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Abstract: The present paper is about magnetic curves of spherical images in Euclidean 3-space.
We obtain the Lorentz forces of the spherical images and then we determine if the spherical images
have a magnetic curve or not. If a spherical image has a magnetic curve, then after presenting some
basic concepts about the energy of a charged particle whose trajectory is that magnetic curve and the
kinetic energy of a moving particle whose trajectory is the spherical indicatrix, we find the energy of
the charged particle and the kinetic energy of the moving particle.
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1. Introduction

Magnetic curves are curves showing lines of a magnetic force, as between the poles of a powerful
magnet. It is known as “magnetostatics” in physics terminology and it deals with stationary electric
currents [1]. The static magnetic fields on E3 are regarded as closed 2-forms in mathematics terminology.
Considering this concept on Euclidean 3-space, they can be introduced on a Riemannian manifold
as closed two-forms. In the Riemannian manifold, the trajectories of the charged particles moving
under the effect of the magnetic fields are magnetic curves. Magnetic curves are curves which satisfy a
special equation

∇γ′γ
′ = φ(γ′) (1)

known as the Lorentz equation. Here, φ is Lorentz force, ∇ is the Levi–Civita connection. In other
words, magnetic curves are solutions to Equation (1) [2]. When Equation (1) is zero, the Lorentz
equation returns a geodesic equation. This fact shows that magnetic curves generalize the geodesic
curves. So this is an important research topic in differential geometry and physics. In the last years,
magnetic curves were studied in Kaehler manifolds and Sasakian manifolds, respectively, since their
fundamental 2-forms provide natural examples of magnetic fields [3].

The relation between geometry and magnetic fields have a long history. It is well-known that the
notion of linking number can be traced back to Gauss’s work on terrestrial magnetism. The linking
number connects topology and Ampere’s law in magnetism. De Turck and Gluck studied magnetic
curves and linking numbers in S3 and H3. Moreover, if magnetic trajectories have constant speed,
a unit speed magnetic curve is called a normal magnetic curve and denoted by γ(s). In comparison,
studies on 3-dimensional Riemann manifolds are more specific since the 2-forms correspond to vector
fields in this case. In the light of this fact, magnetic fields identified with Killing vector fields are of
great importance, because they can be associated with divergence-free vector fields. Moreover, their
trajectories are called Killing magnetic curves [4].

In works of classical physics, to reduce the order of the system, continuous symmetries can be
used, and in some parts, its integratde completely. They may also restrict solutions to an invariant
manifold which we called conservation laws along with Noether’s theorem for variational problems.
Thus, directly searching for symmetries in precise systems has received intensive attention in the
last few decades. Another area of utilization symmetry analysis is to sort all earthly symmetry
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groups adopted by a differential equation with a large family. These conclusions gives us information
about when a system of general form holds one or more symmetries with which circumstances [5].
Additionally, there are many works related to symmetries of charged particles [6–8].

In this paper, we study the magnetic fields of the spherical images of a regular curve in Euclidean
3-space R3. We use the quasi elements of a regular space curve α and give a relationship between α

and the magnetic fields of its spherical images which are given with the Frenet elements. We find the
Lorentz force of the spherical images of the curve α and determine if the spherical images of the curve
α have a magnetic curve or not. If a spherical image has a magnetic curve, after presenting some basic
concepts about the energy of a charged particle under the action of a magnetic field, we find the energy
of a charged particle which has that magnetic curve as its trajectory. Moreover, after giving some basic
concepts about the kinetic energy of a moving particle, we find the kinetic energy of a moving particle
which has the spherical indicatrix as its trajectory.

2. Preliminaries

In this section, we present some basic concepts about magnetic fields and magnetic curves.
First of all, we recall the definitions of 2-form and closed form on a Riemannian manifold.

Definition 1. Let (M, g) be a Riemannian manifold. A 2-form η on M is a function η : χ(M)× χ(M) −→
C∞(M,R) which satisfies the following two conditions [9]:
[i] η(X, Y) is linear in X and in Y for all X, Y ∈ χ(M),
[ii] η is skew-symmetric, that is, η(X, Y) = −η(Y, X) for all X, Y ∈ χ(M).

Definition 2. If the exterior derivative of a form η vanishes, that is, dη = 0, then η is called a closed form [9].

In a Riemannian manifold, the trajectories of the charged particles moving under the effect of the
magnetic fields F are magnetic curves. The magnetic fields in Riemannian manifold are regarded as
closed 2-forms in mathematics terminology. The Lorentz force φ is a transformation which satisfies a
special equation

F(X, Y) = g(φ(X), Y), X, Y ∈ χ(M). (2)

If the particle preserves constant energy along its trajectory then the trajectory of the particle has
constant velocity [10]. For any X, Y, Z ∈ χ(M), the mixed product of these vector fields is defined by

g(X×Y, Z) = dvg(X, Y, Z), (3)

where dvg is the volume form corresponding to the metric g.
Assume that V is a Killing vector field and X is any vector field, then the Lorentz force equation is

φ(X) = V × X. (4)

Hence, from (1) and (4), we can write

∇γ′γ
′ = V × γ′. (5)

Assume that γ is a unit speed magnetic curve and ω(s) is its quasislope measured with respect to
V. γ is a magnetic trajectory [11], of V iff

V = ω(s)T(s) + κ(s)B(s). (6)
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The quasi frame of a space curve α(s) which is parameterized with arc-length is{
tq(s), nq(s), bq(s)

}
, where the vector fields are given as

tq(s) = T(s), (7)

nq(s) =
T(s)×

−→
k∥∥∥T(s)×
−→
k
∥∥∥ , (8)

bq(s) = T(s)× nq(s). (9)

In this paper, we choose the projection vector
−→
k = (0, 0, 1). nq(s) and bq(s) are called the quasi

normal vector field and the quasi binormal vector field of the curve α(s), respectively [12].
Let θ(s) be the angle between the principal normal vector field N(s) and the quasi normal vector

field nq(s). The quasi formulas are given by

d
ds

 tq(s)
nq(s)
bq(s)

 =

 0 k1(s) k2(s)
−k1(s) 0 k3(s)
−k2(s) −k3(s) 0


 tq(s)

nq(s)
bq(s)

 , (10)

where ki(s) are called the quasi curvatures (1 ≤ i ≤ 3) which are given by

k1(s) = κ(s)cosθ(s) =
〈

t′q(s), nq(s)
〉

, (11)

k2(s) = −κ(s)sinθ(s) =
〈

t′q(s), bq(s)
〉

, (12)

k3(s) = θ′(s) + τ(s) = −
〈

nq(s), b′q(s)
〉

. (13)

The relationship between the Frenet frame and the quasi frame is given by [12].

3. Magnetic Curves, Spherical Images and Energy

In this section, we give a relationship between a regular space curve which is given with the quasi
frame and magnetic curves of its spherical images which are given with the Frenet frame.

3.1. t-Magnetic Particles of the Tangent Indicatrix

Let α be a regular curve according to quasi frame in Euclidean 3-space and α1 be its tangent
indicatrix. Let

{
tq, nq, bq

}
be the quasi frame of the curve α and {t, n, b} be the Frenet frame of α1.

Theorem 1. The Lorentz force of the tangent indicatrix α1 of the curve α can be expressed as

 φ(t)
φ(n)
φ(b)

 =


−
√

k2
1 + k2

2 − k2Ω1√
k2

1+k2
2

k1Ω1√
k2

1+k2
2

0 A1k1−C1Ω1√
U1

A1k2−B1Ω1√
U1

0 K1k1−M1Ω1√
V1

K1k2+L1Ω1√
V1


 tq

nq

bq

 , (14)
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where Ω1 = g(φ(nq), bq) and

A1 = −
(

k2
1 + k2

2

)2
, (15)

B1 = k′1k2
2 − k1k2k′2 − k2

1k2k3 − k3
2k3, (16)

C1 = k3
1k3 + k2

1k′2 + k1k2
2k3 − k1k′1k2, (17)

K1 = k2
1k3 + k2

2k3 + k1k′2 − k′1k2, (18)

L1 = −k2

(
k2

1 + k2
2

)
, (19)

M1 = k1

(
k2

1 + k2
2

)
, (20)

U1 =
(

k2
1 + k2

2

)4
+
(

k2
1 + k2

2

) (
k2

1k3 + k2
2k3 + k1k′2 − k′1k2

)2
, (21)

V1 =
(

k2
1 + k2

2

)3
+
(

k2
1k3 + k2

2k3 + k1k′2 − k′1k2

)2
, (22)

W1 = 3
(

k1
(
k′1
)2 k2 + k′1k′2k2

2 − k2
1k′1k′2 − k1k2

(
k′2
)2
)

(23)

+
(

k2
1 + k2

2

) (
k1k′′2 + k2

1k′3 + k2
2k′3 − k′′1 k2 − k1k′1k3 − k2k′2k3

)
. (24)

Proof of Theorem 1. According to the expression of the Frenet frame of α1 in terms of the quasi frame
of α in [13], we can write

 t
n
b

 =


0 k1√

k2
1+k2

2

k2√
k2

1+k2
2

A1√
U1

B1√
U1

C1√
U1

K1√
V1

L1√
V1

M1√
V1


 tq

nq

bq

 . (25)

We know the following equalities from [14], φ(tq)

φ(nq)

φ(bq)

 =

 0 k1 k2

−k1 0 Ω1

−k2 −Ω1 0


 tq

nq

bq

 . (26)

By the linearity of φ we can write

φ(tq) =
k1√

k2
1 + k2

2

φ(nq) +
k2√

k2
1 + k2

2

φ(bq), (27)

φ(nq) =
A1√
U1

φ(tq) +
B1√
U1

φ(nq) +
C1√
U1

φ(bq), (28)

φ(bq) =
K1√
V1

φ(tq) +
L1√
V1

φ(nq) +
M1√

V1
φ(bq). (29)

Since we know the equalities (26), we get

 φ(t)
φ(n)
φ(b)

 =


−
√

k2
1 + k2

2 − k2Ω1√
k2

1+k2
2

k1Ω1√
k2

1+k2
2

0 A1k1−C1Ω1√
U1

A1k2−B1Ω1√
U1

0 K1k1−M1Ω1√
V1

K1k2+L1Ω1√
V1


 tq

nq

bq

 . (30)
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Theorem 2. The magnetic field V of the tangent indicatrix α1 of the regular space curve α satisfies the
following equality,

V = atq + bnq + cbq, (31)

where

a =

√
κ6

α + K1

V1

K1

κ3
α

, (32)

b =

√
κ6

α + K1

V1

k2

κα
, (33)

c = −

√
κ6

α + K1

V1

k1

κα
. (34)

Proof of Theorem 2. Since the magnetic field V corresponds to t-magnetic curve, the equality

∇tt = V × t (35)

holds. So, we can write

(atq + bnq + cbq)× (
k1

κα
nq +

k2

κα
bq) = κn. (36)

Using the expression of n in terms of the quasi elements of α, we get

bk2 − ck1

κα
tq −

ak2

κα
nq +

ak1

κα
bq =

√
1 +

K1

κ6
α
(

A1√
U1

tq +
B1√
U1

nq +
C1√
U1

bq). (37)

So, from this equality we can write the following equalities,

bk2 − ck1

κα
=

A1√
U1

√
1 +

K1

κ6
α

, (38)

− ak2

κα
=

B1√
U1

√
1 +

K1

κ6
α

, (39)

ak1

κα
=

C1√
U1

√
1 +

K1

κ6
α

. (40)

Simple calculations give us the following equality,

a =

√
κ6

α + K1

V1

K1

κ3
α

. (41)

To find b and c, we use the equality
φ(V) = 0. (42)

Using the linearity of φ, we can write

aφ(tq) + bφ(nq) + cφ(bq) = 0. (43)

So, we get
− (bk1 + ck2)tq + (ak1 − cΩ1)nq + (ak2 + bΩ1)bq = 0. (44)
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Thus, we can write

bk1 + ck2 = 0, (45)

ak1 − cΩ1 = 0, (46)

ak2 + bΩ1 = 0. (47)

Now, we have two equalities to calculate b and c,

bk2 − ck1

κα
=

A1√
U1

√
1 +

K1

κ6
α

, (48)

bk1 + ck2 = 0. (49)

Solving this system, we obtain

b =

√
κ6

α + K1

V1

k2

κα
, (50)

c = −

√
κ6

α + K1

V1

k1

κα
. (51)

Corollary 1. The function Ω1 which is given with the equation Ω1 = g(φ(nq), bq) is

Ω1 = −K1

κ2
α

. (52)

Proof of Corollary 1. From Theorem 2, the result is obtained by direct calculations.

3.2. The Energy of a t-Magnetic Particle

Now, we give a formula to calculate the energy of a charged particle moving along a t-magnetic
curve which is a curve where the tangent satisfies ∇tt = V × t. Firstly, we recall some basic concepts
about this subject.

Let π : TM −→ M be the bundle projection, T(TM) = V ⊕ H and F : M −→ TM be a
differentiable vector field. Here V is the vertical component and H is the horizontal component. Then
differential dF can be separated into vertical and horizontal components as follows:

dF = dvF + dhF. (53)

Because of the orthogonal decomposition of dF on T(TM), the energy can be separated into two
parts as follows:

E(F) =
1
2

∫
M

‖dF‖2 dx =
1
2

∫
M

‖dvF‖2 dx +
1
2

∫
M

∥∥∥dhF
∥∥∥2

dx, (54)

where dx shows the Riemannian volume element. Using the facts that π is a Riemannian submersion
and F is a section, one can get the followings:∥∥∥dhF

∥∥∥2
= ‖dπ ◦ dF‖2 = ‖idTM‖2 = m. (55)

On the other hand, one can get

‖dvF‖2 = ‖Q ◦ dF‖2 = ‖∇F‖2 . (56)
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Thus, the energy formula becomes [15]

E(F) =
1
2

∫
M

‖∇F‖2 dx +
m
2

Vol(M). (57)

Let σ1, σ2 ∈ T(TM), then the Sasaki metric on T(TM) is defined by the following equation:

gS(σ1, σ2) = g(dπ(σ1), dπ(σ2)) + g(Q(σ1), Q(σ2)), (58)

where Q : T(TM) −→ TM is the connection map. This metric makes π : TM −→ M a
Riemannian submersion.

If V is a magnetic field which corresponds to a t-magnetic curve, the energy formula can be
rewritten for V using the Sasaki metric as follows [16]:

E(V) =
1
2

s∫
0

gS(dV, dV)ds. (59)

Now, we give a formula to calculate the total kinetic energy of a particle traveling along a curve γ

with the speed directed by γ. Firstly, we recall some basic concepts about this subject.

Definition 3. Let M be a Riemannian manifold and c : [0, a] −→ M be a piecewise differentiable curve.
A variation of c is a continuous mapping f : (−ε, ε)× [0, a] −→ M such that:
[i] f (0, t) = c(t), t ∈ [0, a] ,
[ii] there exists a subdivision of [0, a] by points 0 = t0 < t1 < · · · < tk+1 = a, such that the restriction of f to
each (−ε, ε)× [ti, ti+1] , i = 0, 1, . . . , k, is differentiable.

For each s ∈ (−ε, ε), the parametrized curve fs : [0, a] −→ M given by fs(t) = f (s, t) is called a
curve in the variation. Thus, a variation determines a family fs(t) of neighboring curves of f0(t) = c(t).

A function L : (−ε, ε) −→ R is defined by

L(s) =
a∫
0

∥∥∥∥∂ f
∂t

(s, t)
∥∥∥∥ dt, s ∈ (−ε, ε). (60)

This function is used to compare the arc length of c with the arc length of neighboring curves in a
variation f : (−ε, ε)× [0, a] −→ M of c. That is, L(s) is the length of the curve fs(t).

The kinetic energy function Ek(s) is defined by

Ek(s) =
a∫
0

∥∥∥∥∂ f
∂t

(s, t)
∥∥∥∥2

dt, s ∈ (−ε, ε). (61)

This function measures the total kinetic energy of a particle traveling along the curve fs(t) with
the speed directed by fs(t).

Let c : [0, a] −→ M be a curve and let

L(c) =
a∫
0

∥∥∥∥dc
dt

∥∥∥∥ dt and Ek(c) =
a∫
0

∥∥∥∥dc
dt

∥∥∥∥2
dt. (62)
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Putting f = 1 and g =
∥∥∥ dc

dt

∥∥∥ in the Schwarz inequality:

(

a∫
0

f gdt)2 ≤
a∫
0

f 2dt.
a∫
0

g2dt, (63)

the following inequality is obtained:
L(c)2 ≤ aEk(c), (64)

where equality occurs if and only if g is constant, that is, if and only if t is proportional to arc length [17].

Theorem 3. The energy of the particle which has t-magnetic curve of the tangent indicatrix α1 of a space curve
α under the action of the magnetic field V is

E(V) =
1
2

s∫
0

(1 + (a′)2 + (b′ + ak1 − ck3)
2 + (c′ + ak2 + bk3)

2)ds, (65)

where

a =

√
κ6

α + K1

V1

K1

κ3
α

, (66)

b =

√
κ6

α + K1

V1

k2

κα
, (67)

c = −

√
κ6

α + K1

V1

k1

κα
. (68)

Proof of Theorem 3. The t-magnetic curve of the tangent indicatrix α1 of a space curve α is the
trajectory of α1 under the action of the magnetic field V. To calculate the energy of the particle, we use
the energy Formula (59). By the definition of the Sasaki metric, we can write

gS(dV, dV) = g(dπ(dV(tq)), dπ(dV(tq))) + g(Q(dV(tq)), Q(dV(tq))). (69)

Since V is a section, we get

dπ ◦ dV = d(π ◦V) = d(idM) = idTM. (70)

So, using this fact, we find

g(dπ(dV(tq)), dπ(dV(tq))) = g(tq, tq) = 1. (71)

On the other hand, one can get

Q(dV(tq)) = ∇tq V = (a′)2 + (b′ + ak1 − ck3)
2 + (c′ + ak2 + bk3)

2. (72)

Thus, putting these values in the energy Formula (59), we obtain

E(V) =
1
2

s∫
0

(1 + (a′)2 + (b′ + ak1 − ck3)
2 + (c′ + ak2 + bk3)

2)ds. (73)
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Theorem 4. The total kinetic energy of the moving particle which has the tangent indicatrix α1 of a space curve
α as a trajectory is

Ek(α1) =

s∫
0

κ2
αds. (74)

Proof of Theorem 4. The tangent indicatrix α1 of a space curve α is the trajectory of the particle.
To calculate the total kinetic energy of the particle, we use the energy Formula (62). Since α1(s) = tq(s),

dα1(s)
ds

= k1nq + k2bq and
∥∥∥∥dα1(s)

ds

∥∥∥∥ =
√

k2
1 + k2

2. (75)

We know,
k1 = κα cos θ and k2 = −κα sin θ, (76)

where θ is the angle between the principal normal n and the quasi normal nq. So, we get

k2
1 + k2

2 = κ2
α. (77)

Thus, putting this value in the kinetic energy Formula (62), we obtain

Ek(α1) =

s∫
0

∥∥∥∥dα1(s)
ds

∥∥∥∥2

ds =
s∫
0

κ2
αds. (78)

3.3. n-Magnetic Particles of the Quasi Normal Indicatrix

Let α be a regular curve according to quasi frame in Euclidean 3-space and α2 be its quasi normal
indicatrix. Let

{
tq, nq, bq

}
be the quasi frame of the curve α and {t, n, b} be the Frenet frame of α2.

Theorem 5. The Lorentz force of the quasi normal indicatrix α2 of the curve α can be expressed as

 φ(t)
φ(n)
φ(b)

 =


− k3Ω2√

k2
1+k2

3
−
√

k2
1 + k2

3 − k1Ω2√
k2

1+k2
3

− B2k1+C2Ω2√
U2

0 B2k3+A2Ω2√
U2

− L2k1+M2Ω2√
V2

0 L2k3+K2Ω2√
V2


 tq

nq

bq

 . (79)

where Ω2 = g(φ(bq), tq).

Proof of Theorem 5. According to the expression of the Frenet frame of α2 in terms of the quasi frame
of α in [13], we can write

 t
n
b

 =


−k1√
k2

1+k2
3

0 k3√
k2

1+k2
3

A2√
U2

B2√
U2

C2√
U2

K2√
V2

L2√
V2

M2√
V2


 tq

nq

bq

 . (80)

We know the following equalities from [14], φ(tq)

φ(nq)

φ(bq)

 =

 0 k1 Ω2

−k1 0 k3

−Ω2 −k3 0


 tq

nq

bq

 . (81)
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By the linearity of φ we can write

φ(t) =
−k1√
k2

1 + k2
3

φ(nq) +
k3√

k2
1 + k2

3

φ(bq), (82)

φ(n) =
A2√
U2

φ(tq) +
B2√
U2

φ(nq) +
C2√
U2

φ(bq), (83)

φ(b) =
K2√
V2

φ(tq) +
L2√
V2

φ(nq) +
M2√

V2
φ(bq). (84)

Since we know the equalities (81), we get

 φ(t)
φ(n)
φ(b)

 =


− k3Ω2√

k2
1+k2

3
−
√

k2
1 + k2

3 − k1Ω2√
k2

1+k2
3

− B2k1+C2Ω2√
U2

0 B2k3+A2Ω2√
U2

− L2k1+M2Ω2√
V2

0 L2k3+K2Ω2√
V2


 tq

nq

bq

 . (85)

Theorem 6. There is not n-magnetic curve which is a curve where the tangent satisfies ∇tn = V × n, of the
quasi normal indicatrix of a regular space curve.

Proof of Theorem 6. If there was a magnetic curve it must have a magnetic field V such as

V = atq + bnq + cbq, (86)

which satisfies the following equality,
∇tn = V × n. (87)

So, we can write

(atq + bnq + cbq)× (
A2√
U2

tq +
B2√
U2

nq +
C2√
U2

bq) = −κt + τb. (88)

Using the expressions of t, b, κ and τ in terms of the quasi elements of α, we get

bC2 − cB2√
U2

tq +
cA2 − aC2√

U2
nq +

aB2 − bA2√
U2

bq = ((1 +
K2

(k2
1 + k2

3)
3
)

1
2

k1√
k2

1 + k2
3

(89)

+
W2K2

V2
√

V2
)tq +

W2L2

V2
√

V2
nq (90)

+(
W2 M2

V2
√

V2
− (1 +

K2

(k2
1 + k2

3)
3
)

1
2

k1√
k2

1 + k2
3

)bq. (91)

So, from this equality we can write the following equalities,

bC2 − cB2√
U2

=
W2K2

V2
√

V2
+ (1 +

K2

(k2
1 + k2

3)
3
)

1
2

k1√
k2

1 + k2
3

, (92)

cA2 − aC2√
U2

=
W2L2

V2
√

V2
, (93)

aB2 − bA2√
U2

=
W2M2

V2
√

V2
− (1 +

K2

(k2
1 + k2

3)
3
)

1
2

k1√
k2

1 + k2
3

. (94)
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Simple calculations give us the following system,

 B2 −A2 0
−C2 0 A2

0 C2 −B2


 a

b
c

 =


√

U2(
W2 M2
V2
√

V2
− (1 + K2

(k2
1+k2

3)
3 )

1
2 k1√

k2
1+k2

3
)

√
U2

W2L2
V2
√

V2√
U2(

W2K2
V2
√

V2
+ (1 + K2

(k2
1+k2

3)
3 )

1
2 k1√

k2
1+k2

3

 . (95)

We want to solve this system according to the Crammer rule, so we must compute the
determinants ∆ and ∆1, ∆2, ∆3, where

∆ =

∣∣∣∣∣∣∣
B2 −A2 0
−C2 0 A2

0 C2 −B2

∣∣∣∣∣∣∣ (96)

and

∆1 =

∣∣∣∣∣∣∣∣∣
√

U2(
W2 M2
V2
√

V2
− (1 + K2

(k2
1+k2

3)
3 )

1
2 k1√

k2
1+k2

3
) −A2 0

√
U2

W2L2
V2
√

V2
0 A2

√
U2(

W2K2
V2
√

V2
+ (1 + K2

(k2
1+k2

3)
3 )

1
2 k1√

k2
1+k2

3
C2 −B2

∣∣∣∣∣∣∣∣∣ , (97)

∆2 =

∣∣∣∣∣∣∣∣∣
B2

√
U2(

W2 M2
V2
√

V2
− (1 + K2

(k2
1+k2

3)
3 )

1
2 k1√

k2
1+k2

3
) 0

−C2
√

U2
W2L2

V2
√

V2
A2

0
√

U2(
W2K2

V2
√

V2
+ (1 + K2

(k2
1+k2

3)
3 )

1
2 k1√

k2
1+k2

3
−B2

∣∣∣∣∣∣∣∣∣ , (98)

∆3 =

∣∣∣∣∣∣∣∣∣
B2 −A2

√
U2(

W2 M2
V2
√

V2
− (1 + K2

(k2
1+k2

3)
3 )

1
2 k1√

k2
1+k2

3
)

−C2 0
√

U2
W2L2

V2
√

V2

0 C2
√

U2(
W2K2

V2
√

V2
+ (1 + K2

(k2
1+k2

3)
3 )

1
2 k1√

k2
1+k2

3

∣∣∣∣∣∣∣∣∣ . (99)

Since ∆ = 0 and ∆3 6= 0, the system (95) does not have a solution. This means that there is not
magnetic curve of the quasi normal indicatrix of a regular space curve.

3.4. b-Magnetic Particles of the Quasi Binormal Indicatrix

Let α be a regular curve according to quasi frame in Euclidean 3-space and α3 be its quasi binormal
indicatrix. Let

{
tq, nq, bq

}
be the quasi frame of the curve α and {t, n, b} be the Frenet frame of α3.

Theorem 7. The Lorentz force of the quasi binormal indicatrix α3 of the curve α can be expressed as

 φ(t)
φ(n)
φ(b)

 =


k2k3√
k2

2+k2
3

k2
3−k2Ω3√

k2
2+k2

3
− k2

2√
k2

2+k2
3

−C3k2+B3Ω3√
U3

A3Ω3−C3k3√
U3

0

−M3k2+L3Ω3√
V3

K3Ω3−M3k3√
V3

0


 tq

nq

bq

 , (100)

where Ω3 = g(φ(tq), nq).
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Proof of Theorem 7. According to the expression of the Frenet frame of α3 in terms of the quasi frame
of α in [13], we can write

 t
n
b

 =


−k2√
k2

2+k2
3

0 −k3√
k2

2+k2
3

A3√
U3

B3√
U3

C3√
U3

K3√
V3

L3√
V3

M3√
V3


 tq

nq

bq

 . (101)

We know the following equalities from [14], φ(tq)

φ(nq)

φ(bq)

 =

 0 Ω3 k2

−Ω3 0 k3

−k2 −k3 0


 tq

nq

bq

 . (102)

By the linearity of φ we can write

φ(t) =
−k2√
k2

2 + k2
3

φ(tq) +
−k3√
k2

2 + k2
3

φ(bq), (103)

φ(n) =
A3√
U3

φ(tq) +
B3√
U3

φ(nq) +
C3√
U3

φ(bq), (104)

φ(b) =
K3√
V3

φ(tq) +
L3√
V3

φ(nq) +
M3√

V3
φ(bq). (105)

Since we know the equalities (102), we get

 φ(t)
φ(n)
φ(b)

 =


k2k3√
k2

2+k2
3

k2
3−k2Ω3√

k2
2+k2

3
− k2

2√
k2

2+k2
3

−C3k2+B3Ω3√
U3

A3Ω3−C3k3√
U3

0

−M3k2+L3Ω3√
V3

K3Ω3−M3k3√
V3

0


 tq

nq

bq

 . (106)

Theorem 8. There is not b-magnetic which is a curve where the tangent satisfies ∇tb = V × b, curve of the
quasi binormal indicatrix of a regular space curve.

Proof of Theorem 8. If there was a magnetic curve it must have a magnetic field V such as

V = atq + bnq + cbq (107)

which satisfies the following equality,
∇tb = V × b. (108)

So, we can write

(atq + bnq + cbq)× (
K3√
V3

tq +
L3√
V3

nq +
M3√

V3
bq) = −τn. (109)

Using the expressions of n and τ in terms of the quasi elements of α, we get

bM3 − cL3√
V3

tq +
cK3 − aM3√

V3
nq +

aL3 − bK3√
V3

bq =
−W3 A3

V3
√

U3
tq +

−W3B3

V3
√

U3
nq +

−W3C3

V3
√

U3
bq. (110)
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So, from this equality we can write the following equalities,

bM3 − cL3√
V3

=
−W3 A3

V3
√

U3
, (111)

cK3 − aM3√
V3

=
−W3B3

V3
√

U3
, (112)

aL3 − bK3√
V3

=
−W3C3

V3
√

U3
. (113)

Simple calculations give us the following system,

 0 M3 −L3

−M3 0 K3

L3 −K3 0


 a

b
c

 =


−W3 A3√

V3U3
−W3B3√

V3U3
−W3C3√

V3U3

 . (114)

We want to solve this system according to the Crammer rule, so we must compute the
determinants ∆ and ∆1, ∆2, ∆3, where

∆ =

∣∣∣∣∣∣∣
0 M3 −L3

−M3 0 K3

L3 −K3 0

∣∣∣∣∣∣∣ (115)

and

∆1 =

∣∣∣∣∣∣∣∣
−W3 A3√

V3U3
M3 −L3

−W3B3√
V3U3

0 K3
−W3C3√

V3U3
−K3 0

∣∣∣∣∣∣∣∣ , (116)

∆2 =

∣∣∣∣∣∣∣∣
0 −W3 A3√

V3U3
−L3

−M3
−W3B3√

V3U3
K3

L3
−W3C3√

V3U3
0

∣∣∣∣∣∣∣∣ , (117)

∆3 =

∣∣∣∣∣∣∣∣
0 M3

−W3 A3√
V3U3

−M3 0 −W3B3√
V3U3

L3 −K3
−W3C3√

V3U3

∣∣∣∣∣∣∣∣ . (118)

Since ∆ = 0 and ∆1 6= 0, the system (114) does not have a solution. This means that there is not
magnetic curve of the quasi binormal indicatrix of a regular space curve.

4. Conclusions

Magnetic fields and magnetic curves are studied interdisciplinary, especially in physics and
differential geometry. The Lorentz force Equation (5) can be applied in some areas such as in protons,
cancer therapy, and velocity selectors [18]. Firstly, we mention about what they mean in physics. By the
view of differential geometry, we consider the advantages of the quasi frame of a space curve and
study magnetic particles of the spherical images of a regular space curve given with the quasi frame.
Also, we calculate the energy of a charged particle whose trajectory is a t-magnetic field, and the total
kinetic energy of a moving particle whose trajectory is the tangent indicatrix. It is well known that
the Lorentz formula generalizes the geodesic concept. Magnetic curves have many application areas
in physics such as in Kirchhoff elastic rods, etc. For example, in his study, Munteanu mentioned the
energy levels in models of atoms with closed geodesic [19]. Thus, magnetic curves are important for
physics, and differential geometry is vital to study them.
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