + 1
(1−α)L−1

yy

(
M2
− gt +

dp
dx +

gtSt
2

(
y2
− h2

))
−

1
(1−α)L−1

yy

(
αSt
2

(
y2
− h2

)
Lyy(u) + αStyLy(u) −M2u

)
(27)

In the above equation, the functions C(x) and D(x) can be formulated from the boundary
conditions (20) and (21). According to the well-known Adomian decomposition method, we can write

u =
∞∑

n=0

un (28)

Now, we substitute Equation (28) into Equation (27) and then decompose u as

u0 =
gtSt

24(1− α)
y4 +

(
M2
− gt

2(1− α)
−

gtSt

4(1− α)
h2 +

1
2(1− α)

dp
dx

)
y2 + C1(x)y + C2(x) (29)

and

un+1 = −
1

(1− α)

y∫
0

y∫
0

(
αSt

2

(
y2
− h2

)
Lyy(un) + αStyLy(un) −M2un

)
dydy, n ≥ 0 (30)

By utilizing the recursive relation given in Equation (30), we will compute the components u1, u2.
Consequently, the three terms ADM solution for the velocity field is found to be

u = a11y6 +

(
a12 + a13

dp
dx

)
y4 +

(
a14 + a15

dp
dx

)
y2 +

(
1 + a16y2

)
a17 (31)
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We define the volume flow rate q in the wave frame as [9,12],

q =

h∫
0

udy (32)

In the fixed frame, we construct

Q(X, t) =

H∫
0

YdY =

h∫
0

(u + 1)dy = q + h (33)

which can be used to define Q (time-mean volume flow rate) in the following way [9,12],

Q =
1
T

h∫
0

Q(X, t)dt =

1∫
0

(q + h)dt = q + 1 (34)

Upon making use of Equation (31) in Equation (32) and then solving the resultant integral,
we obtain the expression for the pressure gradient as

dp
dx

= −

(
a16h2 + 2

)
(Q− 1)

a18h7 + a19h5 + a20h3 +

(
a16h2 + 2

)
u(h)

a18h7 + a19h5 + a20h3 −
a21h6 + a22h4 + a23h2 + a24

a18h4 + a19h2 + a20
(35)

Integrating Equation (35) over the interval [0, 1], we get

∆p =

1∫
0

dp
dx

dx = −(Q− 1)I1 + I2 − I3 (36)

which yields the expression for the pressure rise. Upon solving it for Q, we obtain

Q = 1 +
I2

I1
−

I3

I1
−

∆p
I1

(37)

where I1 =
1∫

0

a16h2+2
a18h7+a19h5+a20h3 dx, I2 =

1∫
0

(a16h2+2)u(h)
a18h7+a19h5+a20h3 dx, I3 =

1∫
0

a21h6+a22h4+a23h2+a24
a18h4+a19h2+a20

dx and u(h) =

−1− 2πδβε cos(2πx). The expressions for the coefficients ai j are enlisted in Appendix A.
In order to visualize the stream line patterns of ciliary induced flow, we compute ψ (the stream

function) by introducing

u =
∂ψ

∂y
, v = −

∂ψ

∂x
(38)

into Equations (16) and (31). Here, we have used the symbolic software Maple to create the graphical
representations of the streamlines, which would be helpful in analyzing the trapping phenomena in
the present model.
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4. Results and Discussions

This section provides physical interpretations of the graphical results computed for the velocity
(u), the pressure gradient (dp/dx), pressure difference across one wavelength (∆p), volume flow rate (Q)
and the 2D stream function (ψ) under changing values of the emerging parameters. These parameters
are the Hartmann number (M), which represents the effect of magnetic field, the viscosity variation
parameter due to temperature (α), which represents the fluid viscosity, the Grashof number (gt),
which represents the buoyancy effects, and the heat source (sink) parameter (St), which represents the
heat transfer.

4.1. Velocity Distribution

The graphs in Figure 2a represent that the fluid velocity is diminished in the central region (i.e.,
in the interval [−0.4, 0.4]) and is amplified near the channel walls. Physically, this phenomenon is
associated with the magnetic body force i.e., the Lorentz force, which provides a resistance to the
fluid motion [12,24]. Figure 2b shows that the fluid velocity increases with an increase in α in the
center of the channel, whereas it decreases slightly near the boundaries. Figure 2c,d explain that the
behavior of the axial velocity is not uniform in whole region under the impacts of gt and St. When we
increase the values of the Grashof number (gt is taken as negative, zero and positive) and the heat
source sink parameter (St is taken as negative, zero and positive), the velocity rises in the center of the
channel, whereas it decreases near the walls. The negative values in the axial velocity are noted for the
negative values of the Grashof number and the heat sink parameter, which indicates the existence of
flow reversal or backward flow in the human vessels.
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4.2. Pressure Distribution

Figure 3a–d depict the behaviors of dp/dx (the axial pressure gradient) versus x under the effects
of parameters M, α, gt, and St. Figure 3a indicates that the pressure gradient is reduced when we
increase the values of M, i.e., the amount of the pressure gradient produced for MHD Newtonian
fluid is smaller as compared to the non MHD Newtonian fluid in the channel, where they are moving.
Figure 3b describes that the pressure will show non-uniform behavior over the entire region when
the viscosity of the fluid depends upon its temperature, however, it may be not very significant.
The graphs in Figure 3c,d indicate that there is a significant rise in when we increase the values of gt

and St. Thus, the heat transfer effect supports the development of the larger pressure gradient in the
channel. These graphs clearly indicate a sinusoidal response of the pressure gradient, which endorses
the correctness of our analysis.

Figure 4a–d point out the variations in ∆p (the pressure difference across one wavelength) versus
Q (the volume flow rate) for various values of M, α, gt, and St. In Figure 4a, we see that the pressure
difference declines significantly for higher values of the Hartmann number. This behavior highlights
the pumping characteristics for MHD fluid, i.e., the pumping rate for MHD Newtonian fluid is smaller
as compared to the non MHD Newtonian fluid. Figure 4b describes the effects of α on ∆p versus
Q. We note that the impacts of α on ∆p substantially depend upon the amount of the flow rate.
When Q < 1, the effect of α on the pressure difference is not much indicative. However, when Q ≥ 1, α
exerts potent effects on the pumping rate. Figure 4c,d explain that there is substantial growth in ∆p
when we increase the values of gt and St. Thus, the heat transfer effects promote the pumping rate.
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4.3. Volume Flow Rate

The graphs in Figure 5a depict the impacts of the Hartmann number M on Q versus ε,
the dimensionless cilia height estimation. Volume flow rate decreases substantially due to increasing
values of the Hartmann number. From these observations, we can conclude that the presence of a
magnetic field creates MHD drag force that will cause the velocity field across the channel length
to decrease, and hence reduce the flow rate. This characteristic of the magnetic field has many
applications in physiological flows; one of these applications is the use of magnetic field in controlling
the excessive bleeding during critical surgeries. From Figure 5b, we notice that the volume flow rate
for the high viscosity (temperature dependent) fluids is larger as compared to small viscosity fluids.
Moreover, these graphs indicate that the cilia heights hold down the flow rate in the channel flow,
i.e., they act as the controlling parameter for the fluid motion. Figure 5c,d depict that the increasing
values of the thermal Grashof number and the heat source (sink) parameters produce accelerating
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effects on the volume flow rate. These observations endorse the actual physical situations and are
according to the results of previous studies mentioned in the literature [24–30]. Furthermore, it can be
seen that the variation in the flow rate is not same for negative values of gt and St as compared to their
positive values, i.e., the flow rate increases with the cilia heights when we take negative values of these
parameters. Thus, the heat transfer effects support the volumetric flux in the physiological conduits.
Figure 6a,b describe the impacts of M (Hartmann number) and ε(the cilia length parameter) on Q (the
volume flow rate) versus δ (the eccentricity parameter). We note that the volume flow rate decreases
with the Hartmann number and the cilia heights, whereas it increases with the eccentricity parameter.

Symmetry 2019, 11, x FOR PEER REVIEW 12 of 20 

values of the thermal Grashof number and the heat source (sink) parameters produce accelerating 
effects on the volume flow rate. These observations endorse the actual physical situations and are 
according to the results of previous studies mentioned in the literature [24–30]. Furthermore, it can 

be seen that the variation in the flow rate is not same for negative values of tg  and tS  as compared 
to their positive values, i.e., the flow rate increases with the cilia heights when we take negative values 
of these parameters. Thus, the heat transfer effects support the volumetric flux in the physiological 
conduits. Figure 6a,b describe the impacts of M  (Hartmann number) and ε (the cilia length 
parameter) on Q  (the volume flow rate) versus δ  (the eccentricity parameter). We note that the 
volume flow rate decreases with the Hartmann number and the cilia heights, whereas it increases 
with the eccentricity parameter. 

  
(a) (b) 

  
(c) (d) 

Figure 5. Volume flow rate (Q ) versus ε for (a) M , (b) α , (c) tg , (d) tS . The other parameters 

are fixed as 0.4δ = , 0.4β = , 3pΔ = − , 0.5M = , 0.05α = , 3tg = , 3tS = . 

Figure 5. Volume flow rate (Q) versus ε for (a) M, (b) α, (c) gt, (d) St. The other parameters are fixed as
δ = 0.4, β = 0.4, ∆p = −3, M = 0.5, α = 0.05, gt = 3, St = 3.
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4.4. Trapping Phenomenon

In ciliary-induced flows, trapping will exist due to metachronal waves of cilia and is recognized
as a natural mechanism of physiological flows in the human body. It arises due to the circulation of
streamlines at larger amount of volume flow rate. The streamlines are split to trap a bolus of the flowing
material that will move as a whole with the wave speed along its direction. Figures 7–10 explain the
effects of key parameters M, α, gt, and St on the 2D stream function ψ. These graphs will explain the
trapping behavior and circulation of the flow characteristics. The impacts of the magnetic field on the
streamlines are displayed in Figure 7, which shows that the circulation as well as the size of trapped
boluses gradually decrease due to increasing values of M (the Hartmann number). From Figure 8,
one can observe that the rise in the viscosity variation parameter markedly boosts the bolus growth
and circulations in the streamlines. Figure 9 explains that the trapped boluses increase in size as well
as in numbers with the increasing magnitude of gt, which indicates that the buoyancy force parameter
promotes the formation of boluses in the cilia-driven flows. The streamlines in Figure 10 explain that
the size as well as the numbers of the trapped boluses increase with the increasing magnitude of St

(heat source parameter). This confirms the previous observations that the occurrence of trapping will
be enhanced when we increase the effects of heat transfer [24–29].
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Figure 8. Streamlines for (a) α = 0.0, (b) α = 0.03, (c) α = 0.05. The other parameters are fixed as
δ = 0.2, β = 0.2, ε = 0.3, Q = 0.9, M = 1.5, gt = 5, St = 5.
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5. Application: Physiological Transport of Semen

The present study has a close relevance to the physiological flow of human semen through
the efferent ducts of the male reproductive tract. It is now widely accepted that ciliary movements
generating the metachronal waves have a significant role in the propulsion of semen through the ductile
efferentes. Lardner and Shack [9] conducted experimental studies for various animals and found that
the volume flow rate of human semen in the ductile efferent is approximately equal to 0.006 mL/h.
In 1972, Lardner and Shack also developed a mathematical model describing the flow of a Newtonian
viscous fluid through a 2D symmetric channel whose inner walls are ciliated. They calculated the
values of non-dimensional volume flow rate and dimensional volume flow rate of the human semen
by considering it to behave as a Newtonian viscous fluid to be 0.022 and 0.00012 mL/h, respectively.
While calculating these values, the following data were used:

d = 50µm, c = 200µm/s, ∆p = 0, δ = 0.1, β = 1.0, ε = 0.1

In this study, we aim to investigate the impacts of heat transfer and applied magnetic field on the
volume flow rate Q of human semen through a 2D channel. Table 1 describes the numerical values of
Q and its dimensional counterpart Q∗ = (Q× πd2c) for various values of the Hartmann number M,
the viscosity variation parameter α, the Grashof number (the buoyancy force parameter) gt and the
heat source (sink) parameter St. From Table 1, we note that the flow rate increases with the increasing
values of α, gt and St, whereas it decreases with the increasing values of the Hartmann number. We also
observed that the volume flow rate for the conducting fluid is lower in magnitude as compared to
the non-conducting fluid and this trend has been noticed in many studies [24–29]. Moreover, it is
interesting to mention that the results of the present model are similar to those obtained in [9] for
M = 0, α = 0, gt = 0 and St = 0.

Table 1. Numerical results of Q and Q∗ = (Q× 2πd2c), when δ = 0.1, ε = 0.1, β = 1.0, and ∆p = 0.

M α gt St Q Q∗ (mL/h)

0 0 0 0 0.02204 0.00012
0.01 0.1 0.1 0.05957 0.00032
0.02 0.1 0.1 0.06443 0.00035
0.03 0.1 0.1 0.07071 0.00038

0.1 0.01 0.1 0.1 0.05932 0.00032
0.02 0.1 0.1 0.06411 0.00034
0.03 0.1 0.1 0.07029 0.00031
0.01 0.3 0.1 0.13398 0.00073
0.01 0.5 0.1 0.20864 0.00113
0.01 0.1 0.3 0.06249 0.00034
0.01 0.1 0.5 0.06569 0.00035

0.3 0.01 0.1 0.1 0.05716 0.00031
0.5 0.01 0.1 0.1 0.05208 0.00028

These values do not agree with the estimated values of the volume flow rate of human semen
(i.e., 0.006 mL/h). This suggests that a considerable improvement is needed in the model of Lardner
and Shack [9]. However, when we choose M = 0.1, α = 0.03, gt = 0.9, St = 0.9, we obtain
Q = 1.07876, and Q∗ = 0.00588. These values are comparatively closer to the experimentally estimated
values. We hope that the present results are reasonably utilized in investigating the physiological
flows inside the human vessels and as well in contriving the magnetically actuated artificial cilia in
lab-on-chip devices.
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6. Conclusions

An analysis of heat transfer effects on the ciliary pumping system in propelling biological fluids
like blood, semantic is carried out under the influence of magnetic body force. The heat transfer
features are characterized by the adding external heat source (sink) elements. The fluid viscosity
depends upon the temperature according to the Reynolds law. In order to provide the generality and
correctness of the present model, we would like to say that our model contains the results of Lardner
and Shack [9] for M = 0, α = 0, gt = 0, and St = 0; and the results of Siddiqui et al. [12] for α = 0,
gt = 0, and St = 0. The numerical results of the volume flow rate obtained in this study are in GOOD
agreement with the experimental values of the flow rate of the human semen estimated by Lardner and
Shack [9]. This study reveals that the applied magnetic field exhibits strong decelerating consequences
on the volume flow rate. Thus, the magnetic field can be used to achieve a better control on the flow
rate. This phenomenon has useful applications in medical sciences and in the design of artificial cilia
for the drug delivery system. Another important observation of this study is that the volume flow
rate can be significantly accelerated due to increasing the heat transfer effects (Grashof number and
heat source parameter), i.e., heat transfer assists the ciliary induced pumping. We also note that the
magnetic field can control the development of trapping.
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a21 = −4a14a16 − 7a12a16

a22 = 5a14a16 − 6a12

a23 = 14Stgta14 + 28Ma13

a24 = 210M2a16 + 128Ma13

a24 = 210M2a16 + 128Ma13
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