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Abstract: Prediction algorithms enable computers to learn from historical data in order to make
accurate decisions about an uncertain future to maximize expected benefit or avoid potential loss.
Conventional prediction algorithms are usually based on a trained model, which is learned from
historical data. However, the problem with such prediction algorithms is their inability to adapt to
dynamic scenarios and changing conditions. This paper presents a novel learning to prediction model
to improve the performance of prediction algorithms under dynamic conditions. In the proposed
model, a learning module is attached to the prediction algorithm, which acts as a supervisor to
monitor and improve the performance of the prediction algorithm continuously by analyzing its
output and considering external factors that may have an influence on its performance. To evaluate
the effectiveness of the proposed learning to prediction model, we have developed the artificial
neural network (ANN)-based learning module to improve the prediction accuracy of the Kalman
filter algorithm as a case study. For experimental analysis, we consider a scenario where the Kalman
filter algorithm is used to predict actual temperature from noisy sensor readings. the Kalman filter
algorithm uses fixed process error covariance R, which is not suitable for dynamic situations where
the error in sensor readings varies due to some external factors. In this study, we assume variable error
in temperature sensor readings due to the changing humidity level. We have developed a learning
module based on ANN to estimate the amount of error in current readings and to update R in the
Kalman filter accordingly. Through experiments, we observed that the Kalman filter with the learning
module performed better (4.41%–11.19%) than the conventional Kalman filter algorithm in terms of
the root mean squared error metric.

Keywords: learning to prediction; Kalman filter; artificial neural networks (ANN)

1. Introduction

All decision-making processes require a clear understanding of future risks and trends. To avoid
potential losses due to the wrong estimate of the future, some people tend to delay the decision as
much as possible so that the situation becomes clear in order to make any decision [1]. However,
delaying the decision is never a good idea in today’s competitive environment. Human experts
can manually process small data, but fail to extract useful information from the humongous data
generated and collected in modern information and communications technology-based solutions.
Machines can quickly process a large amount of data, but they lack intelligence. As a result, many
prediction algorithms have been proposed in the literature to extract the pattern from historical data in
order to support intelligent decision-making [2]. Recent advances in computation, communications,
and machine learning technologies have transformed almost every aspect of human life through smart
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solutions. These systems can make use of the knowledge extracted from current and historical data for
better decisions in advance to maximize profits or avoid losses [3].

Today, almost all scientific disciplines need to use prediction algorithms in one way or another [4].
Recently, the study of machine learning algorithms has grown enormously due to the considerable
progress made in the information storage and processing capabilities of computers. Machine learning
algorithms can be broadly classified into four categories: (a) supervised learning, (b) unsupervised
learning, (c) semi-supervised learning, and (d) reinforcement learning [5]. Supervised machine learning
algorithms make use of labeled data to train the prediction model. The trained prediction model
captures the hidden relationship between the input and output parameters, which is then used to
estimate the outcome for any given input data, including previously-unseen and -unknown conditions.
Numerous prediction algorithms have been proposed in the literature, such as the kth nearest neighbor
algorithm (KNN) [6], support vector machines [7], decision trees and random forest [8], neural
networks [9], etc. Most of these prediction algorithms are first trained using historical data. After
training, the prediction model is fixed and used in the designated application environment. However,
the problem with such prediction algorithms is their inability to adapt to the dynamic scenarios and
changing conditions.

There are several well-known ensemble approaches for prediction and classification problems,
such as ensembles, stacked generalization, a mixture-of-experts, etc. The combination of more than one
network to solve a problem is called an ensemble neural network. The performance of the ensemble
neural network is better compared to the individual neural network due to the numerous errors
of different neural networks [10]. Stacked generalization is another ensemble approach in which
numerous prediction algorithms are combined into one. The stacked generalization method provides
good results compared to the single-neural network method [11]. The mixture-of-experts is also
a very famous method, which is based on many statistical estimation methods that were developed to
improve the prediction accuracy [12].

Enabling prediction algorithms to cope with dynamic data or changing environmental conditions
is a challenging task. In this paper, we propose a general architecture to improve the performance of
the prediction algorithm using the learning module. The learning module continuously monitors the
performance of the prediction algorithm by receiving its output as feedback. The learning module may
also consider the external parameters that may have an influence on the performance of the prediction
algorithm. After analyzing the current external factors and the output of the prediction algorithm,
the learning module updates the tunable parameters or swaps the trained model of the prediction
algorithm to improve its performance in terms of prediction accuracy. For experimental analysis, we
have used the Kalman filter as a prediction algorithm, and our learning module is based on artificial
neural networks.

The rest of the paper is organized as follows: A brief overview of related work is presented in
Section 2. In Section 3, we present the conceptual design of the proposed learning to prediction model
with a detailed description of the selected case study. A detailed discussion of the experimental setup,
implementations, and performance analysis is presented in Section 4. Finally, we conclude this paper
in Section 5 with an outlook toward our future work.

2. Related Work

Recently, tremendous growth and improvement have been experienced in the processing and
storage capabilities of computing devices. Computer programs can quickly process a huge amount of
data to extract patterns and other information. As a result, the study of machine learning algorithms has
grown enormously due to the considerable progress made in the information storage and processing
capabilities of computers. Prediction algorithms are actively used in many different applications in
diverse domains, e.g., stock market predictions, customer prediction, energy prediction, risk prediction,
weather prediction, etc. Numerous prediction algorithms have been proposed in the literature. The
kth nearest neighbor algorithm (KNN) is a simple and useful algorithm commonly used for both
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regression and classification problems [13,14]. The KNN algorithm predicts the outcome for a new data
instance based on the majority votes among the kinstances in its neighborhood. The neighborhood
is computed using various distance functions, e.g., Manhattan, Hamming, Euclidean, etc. Support
vector machines (SVM) and their variants form another class of prediction algorithms that attempt to
find the optimal line/plane/hyperplane in the multidimensional space that should be at the furthest
distance from each class in the dataset [15]. Often, it is very difficult to express or interpret the
knowledge captured by the prediction algorithm from training data in a human-readable format.
To this end, decision tree algorithms provide clear and explicit rules that are extracted by the algorithm
in a human-readable format [16]. There are many variants of decision tree algorithms, and the most
popular are classification and regression trees (CART) [17], iterative dichotomizer 3 (ID3) [18], the C4.5
algorithm [19], and chi-squared automatic interaction detector (CHAID) [20]. Mridula et al. presented
a very brief comparative analysis of these variants in [21]. Today, the classification and regression
tree has grasped the attention of many researchers and has been used numerous times in different
areas for prediction purposes. The CART has the capability to solve the complicated interrelation
between predictive parameters, which cannot be solved by using conventional multivariate algorithms.
The CART is a machine learning technique that is commonly used to construct prediction models
from the data. The CART model is constructed of mainly two trees, namely classification trees and
regression trees, which are designed for dependent variables without order and with order, respectively.
The calculation of the prediction error is carried out by the squared difference between the observed
and predicted values. Instead of using a single decision tree, the random forest algorithm further
extends the concept by generating several decision trees through random sampling over the feature
subset [22], thus avoiding the over-fitting issues. In supervised learning, prediction algorithms are first
trained using historical data. After training, the prediction model is fixed and used in the designated
application environment. However, the problem with such prediction algorithms is their inability to
adapt to dynamic scenarios and changing conditions.

The artificial neural network (ANN) is considered among the most powerful nature-inspired
prediction algorithms, which mimics the working neurons in human brain [23]. ANN algorithms
are general-purpose learning algorithms and are actively used in solving a wide range of problems
including regression, classification, clustering, pattern recognition, forecasting, and time series data
processing [24–27]. The functionality of the neuron is modeled inside the perceptron, which is an
atomic functional unit of ANN. Operation inside the perceptron includes multiplication of inputs with
corresponding weights, summation of the results with a bias, and output generation using an activation
function such as sigmoid. Depending on the problem size and nature, the appropriate number of
perceptrons is connected in a layered fashion (input layer, hidden layer, output layer) to form an
artificial neural network (ANN) architecture. Learning in ANN algorithms is all about the weight
adjustment of perceptrons in the network, which is accomplished in a systematic fashion using
different methods, e.g., error back-propagation, gradient calculation methods [28], etc. Conventional
ANN algorithms require input pre-processing, normalization and feature extraction, which essentially
dictate their performance and accuracy. Furthermore, ANN network design is more of an art than
a science, and trial-and-error methods are most commonly used to decide the number of layers in the
network, the number of neurons in each layer, the activation function, and the connectivity among
the layers. Previously, the ANN network’s size was mainly restricted due the limited computational
power. However, with the advent of modern high-speed multicore processors, we can virtually have
an ANN network of any size, and this has led to the emergence of a whole new field under the
umbrella of neural networks, i.e., deep learning or deep neural networks. Machine learning has gained
remarkable attention recently due to significant results produced by deep learning algorithms such
as recurrent neural networks (RNN), convolution neural networks (CNN), long short-term memory
(LSTM), etc. [29–32]. More recent high-performance prediction algorithms based on deep learning
architectures (such as CNN, RNN, LSTM) are focused on the elimination of pre-processing and feature
extraction in complex problem solving instead of adaptation with the dynamic conditions.



Symmetry 2019, 11, 94 4 of 20

The adaptive neuro-fuzzy inference system (ANFIS) is a feed-forward neural network having
many layers [33]. The neural network algorithms and fuzzy reasoning are used for training and
mapping inputs to outputs, respectively. ANFIS has the potential to integrate the linguistic power
of a fuzzy inference system and the numeric power of a neural network. The central advantage
of ANFIS is that it allows the extraction of fuzzy rules from numerical data or expert knowledge.
The main disadvantage of ANFIS is that it takes more processing time due to the structure training
and parameter determination. ANFIS has been actively used in different areas for different purposes,
e.g., diagnosis, wind speed prediction, forecasting, etc. Zhou et al. proposed a method in which the
assessment of the ensemble neural networks was carried out for both regression and classification
problems [10]. The results illustrate that it was better to ensemble some of the neural networks rather
than all the neural networks. A solution named genetic algorithm-based selective ensemble neural
networks (GASEN) was proposed in order to select neural networks for ensembles based on some
evolved weights. The comparison of the GASEN model with some famous ensemble methods such as
bagging and boosting was carried out, but the GASEN outperformed these algorithms. Wolpert et al.
proposed a method named stacked generalization in which the different predictive algorithms are
combined in order to improve the predictive accuracy [11]. Breiman et al. carried out a demonstration
of how how stacking can be used for predictive accuracy in the context of regression [34]. The results
indicated that by using the stacking method, the predictive performance was improved. Jacobs et al.
suggested another approach named the mixture-of-experts with the goal that the combination of many
statistical estimates would increase the predictive accuracy as compared to a single estimate [35].

Prediction algorithms belonging to the family of reinforcement learning allow the algorithm
to improve its performance based on the reward it receives on the basis of its previous outcome.
These algorithms are commonly used in game theory, control theory, and multi-agent-based
applications [36,37]. Each time the algorithm generates the output, it receives a reward (positive
or negative) depending on the difference between the produced and desired outcome. Thus, the
algorithm learns from its experience and tries to maximize the positive rewards and avoid negative
rewards. These algorithms are useful where learning is only possible through interaction with the
environment. These algorithms continuously improve their performance and finally converge. After
convergence, the algorithms rarely change their behavior with changing environmental conditions.
In other words, a single trained model restricts the reinforcement learning algorithm to adapt to the
dynamic conditions.

Enabling the prediction algorithm’s adaptation with dynamically-changing environmental
conditions requires a mechanism that can somehow detect the occurrence of environmental changes
and then make necessary changes in the prediction algorithm to avoid performance degradation.
This approach can be realized by integrating a learning module with the prediction algorithm to
continuously tune its performance. Some studies closely related to this concept can be found in the
literature; for instance, Kang et al. developed a fuzzy inference-based system to tune the performance
of the Kalman filter algorithm for accurate attitude estimation of a humanoid robot [38]. In static
conditions, the Kalman filter can successfully remove noise from gyro sensors’ readings to predict
the accurate orientation of the robot. However, when the robot is moving, the gyro sensors’ readings
become noisy. To resolve this issue, they have used accelerometers sensors to detect the robot’s
current state, and Kalman filter algorithm was accordingly tuned using the fuzzy algorithm. Likewise,
Ibarra et al. proposed an adaptive neuro-fuzzy inference (ANFIS)-based system to tune the Kalman
filter algorithm for accurate attitude estimation based on the gyroscope and accelerometer sensors [39],
while others used hidden Markov models (HMM) for the same purpose [40].

With the passage of time, researchers have made some modifications of the Kalman filter with the
goal to improve its performance. Among such attempts is included the extended Kalman filter, which
is the nonlinear form of the basic Kalman filter. The extended Kalman filter linearizes the estimate of
the current mean and covariance. The iterated extended Kalman filter is another version of the Kalman
filter, which calculates the state estimates as a maximum posterior estimate. The extended Kalman



Symmetry 2019, 11, 94 5 of 20

filter is an iterated Kalman filter method with one iteration where the update is performed using the
Gauss–Newton technique [41]. The ensemble Kalman filter is another version of the Kalman filter
with a recursive filter, appropriate in a situation where a greater number of parameters needs to be
taken into account. The extended and particle filter have the same characteristics, the only difference
being that the ensemble Kalman filter makes the supposition that all the probabilities involved are
Gaussian [42,43]. The Kalman filter is also fused with some other methods such as the unbiased
finite-impulse response (UFIR) filter. The fusion filter is robust, but does not provide optimal results.
The fusion filter combines both the Kalman filter and UFIR, which decreases the error [44]. It is also
very useful to blend the machine learning algorithms with other methods to enable the decision
support system to make correct decisions. A solution named the adaptive artificial neural network has
been proposed for this purpose to make the computation more precise [45].

The proposed learning to prediction model presented in this paper is a generalized model that can
be used to tune the performance of any prediction algorithm under dynamic conditions. In contrast to
the single trained model in conventional prediction algorithms, the proposed learning to prediction
model is focused on the learning and maintenance of various training models at the same time, which
are learned by the learning module. Each trained model suits a particular environmental condition
and shall be activated through the updating of the tunable parameters or complete replacement of the
trained model in prediction algorithm when environmental triggers are observed.

3. Proposed Learning to Prediction Scheme

Conventionally, prediction algorithms are first trained using historical data, so that they can
learn the hidden pattern and relationship among input and output parameters. Afterwards, trained
models are used to predict the output for any given input data. The prediction algorithm will perform
well when input data and the application scenario remain the same as the training data conditions.
However, the existing prediction algorithm does not allow adaptation of the trained model with
changing and dynamic input conditions. To overcome this limitation, we propose the learning to
prediction model, as shown in Figure 1. The learning module is used to tune the prediction algorithm
to improve its performance in terms of prediction accuracy. In the proposed model, the learning
module acts like a supervisor that continuously monitors the performance of the prediction algorithm
by receiving its output as feedback. The learning module may also consider the external parameters
that may have an influence on the performance of the prediction algorithm. After analyzing the current
external factors and output of the prediction algorithm, the learning module may update the tunable
parameters of the prediction algorithm or completely replace the trained model in prediction algorithm
to improve its performance in terms of prediction accuracy when environmental triggers are observed.

For the experimental analysis, we have used the Kalman filter as the prediction algorithm, and our
learning module is based on artificial neural networks, as shown in Figure 2. The Kalman filter is
a lightweight algorithm that does not require all historical data, but only previous state information to
make an intelligent prediction about the actual state of the system [46,47]. In this study, the Kalman
filter algorithm is used to predict actual temperature from noisy temperature sensor readings. Noise in
temperature sensor readings is introduced based on a scenario where temperature sensor readings
are heavily influenced by the surrounding humidity level. For the learning module, we choose to
use the artificial neural network (ANN) algorithm, which takes three input parameters, i.e., current
temperature, predicted temperature (feedback), and humidity level. The Kalman filter algorithm
gets readings from the temperature sensor at time t, i.e., zt, and will predict actual temperature Tt by
removing noise. The Kalman filter algorithm’s performance is mainly controlled through a tunable
parameter known as Kalman gain (K), which is updated after every iteration using the process
covariance matrix (P) and the estimated error in sensors readings (R). The learning module will try to
find the estimated error in sensors’ readings (R), so that K can be updated intelligently. Before going
into the detailed architecture, we present a brief description of the Kalman filter algorithm in the next
sub-section.
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Figure 1. Conceptual view of the proposed learning to prediction model.
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Figure 2. Block diagram for temperature prediction using ANN-based learning with the Kalman filter.

3.1. Kalman Filter Algorithm

Kalman’s filter is a lightweight algorithm that does not require all historical data, but only previous
state information to make an intelligent prediction about the actual state of the system. Kalman gain K
is one of the most important parameters of the Kalman filter’s design, which performs all the magic.
Kalman filter algorithm updates the value of K depending on the situation to control weights given to
the system’s own predicted state or sensor readings. Figure 3 presents the essential components and
working of the Kalman filter algorithm.
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Every environment has its noise factors, which can seriously affect sensor readings in that
environment. In this study, we consider a temperature sensor reading having noise, and let us assume
Tt is the temperature at time t. The Kalman filter algorithm includes the process model that can make
an internal prediction about the system state, i.e., estimated temperature, and then, it is compared
with current sensor readings to decide predicted temperature Tt+1 at time t + 1. Next, we briefly
explain the step-by-step working of that Kalman filter algorithm, that is how it removes the noise from
sensor data.

In the first step, the predicted temperature is computed from the previously-estimated value
using the formula given below.

Tp = A · Tt−1 + B · ut (1)

where Tp is internally-predicted temperature, A and B represent the state transition and control
matrices, respectively. Tt−1 is the temperature at time t− 1, i.e., previously calculated, and ut represents
the control vector.

Uncertainty in the internally-predicted temperature is determined by a covariance factor, which
is updated using the following formula.

Ppredicted = A · Pt−1 · AT + Q (2)

where A and AT represent the state transition matrix and its transpose, and the old value of covariance
is Pt−1 along with an estimated error in the process represented by Q.

After making an internal estimate about system next state and updating covariance, Kalman’s
gain K is updated as follows.

K =
Ppredicted · HT

H · Ppredicted · HT + R
(3)

where H and HT represent the observation matrix and its transpose, whereas the estimated error in
the measurements is expressed as R.

Let us assume that current reading obtained from the temperature sensor at time t is represented
as zt. Then, the predicted temperature given by Kalman’s filter is calculated using the following
equation.

Tt = Tpredicted + K(zt − H · Tpredicted) (4)

In the final step, the covariance factor is updated for the next iteration as below:

Pt = (I − K · H)Ppredicted (5)
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3.2. ANN-Based Learning to Prediction for the Kalman Filter

Figure 3 presents the flow diagram illustrating the operation of the Kalman filter, which works
fine when the estimated error in the sensor is not changing. However, if error in the sensor reading
changes due to some other (external) parameter, then we need to update estimated error in the
measurements (R), accordingly. In this study, we consider a scenario where temperature sensor
readings are affected by humidity level. A random amount of error is introduced in sensor readings
based on the current humidity level using a uniform distribution. The conventional Kalman filter
algorithm fails to predict actual temperature under these dynamic conditions. Figure 4 presents the
detailed working diagram of the proposed learning to prediction scheme. The learning module is
based on an artificial neural network algorithm taking three inputs, i.e., current temperature, current
humidity, and previously-predicted temperature by the Kalman filter algorithm. The output of the
ANN algorithm is the predicted error in sensor readings, which is then divided by a constant factor
(F) to compute the estimated error in sensor readings, i.e., R. The updated value of R is then passed
to the Kalman filter algorithm to tune its prediction accuracy by appropriately adjusting the Kalman
gain (K). The proposed learning to prediction model enables the Kalman filter to estimate the actual
temperature accurately from noisy sensor readings with a dynamic error rate.
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4. Experimental Results and Discussion

4.1. Experimental Setup

For the experimental analysis, we used real data of temperature and humidity level collected
for a one-year period in Seoul, South Korea. Figure 5 shows the actual values of temperature and
humidity data collected over an hourly interval from 1 January–31 December 2010. There was in total
365× 24 = 8760 data instances. To find the correlation between actual temperature and humidity level,
we used the Pearson correlation coefficient formula given below.

Correl(T, H) = ρ =
∑(ti − t̄)(hi − h̄)√

∑(ti − t̄)2 ∑(hi − h̄)2
(6)

where Correl(T, H) is the correlation coefficient ρ between temperature and humidity and ti and hi
represent the temperature and humidity values in the ith hour, respectively. The mean values of
temperature and humidity are expressed as t̄ and h̄, respectively.

There exists a significant, but weak, positive correlation between humidity level and the actual
temperature, r(8758) = 0.22, p < 0.0001. To create dynamically-changing conditions, we introduced
error into the temperature sensor readings based on the humidity level using a uniform distribution.
The amount of error was randomly generated, but it was proportional to the normalized current
humidity level, i.e.,

|Err| ∝
hcur − hmin
hmax − hmin

(7)

where |Err| is the absolute error in temperature sensor readings and hcur, hmax, and hmin represent
the current humidity level, maximum humidity level, and minimum humidity level, respectively.
To compute the simulated sensor readings with noise, we have used the following formula.

Tsen =
hcur − hmin
hmax − hmin

×<(−1, 1)× S + Torg (8)

where Tsen is the simulated sensor reading with noise, < is used to generate a random number between
−1 and +1 using a uniform distribution, S is used for the scaling factor of the error, and Torg is the
original (actual) temperature.
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Figure 6 shows the actual humidity level along with the corresponding randomly-generated error
in temperature sensor readings. To introduce sufficient noise to generate dynamic conditions, we used
scaling factor S = 10 in these experiments. This was good enough to significantly disturb the Kalman
filter algorithm’s prediction accuracy, thus creating a test scenario for the evaluation of the proposed
learning to prediction model. Figure 7 shows the actual temperature values along with simulated
sensor readings with randomly-generated noise using scaling factor S = 10. Table 1 presents a brief
summary of the collected data and simulated noisy sensor data.

4.2. Implementation

We implemented the proposed system for the evaluation of the Kalman filter algorithm with
the learning module in Visual C#. The experiments were performed on a real dataset containing
temperature and humidity data for a one-year duration along with simulated noisy sensor readings.
We loaded the data from an external text file and stored it inside the application’s data structure.
The data contained four input parameters, i.e., original temperature, noisy sensor reading, humidity
level, and amount of error. First, we computed the root mean squared error (RMSE) for sensor readings
by comparing its values with the original temperature data. The RMSE for sensor readings is very
high, i.e., 5.21.
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Table 1. Summary of collected and simulated noisy data.

Measure Temperature
(◦C)

Temperature Sensor
Readings (◦C)

Humidity
(g/m3)

Absolute Error in
Temperature Sensor

Readings

Minimum −15.30 −21.36 12.00 0.00
Maximum 33.40 38.58 97.00 10.00
Average 12.14 12.16 62.90 5.99

Stdev 11.39 12.58 19.89 2.34

Next, we used the Kalman filter algorithm to predict actual temperature from the noisy sensor
reading. The implementation interface provides manual tuning of the Kalman filter internal parameter,
i.e., estimated error in measurement (R). Experiments were conducted with different values of
R, and the corresponding results were collected. The RMSE for predicted temperature using the
Kalman filter with R = 20 was 2.49, which was much better than the RMSE of sensor readings,
i.e., 52.20% reduction of the error. However, it still needs improvement. We have used the Accord.NET
framework [48] for the implementation of the ANN-based learning module to predict and tune the
error rate in measurement to improve the prediction accuracy of the Kalman filter algorithm. The ANN
algorithm has three neurons in the input layer for humidity data, sensing, and predicted temperature
data and one neuron in the output layer for predicting the error in sensor readings. Input and output
data were normalized using the following equation.

d̃i =
di − dmin

dmax − dmin
(9)

where d̃i is the normalized value for the ith data point of the input and output parameters, i.e., humidity,
sensing, and predicted temperature, and the predicted error in sensor readings. dmin and dmax are the
corresponding minimum and maximum values in the available dataset for each parameter.

As the ANN network is trained with normalized data, therefore, we need to de-normalize the
output of the neural network to get the corresponding predicted error using the following equation.

erri = ˜erri × (errmax − errmin) + errmin (10)

For ANN algorithm training, different configurations were considered by changing the number of
neurons in the hidden layer, the activation function, and learning rates. For every configuration of ANN,
multiple independent experiments were conducted for training, and average results are reported to factor
out the stochastic element in ANN network weights’ initialization. Furthermore, to avoid bias in the
training process, the 4-fold cross-validation technique was used for every configuration in all experiments.
For this purpose, we divided the dataset into four subsets of equal size (i.e., 2190 instances in each subset).
Figure 8 illustrates the training and testing dataset used for each model in our 4-fold cross-validation
process. As per this scheme, 75% of the data were used for training, and the remaining 25% was used for
testing the ANN algorithm with the selected configuration in each experiment. Table 2 provides detailed
information regarding the selected configuration for ANN and the corresponding prediction accuracy
in terms of RMSE for training and testing datasets in each model. The ANN training algorithm was
based on the Levenberg–Marquardt algorithm, which is considered to be the best and fastest method for
moderately-sized neural networks [49]. The maximum number of epochs used to train the ANN network
was 100.

The reported results reveal that with the linear activation function, resulted in ANN being
rarely affected by changing the number of neurons in the hidden layer or the learning rate. However,
significant variation in prediction accuracy can be observed for each model in the 4-fold cross-validation
process. Interestingly, in the case of Model 2, higher prediction accuracy was achieved with the testing
dataset as compared to the training dataset. The sigmoid activation function is commonly used in
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the ANN algorithm, and significant improvement in the prediction accuracy can be observed in the
reported results in comparison to the linear activation function. The best case results (highlighted in
bold) were achieved for the ANN algorithm with the sigmoid activation function having 10 neurons
in the hidden layer with a learning rate of 0.2. The same configuration is further used for tuning the
performance of the Kalman filter algorithm.

Record #1

Record #8760

Record #6571

Record #1

Record #8760

Record #6571

Record #4381

Record #1

Record #8760

Record #2191

Record #4380

Model 1 Model 3Model 2
Record #1

Record #8760

Record #2190

Model 4

Training dataset Testing dataset

Figure 8. Training and testing dataset using the 4-fold cross-validation model.
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Table 2. ANN algorithm prediction results in terms of RMSE for training and testing datasets with different configurations using the 4-fold cross-validation model.

ANN Configuration
Experiment ID

Model 1 Model 2 Model 3 Model 4
Models Average (Test Cases) Experiments Average (Test Cases)

Hidden Layers Activation Function Learning Rate Training Test Training Test Training Test Training Test

5 Linear 0.1 1 4.45 5.19 5.04 3.18 4.50 5.05 4.56 4.88 4.57

4.57
5 Linear 0.1 2 4.45 5.19 5.04 3.18 4.50 5.05 4.56 4.88 4.57
5 Linear 0.1 3 4.45 5.19 5.04 3.18 4.50 5.05 4.56 4.88 4.57

5 Linear 0.2 1 4.45 5.19 5.04 3.18 4.50 5.05 4.56 4.88 3.28

4.14
5 Linear 0.2 2 4.45 5.19 5.04 3.18 4.50 5.05 4.56 4.88 4.57
5 Linear 0.2 3 4.45 5.19 5.04 3.18 4.50 5.05 4.56 4.88 4.57

5 Sigmoid 0.1 1 0.30 0.28 0.22 0.24 0.22 0.23 0.35 0.35 0.27

0.22
5 Sigmoid 0.1 2 0.21 0.18 0.22 0.25 0.22 0.23 0.06 0.09 0.19
5 Sigmoid 0.1 3 0.23 0.21 0.10 0.12 0.15 0.15 0.24 0.27 0.19

5 Sigmoid 0.2 1 0.16 0.15 0.18 0.18 0.22 0.24 0.22 0.25 0.21

0.22
5 Sigmoid 0.2 2 0.22 0.24 0.14 0.18 0.18 0.22 0.19 0.22 0.22
5 Sigmoid 0.2 3 0.11 0.20 0.22 0.23 0.23 0.23 0.24 0.26 0.23

10 Linear 0.1 1 4.45 5.19 5.04 3.18 4.50 5.05 4.56 4.88 4.57

4.57
10 Linear 0.1 2 4.45 5.19 5.04 3.18 4.50 5.05 4.56 4.88 4.57
10 Linear 0.1 3 4.45 5.19 5.04 3.18 4.50 5.05 4.56 4.88 4.57

10 Linear 0.2 1 4.45 5.19 5.04 3.18 4.50 5.05 4.56 4.88 4.57

4.57
10 Linear 0.2 2 4.45 5.19 5.04 3.18 4.50 5.05 4.56 4.88 4.57
10 Linear 0.2 3 4.45 5.19 5.04 3.18 4.50 5.05 4.56 4.88 4.57

10 Sigmoid 0.1 1 0.24 0.21 0.10 0.10 0.24 0.24 0.21 0.24 0.20

0.22
10 Sigmoid 0.1 2 0.26 0.22 0.20 0.22 0.27 0.27 0.52 0.36 0.27
10 Sigmoid 0.1 3 0.28 0.23 0.11 0.13 0.08 0.08 0.31 0.33 0.19

10 Sigmoid 0.2 1 0.20 0.16 0.09 0.10 0.23 0.25 0.24 0.27 0.19

0.21
10 Sigmoid 0.2 2 0.25 0.27 0.20 0.22 0.19 0.20 0.18 0.21 0.22
10 Sigmoid 0.2 3 0.24 0.19 0.15 0.16 0.24 0.24 0.22 0.23 0.21

15 Linear 0.1 1 4.45 5.19 5.04 3.18 4.50 5.05 4.56 4.88 4.57

4.57
15 Linear 0.1 2 4.45 5.19 5.04 3.18 4.50 5.05 4.56 4.88 4.57
15 Linear 0.1 3 4.45 5.19 5.04 3.18 4.50 5.05 4.56 4.88 4.57

15 Linear 0.2 1 4.45 5.19 5.04 3.18 4.50 5.05 4.56 4.88 4.57

4.57
15 Linear 0.2 2 4.45 5.19 5.04 3.18 4.50 5.05 4.56 4.88 4.57
15 Linear 0.2 3 4.45 5.19 5.04 3.18 4.50 5.05 4.56 4.88 4.57

15 Sigmoid 0.1 1 1.15 0.91 0.27 0.34 0.34 0.33 0.24 0.27 0.46

0.33
15 Sigmoid 0.1 2 0.13 0.11 0.23 0.25 0.23 0.20 0.31 0.31 0.21
15 Sigmoid 0.1 3 0.57 0.45 0.34 0.36 0.22 0.22 0.19 0.23 0.31

15 Sigmoid 0.2 1 0.27 0.23 0.56 0.91 0.19 0.22 0.40 0.40 0.44

0.30
15 Sigmoid 0.2 2 0.24 0.20 0.22 0.25 0.26 0.29 0.20 0.23 0.24
15 Sigmoid 0.2 3 0.25 0.19 0.20 0.24 0.21 0.22 0.21 0.24 0.22
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The screenshot given in Figure 9 shows the learning accuracy of the ANN algorithm with the best
configuration for 200 sample data instances. The ANN predicted error rate was well aligned with the
original error rate in data, which shows that our learning module was perfectly trained on the given
data-set. As stated earlier, R is the estimated error in measurements, which is directly proportional to
the predicted error rate in sensor readings, i.e.,

R ∝ erri (11)

Based on the predicted error rate, we updated the R value for the Kalman filter algorithm using
the following equation.

R =
erri
F

(12)

where is F is the proportionality constant, known as an error factor.
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Figure 9. Training results of the artificial neural network (ANN) algorithm (sample for 200
data instances).

4.3. Results and Discussion

For the performance evaluation, we compared the conventional Kalman filter algorithm prediction
results with our proposed learning to prediction model to observe the resultant improvement in the
prediction accuracy of the Kalman filter algorithm results. For the conventional Kalman filter, the
results were collected with varying the value of R. Figure 10 shows the results of the conventional
Kalman filter with selected values of R. The optimal value of R was not fixed, and it depended on the
available dataset. Its very difficult to choose the optimal value for R in the Kalman filter manually,
and therefore, experiments were conducted with different values of R. We observed that the prediction
accuracy of the Kalman filter changed with the changing values of R.

Next, we present the results of the Kalman filter tuned with the proposed learning to prediction
model. After training the ANN learning module, we used the trained model to improve the
performance of the Kalman filter algorithm by appropriately tuning its parameter R. As stated
earlier in Section 4.2, in order to get R from the predicted error, we need to choose an appropriate value
for F, i.e., the proportionality constant, known as the error factor, as given in Equation (12). Therefore,
experiments were conducted by varying the values of error factor F. Figure 11 shows the prediction
results of the Kalman filter algorithm with the learning module, varying the values of error factor F.
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Figure 10. Temperature prediction results using the Kalman filter algorithm with selected values of R
(sample results from 1 December–7 December).
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Figure 11. Temperature prediction results using the proposed learning to prediction Kalman filter
algorithm with selected error factor F (sample results from 1 December–7 December).

It is very difficult to comprehend the results presented in Figures 10 and 11, as the differences
among the results are not so obvious visually. Therefore, we used various statistical measures to
summarize these results in the form of a single statistical value for quantifiable comparative analysis.
Next, we present a short description of the three statistical measures that were used for performance
comparisons in terms of accuracy along with the corresponding formulas.
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• Mean absolute deviation (MAD): This measure is used to compute an average deviation found
in predicted values from actual values. MAD is calculated by dividing the sum of absolute
differences between the actual temperature Ti and predicted temperature T̂i by the Kalman filter
with the total number of data items, i.e., n.

MAD =
∑n

i=1
∣∣Ti − T̂i

∣∣
n

(13)

• Mean squared error (MSE): MSE is considered the most widely-used statistical measure in the
performance evaluation of prediction algorithms. Squaring the error magnitude not only removes
the negative and positive error problems, but it also gives more penalty for higher mispredictions
as compared to low errors. The MSE is calculated using the following formula.

MSE =
∑n

i=1
(
Ti − T̂i

)2

n
(14)

• Root mean squared error (RMSE): The problem with MSE is that it magnifies the actual error,
which sometimes makes it difficult to realize and comprehend the actual error amount. This
problem is resolved by the RMSE measure, which is obtained by simply taking the square root
of MSE.

RMSE =

√
∑n

i=1
(
Ti − T̂i

)2

n
(15)

Table 3 presents the statistical summary of the results for the Kalman filter with and without the
learning module. Results are summarized for varying values of R used in the case of experiments
conducted for the Kalman filter without the learning module. Similarly, the statistical summary of
the Kalman filter prediction results with the ANN learning module is also presented with different
selected values of F, i.e., the error factor. Comparative analysis shows that the Kalman filter with
the proposed learning to prediction model results in an error factor F = 0.02 (highlighted in bold),
outperforming all other settings on all statistical measures. The best results for the Kalman filter
without the learning module were obtained with R = 20, which results in a prediction accuracy of
2.49 in terms of RMSE. Similarly, the best results for the Kalman filter with the learning module were
obtained with F = 0.02, which results in a prediction accuracy of 2.38 in terms of RMSE. Figure 12
shows the sample results (from 1 December–7 December) for best cases of Kalman filter with and
without the ANN-based learning module. The relative improvement in prediction accuracy of the
proposed learning to prediction model (best case), when compared to the best and worst case results
of the Kalman filter without the learning module, was 4.41% and 11.19% in terms of RMSE metric,
respectively. Significant improvement in prediction accuracy gives us confidence to further explore
the application of the proposed learning to prediction model to improve the performance of other
prediction algorithms.

Table 3. Statistical summary of the Kalman filter prediction results with and without the ANN-based
learning module.

Metric Sensing Data
Kalman Filter Kalman Filter with Learning Module

R = 5 R = 10 R = 15 R = 20 R = 25 F = 0.005 F = 0.008 F = 0.01 F = 0.02 F = 0.05 F = 0.1

MAD 0.348 0.178 0.166 0.163 0.163 0.164 0.159 0.157 0.156 0.156 0.160 0.165
MSE 27.204 7.224 6.388 6.224 6.222 6.274 5.914 5.807 5.770 5.701 5.844 6.157

RMSE 5.216 2.688 2.527 2.495 2.494 2.505 2.432 2.410 2.402 2.388 2.417 2.481
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Figure 12. Best case results for the Kalman filter with and without the ANN-based learning module
(sample results from 1 December–7 December).

5. Conclusions and Future Work

In this paper, we presented a novel learning to prediction model to improve the performance of
prediction algorithms under dynamic conditions. The proposed model enabled conventional prediction
algorithms to adapt to dynamic conditions through continuous monitoring of its performance and
tuning of its internal parameters. To evaluate the effectiveness of the proposed learning to prediction
model, we developed an ANN-based learning module to improve the prediction accuracy of the
Kalman filter algorithm as a case study. We considered a scenario for experimental analysis where
temperature sensor readings were affected by an external parameter, i.e., humidity level. Noise
level changes with changing humidity levels, and the Kalman filter algorithm was unable to predict
the actual temperature. The proposed learning to prediction scheme improved the performance of
the Kalman filter prediction by dynamically tuning its internal parameter R, i.e., estimated error in
measurement. The ANN-based learning module takes three input parameters (i.e., current temperature
sensor reading, humidity level, and Kalman filter predicted temperature) in order to predict the
estimated noise in sensor readings. Afterwards, the estimated error in the measurement parameter,
i.e., R in the Kalman filter is updated by dividing the estimated error with a noise factor F. Experiments
were conducted to evaluate the performance of the Kalman filter algorithm with the proposed learning
to prediction model with different values of F. For comparative analysis, we collected the results of the
Kalman filter (without the learning module) with varying values of R. Results were summarized and
compared in terms of three statistical measures, i.e., the mean absolute deviation (MAD), the mean
squared error (MSE), and the root mean squared error (RMSE). Comparative analysis shows that the
Kalman filter with the proposed learning to prediction model outperformed on all statistical measures.
The best results for the Kalman filter without the learning module were obtained with R = 20, which
resulted in a prediction accuracy of 2.49 in terms of RMSE, whilst the best results for the Kalman filter
with the learning module were obtained with F = 0.02, which resulted in prediction accuracy of 2.38
in terms of RMSE. The relative improvement in the prediction accuracy of the proposed learning to
prediction model (best case), when compared to the best and worst case results of the Kalman filter
without the learning module, was 4.41% and 11.19% in terms of the RMSE metric, respectively. The
significant improvement in prediction accuracy gives us confidence to further explore the application of
the proposed learning to prediction model to improve the performance of other prediction algorithms.
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