
symmetryS S

Article

Real-Time Error-Free Reversible Data Hiding in
Encrypted Images Using (7, 4) Hamming Code and
Most Significant Bit Prediction

Kaimeng Chen 1 and Chin-Chen Chang 2,*
1 Computer Engineering College, Jimei University, Xiamen 361021, China; chenkaimeng@jmu.edu.cn
2 Department of Information Engineering and Computer Science, Feng Chia University,

Taichung 40724, Taiwan
* Correspondence: alan3c@gmail.com; Tel.: +886-4-2451-7250 (ext. 3790)

Received: 30 November 2018; Accepted: 30 December 2018; Published: 4 January 2019
����������
�������

Abstract: In this paper, a novel, real-time, error-free, reversible data hiding method for encrypted images
has been proposed. Based on the (7, 4) Hamming code, we designed an efficient encoding scheme
to embed secret data into the least significant bits (LSBs) of the encrypted image. For reversibility,
we designed a most significant bit (MSB) prediction scheme that can recover a portion of the modified
MSBs after the image is decrypted. These MSBs can be modified to accommodate the additional
information that is used to recover the LSBs. After embedding the data, the original image can
be recovered with no error and the secret data can be extracted from both the encrypted image
and the decrypted image. The experimental results proved that compared with existing methods,
the proposed method can achieve higher embedding rate, better quality of the marked image and
less execution time of data embedding. Therefore, the proposed method is suitable for real-time
applications in the cloud.

Keywords: reversible data hiding; Hamming code; MSB prediction

1. Introduction

Digital images are used extensively in various fields, such as the media, publishing, medicine
and the military. Therefore, the protection of the copyright and the integrity of digital images is very
important and relevant techniques have been developed for this purpose, such as image hashing [1]
and watermarking [2].

As a branch of watermarking, data hiding is an important technology for providing security for
confidential information. Data hiding technology can embed secret data imperceptibly into digital
images with various formats [3]. Depending on whether the cover image can be recovered after
embedding the secret data, data hiding methods are classified into two categories, that is, irreversible
and reversible data hiding.

Reversible data hiding (RDH) technology embeds the secret data into the cover image in
a reversible way [4]. To date, many RDH methods that work with plaintext images have been
proposed. The basic ideas of these methods are different expansion (DE) [5,6], histogram shift (HS) [7,8],
pixel value ordering (PVO) [9,10] and the modification of prediction errors [11,12]. All of these
methods use the spatial correlation and the redundancy of plaintext images to embed additional
bits. When a plaintext image is encrypted, these methods cannot work on “noisy” encrypted images,
which means that almost all spatial correlation and redundancy are lost.

Recently, RDH in encrypted images (RDHEI) get the attention of researchers. The problem of
RDHEI is how to embed secret data into encrypted images reversibly without decryption. RDHEI

Symmetry 2019, 11, 51; doi:10.3390/sym11010051 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
http://www.mdpi.com/2073-8994/11/1/51?type=check_update&version=1
http://dx.doi.org/10.3390/sym11010051
http://www.mdpi.com/journal/symmetry

Symmetry 2019, 11, 51 2 of 17

technology is useful for application in the cloud. To protect privacy, images always are encrypted
before they are transmitted to the cloud. Therefore, in the cloud, data must be embedded directly into
encrypted images for data management, authentication or other purposes.

To date, several RDHEI methods have been designed, several of which use pixel-bit modification
to embed secret bits into encrypted images and recover the images by using the spatial correlation
after image decryption. In Reference [13], encrypted image was divided into non-overlapping blocks
and a secret bit was embedded in a block. To embed a secret bit, half of the pixels in a block are
selected randomly and the three least significant bits (LSBs) of these pixels are flipped. To recover the
image and extract the embedded bits after decryption, the flipped pixels are detected by estimating
the smoothness of each block. The method in Reference [13] was improved in Reference [14–17].
In Reference [14], the side-match strategy was used to improve the precision of the estimation of the
smoothness of the blocks. In Reference [15], more precise functions for estimating the smoothness were
used and adjacent pixels in the neighboring blocks were taken into account to estimate the smoothness
of the blocks. In Reference [16], the approach used to select the pixels to be flipped was improved for
better quality of the decrypted image and the smoothness of the block was estimated based on the
content of the image to reduce errors associated with extracting the bits. In Reference [17], each block
was divided into two or more sub-blocks. By selectively flipping three LSBs of the sub-blocks, two or
more bits can be embedded into one block to improve the capacity. In Reference [18], the secret bits
were embedded into randomly-selected pixels in the encrypted image. By using a designed pixel-value
predictor after decryption, the modified pixels can be detected to achieve the secret data and the
recovered image. A method for improving [18] was proposed in Reference [19] and the improved
method involved improving the way pixels were selected to be embedded to enlarge the capacity and
BCH coding was used to reduce errors in extracting the bits. In Reference [20], the secret bits were
embedded by substituting the most significant bits (MSBs) of the pixels in the encrypted image and
recovering the substituted MSBs by MSB prediction after decryption.

Several methods have used compression coding to compress the encrypted image to reserve
additional room for embedding data. In Reference [21], the pixels in the encrypted image are divided
randomly into groups. The LSBs of all pixels in each group are compressed by a designed compression
matrix to accommodate additional bits. In Reference [22], the image was divided into non-overlapping
2× 2 blocks, which were encrypted. Then, the encrypted blocks were classified into a smooth set
and a complex set. The LSBs of the blocks in the smooth set were compressed to make room for the
embedded bits. In Reference [23], the image also was divided into 2× 2 blocks and encrypted at
the block level. For the encrypted blocks, run-length coding or matrix compression was chosen to
compress the blocks according to the effect of compression. In Reference [24], the MSBs of 75% of
the pixels in the encrypted image were compressed by distributed-source encoding to reserve room.
In Reference [25], the LDPC code was used to compress the fourth LSBs of half of the pixels in the
encrypted image to make room.

Several methods used the design of a special encryption scheme to transfer the spatial correlation
in the plaintext image into the encrypted image and they used RDH methods, such as histogram shift,
different expansion and pixel value ordering to embed secret bits. In Reference [26], a cross division
scheme was used to divide the plaintext image into groups of the same size and the neighboring pixels
belonged to the same group. All pixels in the same group were encrypted by using the same key to
maintain the spatial correlation between the neighboring pixels. Then, a difference histogram can
be generated from the encrypted groups and a histogram shift scheme can be used to embed secret
bits based on the histogram. In Reference [27], the plaintext image was divided into non-overlapping
2 × 2 blocks and the pixels in the same block were encrypted using the same key. Then, a pixel
value ordering scheme was used to embed secret bits into the encrypted blocks. In Reference [28],
the plaintext image was divided into non-overlapping 2× 2 blocks and the image was encrypted by
block permutation. An adaptive block-level predictor was designed to generate a set of prediction
errors from the encrypted image. Based on the set of prediction errors, a difference expansion scheme

Symmetry 2019, 11, 51 3 of 17

was used to embed the secret bits. In Reference [29], the original image is transformed by integer
wavelet transform before image encryption, then a histogram shift scheme can be used on the encrypted
coefficients to embed secret bits.

Current studies of RHDEI are focused on improving the embedding rate and the visual quality of
the marked decrypted image (i.e., the decrypted image that contains the embedded data). The efficiency
of conducting the RDHEI methods should be taken into account considering that the data scales of
the images have become very large in many applications in recent years and the cloud would receive
a large number of the encrypted images from different data owners. With the aim of supporting the
real-time application of RDHEI, we propose a novel, real-time RDHEI method that is based on (7, 4)
Hamming coding and MSB prediction. The proposed method considers the capacity and visual quality
as well as the execution time. The contributions in this paper are listed as follows:

1. We proposed a (7, 4) Hamming code-based encoding scheme to embed secret bits into the LSBs
of the encrypted image. The scheme can modify only 0–2 LSBs to embed 3 secret bits. Therefore,
after data embedding, the visual quality of the marked decrypted image is high.

2. We introduced an MSB prediction scheme with an error prediction map to implement error-free
recovery of a portion of the MSBs. Therefore, these MSBs become reversible and modifiable.
The information for recovering the modified LSBs can be embedded into the modifiable MSBs.

3. We proposed a novel RDHEI method by using the (7, 4) Hamming coding-based encoding scheme
and the MSB prediction scheme.

(a) The method is a separable method. The receiver can obtain the secret data from the encrypted
image without decryption and image recovery.

(b) The method is free of errors. The extracted secret data have no incorrect bits. The recovered
image is totally the same as the original image.

(c) The method has high fidelity of the marked decrypted image.
(d) The method is efficient from the standpoint of computation. It can use less execution time for

embedding secret data than the existing RDHEI methods. Therefore, it is suitable for real-time
applications of RDHEI in the cloud.

The rest of the paper is organized as follows. In Section 2, the (7, 4) Hamming code encoding
and the MSB prediction are introduced. In Section 3, we propose the novel real-time RDHEI method
using the (7, 4) Hamming code and the MSB prediction. In Section 4, the experimental results of the
proposed method are provided and compared with the results of existing RDHEI methods. In Section 5,
we present our conclusions concerning the methods we have developed and proposed.

2. (7, 4) Hamming Code-Based Encoding and MSB Prediction

2.1. The Hamming Code

The Hamming code is one of the most extensively used error correcting codes and it can locate
and correct an error in a single bit. The codeword of the (n, k) Hamming code consists of n bits that
consist of two parts, that is, the first k bits of the codeword are message bits and the remaining bits,
that is, n − k bits, are additional bits that are called parity check bits, which are used to detect and
correct the single bit error. One of the most common Hamming code schemes is the (7, 4) Hamming
code, which uses a 7-bit codeword that consists of four message bits and three parity-check bits.
Below, we show an example of how the (7, 4) Hamming code encodes four message bits into one 7-bit
codeword and corrects the single bit error in the codeword.

To do its work, the (7, 4) Hamming code must generate a pair of matrices in advance, that is,
the code generator matrix, G and the parity check matrix, H. An example of the two matrices is shown as:

Symmetry 2019, 11, 51 4 of 17

G =

1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1

,

H =

 0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

.

Any four message bits can be encoded into a 7-bit Hamming codeword by modulo-2 matrix
multiplication. First, the four message bits are regarded as a 1× 4 vector; then, the vector is multiplied
by the 4× 7 generator matrix, G, to generate the 1× 7 vector in which the first four elements are the
same as the four message bits and the last three elements are the parity check code. For example,
from the four message bits M = (1110)2, the 7-bit Hamming codeword, C, is generated:

C = M×G =
[

1 1 1 0
]
×

1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1

 =
[

1 1 1 0 0 0 0
]
. (1)

Therefore, the codeword C of M is (1110000)2.
To check whether the single bit error has occurred at the receiver’s side, the 7-bit codeword C that

is received is transformed into a 7× 1 vector and the parity check matrix, H, is multiplied by the vector
using modulo-2 matrix multiplication. If the result of the multiplication is an all-zero 3× 1 vector,
the codeword has no single bit error. Otherwise, the result is equal to one of the matrix columns of
H, denoted as the ith column and the receiver can detect that the ith bit is incorrect and correct it.
For example, if the codeword C = (1110000)2 generated by G is transformed into Cerr = (1010000)2 due
to the single bit error, the error can be detected by:

R = H× Cerr =

 0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

× [1 0 1 0 0 0 0
]T

=

 0
1
0

. (2)

Since the result R is equal to the second column of H, the receiver can detect the second bit of the
codeword is an incorrect bit and correct the bit, so that Cerr is recovered to C. Notice that the single bit
error can be detected in either message bits or parity-check bits.

2.2. Hamming Code-Based Encoding

Based on the (7, 4) Hamming code, we designed an encoding scheme to embed three secret bits
into any seven bits that were extracted randomly from the LSBs of the encrypted image. The basic
idea of the Hamming code-based encoding scheme is using the single bit error information of the
7-bit Hamming codewords to represent the secret bits. For a given parity check matrix H, any 7-bit
Hamming codeword can be classified as a ‘non-bit-error codeword’ or an ‘ith-bit-error codeword’
(1 ≤ i ≤ 7) according to Equation (2). The ith-bit-error codeword is the codeword of which the ith bit
is detected as an incorrect bit by using the parity check matrix H and the non-bit-error codeword is
the codeword of which no bit is detected as an incorrect bit by the H. In the Hamming code-based
encoding scheme, the non-bit-error codeword is used to represent the three secret bits (000)2 and the
1st-bit-error codeword, 2nd-bit-error codeword, . . . , 7th-bit-error codeword are used to represent the
three secret bits (001)2, (010)2, . . . , (111)2.

For a given encrypted image, the image can be randomly divided into groups which contains
seven pixels respectively. For any 7-pixel group {P1, P2, . . . , P7}, the LSBs of all the pixels in the group

Symmetry 2019, 11, 51 5 of 17

can be extracted as a 7-bit Hamming codeword C = (b1, b2, b3, b4, b5, b6, b7). To embed three secret
bits in C, the Hamming code-based encoding scheme can encode C into a non-bit-error codeword or
an ith-bit-error codeword (1 ≤ i ≤ 7) to represent three secret bits by modifying at most 2 bits of C.
The detailed procedure of the Hamming code-based encoding is given as follow:

Step 1 For the 7-bit codeword C = (b1, b2, b3, b4, b5, b6, b7), we calculate R = H× CT according to
Equation (2), where H is the parity check matrix. If R is an all-zero vector, C is a non-bit-error
codeword. Otherwise, R must be identical to one column of H. Denoting the index of the
column as i, C is an ith-bit-error codeword.

Step 2 If C is the codeword which represents the three secret bits to be embedded, nothing needs to
be done. Otherwise, go to Step 3.

Step 3 If C is a non-bit-error codeword, C can be encoded into any kth-bit-error codeword by flipping
its kth bit bk (1 ≤ k ≤ 7). If C is an ith-bit-error codeword (1 ≤ i ≤ 7), C can be encoded into
a non-bit-error codeword by flipping the ith bit bi or a kth-bit-error codeword by flipping the
ith and kth bits. Therefore, by flipping at most 2 bits, C can be encoded into the Hamming
codeword which represents the three secret bits to be embedded.

Figure 1 shows an examples of the Hamming code-based encoding scheme. For the given parity
check matrix H, to embed the secret bits (010)2, the codeword C1 is the 2nd-bit-error codeword which
represents (010)2, so nothing needs to be done. To embed the secret bits (111)2, the codeword C2 is the
4th-bit-error codeword, so the 4th bit and the 7th bit of C2 are flipped to encode C2 into a 7th-bit-error
codeword which represents (111)2.

Symmetry 2019, 11, x FOR PEER REVIEW 5 of 18

codeword. Otherwise, R must be identical to one column of H. Denoting the index of the
column as i, C is an ith-bit-error codeword.

Step 2 If C is the codeword which represents the three secret bits to be embedded, nothing needs to
be done. Otherwise, go to Step 3.

Step 3 If C is a non-bit-error codeword, C can be encoded into any kth-bit-error codeword by
flipping its kth bit bk (≤ ≤1 7k). If C is an ith-bit-error codeword (≤ ≤1 7i), C can be encoded
into a non-bit-error codeword by flipping the ith bit bi or a kth-bit-error codeword by flipping
the ith and kth bits. Therefore, by flipping at most 2 bits, C can be encoded into the Hamming
codeword which represents the three secret bits to be embedded.

Figure 1 shows an examples of the Hamming code-based encoding scheme. For the given parity
check matrix H, to embed the secret bits (010)2, the codeword C1 is the 2nd-bit-error codeword which
represents (010)2, so nothing needs to be done. To embed the secret bits (111)2, the codeword C2 is the
4th-bit-error codeword, so the 4th bit and the 7th bit of C2 are flipped to encode C2 into a 7th-bit-
error codeword which represents (111)2.

Figure 1. Example of the Hamming code-based encoding scheme.

By the proposed Hamming code-based encoding scheme, secret bits can be embedded into 7-bit
Hamming codewords that consists of the LSBs of the encrypted image. However, after embedding,
the original codewords cannot be recovered directly from the encoded codewords. For reversibility,
we designed an MSB prediction scheme to make a portion of the MSBs of the encrypted image
modifiable. The information for the recovery of the LSBs can be embedded in the modifiable MSBs
and the modifiable MSBs can be recovered without any error. Details of the MSB prediction scheme
are given in Section 2.3.

2.3. MSB Prediction

To recover the modified LSBs of the encrypted image, additional information for recovery
should be recorded in the encrypted image. To accommodate the additional information, we
designed an MSB prediction scheme that can recover a portion of the modified MSBs by the spatial
correlation and the neighboring unmodified pixels after decryption. Therefore, these MSBs are
reversible and they can be modified to accommodate additional information for the recovery of the
modified LSBs.

To make a portion of the MSBs reversible, we divided the cover image into two sets, that is,
modifiable pixels and non-modifiable pixels. Figure 2 shows that, for each modifiable pixel P(i, j), its
four neighboring pixels P(i − 1, j), P(i + 1, j), P(i, j − 1) and P(i, j + 1) are set to be non-modifiable. The
LSBs of the modifiable pixels are used to embed the secret data and the MSBs of the modifiable pixels
are used to accommodate additional information for the recovery of the LSBs. The non-modifiable

Figure 1. Example of the Hamming code-based encoding scheme.

By the proposed Hamming code-based encoding scheme, secret bits can be embedded into 7-bit
Hamming codewords that consists of the LSBs of the encrypted image. However, after embedding,
the original codewords cannot be recovered directly from the encoded codewords. For reversibility,
we designed an MSB prediction scheme to make a portion of the MSBs of the encrypted image
modifiable. The information for the recovery of the LSBs can be embedded in the modifiable MSBs
and the modifiable MSBs can be recovered without any error. Details of the MSB prediction scheme
are given in Section 2.3.

2.3. MSB Prediction

To recover the modified LSBs of the encrypted image, additional information for recovery should
be recorded in the encrypted image. To accommodate the additional information, we designed an MSB
prediction scheme that can recover a portion of the modified MSBs by the spatial correlation and the
neighboring unmodified pixels after decryption. Therefore, these MSBs are reversible and they can be
modified to accommodate additional information for the recovery of the modified LSBs.

Symmetry 2019, 11, 51 6 of 17

To make a portion of the MSBs reversible, we divided the cover image into two sets, that is,
modifiable pixels and non-modifiable pixels. Figure 2 shows that, for each modifiable pixel P(i, j), its four
neighboring pixels P(i − 1, j), P(i + 1, j), P(i, j − 1) and P(i, j + 1) are set to be non-modifiable. The LSBs
of the modifiable pixels are used to embed the secret data and the MSBs of the modifiable pixels are
used to accommodate additional information for the recovery of the LSBs. The non-modifiable pixels
are not modified. After the recovery of the LSBs and decryption, the non-modifiable pixels are used to
recover the modified MSBs of the modifiable pixels by MSB prediction.

Symmetry 2019, 11, x FOR PEER REVIEW 6 of 18

pixels are not modified. After the recovery of the LSBs and decryption, the non-modifiable pixels are
used to recover the modified MSBs of the modifiable pixels by MSB prediction.

Figure 2. The modifiable pixels and non-modifiable pixels.

For a modifiable pixel, P(i, j), of which the MSB potentially has been modified, the MSB
prediction scheme recovers the original MSB of the pixel as follows. First, the estimated value of the
P(i, j) is calculated by:

− + + + − + +
=e

(1,) (1,) (, 1) (, 1)
(,)

4
P i j P i j P i j P i j

P i j . (3)

Then, the prediction errors of the two candidates, that is, P(i, j) and Pf(i, j), where Pf(i, j) is
calculated by flipping the MSB of P(i, j), are calculated by:

e() ()PE = P i, j - P i, j , (4)

−f f e() ()PE = P i, j P i, j . (5)

According to the prediction errors, the original pixel value of P(i, j) is recovered by:

= >
 =

f

f f

e f

(), if
(), if

the pixel of which the MSB is the same as (), if

P i, j PE < PE
Original pixel value P i, j PE PE

P i, j PE PE
. (6)

By using the MSB prediction, the modification of the MSBs of the modifiable pixels can be
detected and recovered. Therefore, in the encrypted image, the MSBs of the modifiable pixels can be
substituted with the addition information for the recovery of the LSBs.

Since the plaintext image has a spatial correlation and MSB significantly affects the pixel value,
the modification of the MSB can be detected correctly by the MSB prediction scheme in most cases.
However, if the image has some complex regions in which the spatial correlation between the
neighboring pixels is weak, it is possible that the estimated value of the modifiable pixel will be quite
different from the original pixel value. In this case, the MSB prediction would choose the wrong
candidate as the original pixel value. To recover the modified MSBs with no error, before image
encryption, an error prediction map is generated from the original image. The details of the error
prediction map are given in Section 2.4.

2.4. Error Prediction Map

To prevent errors in the recovery of the modifiable MSBs, an error prediction map was designed
to help the MSB prediction. The error prediction map was generated from the original image before
image encryption. The procedure of generating the error prediction map was:

Step 1 For the original modifiable pixel, P, use Equation (3) to calculate the estimated value, Pe.
Step 2 Flip the MSB of P to generate the value of the flipped pixel, Pf.

Figure 2. The modifiable pixels and non-modifiable pixels.

For a modifiable pixel, P(i, j), of which the MSB potentially has been modified, the MSB prediction
scheme recovers the original MSB of the pixel as follows. First, the estimated value of the P(i, j) is
calculated by:

Pe(i, j) =
P(i− 1, j) + P(i + 1, j) + P(i, j− 1) + P(i, j + 1)

4
. (3)

Then, the prediction errors of the two candidates, that is, P(i, j) and Pf(i, j), where Pf(i, j) is
calculated by flipping the MSB of P(i, j), are calculated by:

PE = |P(i, j)− Pe(i, j)|, (4)

PEf = |Pf(i, j)− Pe(i, j)|. (5)

According to the prediction errors, the original pixel value of P(i, j) is recovered by:

Original pixel value =

P(i, j), if PE < PEf
Pf(i, j), if PE > PEf

the pixel of which the MSB is the same as Pe(i, j), if PE = PEf

. (6)

By using the MSB prediction, the modification of the MSBs of the modifiable pixels can be detected
and recovered. Therefore, in the encrypted image, the MSBs of the modifiable pixels can be substituted
with the addition information for the recovery of the LSBs.

Since the plaintext image has a spatial correlation and MSB significantly affects the pixel value,
the modification of the MSB can be detected correctly by the MSB prediction scheme in most cases.
However, if the image has some complex regions in which the spatial correlation between the
neighboring pixels is weak, it is possible that the estimated value of the modifiable pixel will be
quite different from the original pixel value. In this case, the MSB prediction would choose the wrong
candidate as the original pixel value. To recover the modified MSBs with no error, before image
encryption, an error prediction map is generated from the original image. The details of the error
prediction map are given in Section 2.4.

2.4. Error Prediction Map

To prevent errors in the recovery of the modifiable MSBs, an error prediction map was designed
to help the MSB prediction. The error prediction map was generated from the original image before
image encryption. The procedure of generating the error prediction map was:

Symmetry 2019, 11, 51 7 of 17

Step 1 For the original modifiable pixel, P, use Equation (3) to calculate the estimated value, Pe.
Step 2 Flip the MSB of P to generate the value of the flipped pixel, Pf.
Step 3 Calculate the prediction error, PE, of P and the PEf of Pf using Equations (4) and (5), respectively.
Step 4 If PE > PEf or PE = PEf and the MSB of the estimated value Pe is the same as Pf, the MSB of P

cannot be recovered correctly after MSB has been modified. Denote P as the ‘Error prediction
pixel’ by recording the coordinate of P.

Step 5 Repeat Steps 1–4 until all the error prediction pixels in the original image have been recorded.

After image encryption, the generated error prediction map can be encrypted and embedded into
the MSBs of the modifiable pixels with its size information by MSB substitution. For an image with the
size of M× N, log2 M + log2 N bits are required for each error prediction pixel and log2 MN bits are
required for the size information. In most cases, the error prediction pixels are quite a small portion of
all the modifiable pixels in the original image. The detailed discussion on how the size of the error
prediction map affect the embedding capacity is given in Section 3.2.

For a modifiable pixel P(i, j) of which the MSB is potentially modified and its MSB-flipped pixel
Pf(i, j) which is generated by flipping the MSB of P(i, j), if the coordinate (i, j) is recorded as the error
prediction pixel in the error prediction map, the original pixel value of P(i, j) is recovered by:

Original pixel value =

P(i, j), if PE > PEf
Pf(i, j), if PE < PEf

the pixel of which the MSB is different from Pe(i, j), if PE = PEf

. (7)

3. The Proposed Method

Based on the (7, 4) Hamming coding-based encoding and the MSB prediction with the error
prediction map, a novel, real-time, error-free RDHEI method is proposed in this section and Figure 3
shows an overview of the proposed method. At the content owner’s side, the content owner can
generate the error prediction map from the original image. Then, the image and the error prediction
map are encrypted and the encrypted error prediction map is accommodated in the MSBs of the
encrypted image. At the data hider’s side, the data hider can use the (7, 4) Hamming coding-based
encoding to embed secret data. At the receiver’s side, if the receiver only has the encryption key,
a marked decrypted image that has high visual quality can be generated. The secret data can be
obtained from the encrypted image by using the data hiding key only. The original image can be
retrieved when the receiver uses data hiding key and the encryption key together.

Symmetry 2019, 11, x FOR PEER REVIEW 7 of 18

Step 3 Calculate the prediction error, PE, of P and the PEf of Pf using Equations (4) and (5),
respectively.

Step 4 If PE > PEf or PE = PEf and the MSB of the estimated value Pe is the same as Pf, the MSB of P
cannot be recovered correctly after MSB has been modified. Denote P as the ‘Error prediction
pixel’ by recording the coordinate of P.

Step 5 Repeat Steps 1–4 until all the error prediction pixels in the original image have been recorded.

After image encryption, the generated error prediction map can be encrypted and embedded
into the MSBs of the modifiable pixels with its size information by MSB substitution. For an image
with the size of ×M N , +2 2log logM N bits are required for each error prediction pixel and

2log MN bits are required for the size information. In most cases, the error prediction pixels are quite
a small portion of all the modifiable pixels in the original image. The detailed discussion on how the
size of the error prediction map affect the embedding capacity is given in Section 3.2.

For a modifiable pixel P(i, j) of which the MSB is potentially modified and its MSB-flipped pixel
Pf(i, j) which is generated by flipping the MSB of P(i, j), if the coordinate (i, j) is recorded as the error
prediction pixel in the error prediction map, the original pixel value of P(i, j) is recovered by:

 >
= <
 =

f

f f

e f

(), if
(), if

the pixel of which the MSB is different from (), if

P i, j PE PE
Original pixel value P i, j PE PE

P i, j PE PE
. (7)

3. The Proposed Method

Based on the (7, 4) Hamming coding-based encoding and the MSB prediction with the error
prediction map, a novel, real-time, error-free RDHEI method is proposed in this section and Figure 3
shows an overview of the proposed method. At the content owner’s side, the content owner can
generate the error prediction map from the original image. Then, the image and the error prediction
map are encrypted and the encrypted error prediction map is accommodated in the MSBs of the
encrypted image. At the data hider’s side, the data hider can use the (7, 4) Hamming coding-based
encoding to embed secret data. At the receiver’s side, if the receiver only has the encryption key, a
marked decrypted image that has high visual quality can be generated. The secret data can be
obtained from the encrypted image by using the data hiding key only. The original image can be
retrieved when the receiver uses data hiding key and the encryption key together.

Figure 3. The overview of the proposed method.

Symmetry 2019, 11, 51 8 of 17

3.1. Image Encryption

The stream cipher is used for bit-wise image encryption. Assume that the original image is
a standard grayscale image in which the pixels consist of 8 bits. The 8 bits of a pixel, Pij, are denoted as
bij0–bij7, where

bijk =

⌊Pij

2k

⌋
mod 2, k = 0, 1, . . . , 7. (8)

The steps in the detailed procedure of image encryption are:

Step 1 Generate the error prediction map from the original image, I.
Step 2 For each non-modifiable pixel, eight pseudo-random bits, that is, rbij0–rbij7, are generated by

using the image encryption key and all of the bits of the pixel are encrypted by:

eijk = bijk ⊕ rbijk, k = 0, 1, . . . , 7. (9)

Step 3 For each modifiable pixel, six pseudo-random bits, that is, rbij2–rbij7, are generated by using
the image encryption key and the six bits, bij2–bij7, of the pixel are encrypted by:

eijk = bijk ⊕ rbijk, k = 2, 3, . . . , 7. (10)

Since bij0 and bij1 are the first and second LSBs, respectively, they are similar to random bits and
reflect almost no meaningful content. By using the unencrypted LSBs, the embedded secret data can
be obtained from either the encrypted image or the marked decrypted image.

Step 4 To encrypt the n-bit error prediction map, generate n pseudo-random bits by using the
encryption key and do the bit-XOR encryption.

Step 5 Substitute the MSBs of the first l + n modifiable pixels with the l-bit size information of the
error prediction map and the n-bit error prediction map.

After image encryption, the encrypted image, EI, can be sent to the data hider for embedding
secret data.

3.2. Data Embedding

At the phase of data embedding, the (7, 4) Hamming code-based encoding is used to embed the
secret data into the LSBs of the encrypted modifiable pixels of the encrypted image EI. The steps in the
detailed procedure of image encryption are as follows:

Step 1 According to the size information of the error prediction map, all the modifiable pixels in the
encrypted image are divided into two sets: the first set, denoted as FP = {FP1, FP2, . . . , FPl+n},
contains the first l + n modifiable pixels of which the MSBs indicate the information of the
error prediction map. The second set, denoted as RP = {RP1, RP2, . . . , RPfin}, contains the
rest of the modifiable pixels of which the MSBs can be modified to embed the information for
image recovery.

Step 2 To embed secret bits, all the modifiable pixels are divided into 7-pixel groups as follow:

By using the data hiding key, each time the data hider pseudo-randomly selects one pixel from FP
and six pixels from RP to form a 7-pixel group, Gi = {FPi1, RPi2, . . . , RPi7}, until FP = ∅ or RP does
not have enough pixels.

If FP = ∅ and RP still has enough pixels, the data hider uses the data hiding key to
pseudo-randomly divide RP into 7-pixel groups as Gj =

{
RPj1, RPj2, . . . , RPj7

}
.

For each group, the first and second LSBs of all the pixels are used to form Hamming codewords
and the six MSBs of the 2nd–7th pixels are used to record the original information of Hamming codes

Symmetry 2019, 11, 51 9 of 17

for image recovery. To protect the information of the error prediction map, the MSB of the first pixel
cannot be modified.

Step 3 For each 7-pixel group, the 7-bit Hamming codeword is extracted from the first LSBs of all the
pixels in the group to embed three secret bits. By using the parity check matrix H, the 7-bit
Hamming codeword is classified as one of the eight types of 7-bit Hamming codewords
(the eight types are the non-bit-error Hamming codeword and the seven ith-bit-error
codewords (1 ≤ i ≤ 7)). For image recovery, the MSBs of the 2nd, 3rd and 4th pixels are
modified to record the original type of the codeword (As given in Section 2.2, the non-bit-error
codeword is represented by (000)2, the 1st-bit-error codeword is represented by (001)2 and
so on). Finally, the 7-bit Hamming codeword is encoded to represent the three secret bits by
using the Hamming code-based encoding scheme in Section 2.2.

Step 4 After all the groups have been processed in Step 3, the second LSB layer can be used to embed
secret bits. For each 7-pixel group, the 7-bit Hamming codeword is extracted from the second
LSBs of all the pixels in the group. The procedure of data embedding is the same as the
procedure in Step 3, except that the original codeword is recorded by the MSBs of the 5th,
6th and 7th pixels.

Figure 4 shows an example how the secret bits are embedded to the first LSBs and the second LSBs
of all the pixels in the 7-pixel group. To embed the secret bits (011)2 into the first LSBs of the pixels,
the Hamming codeword consisting of the first LSBs C1 = (1001000)2 is classified as the 5th-bit-error
codeword, then the MSBs of the 2nd, 3rd and 4th pixels are modified to (101)2 to record the type of
the original C1. Then the 5th bit and the 3rd bit of C1 are flipped to encode C1 into a 3rd-bit-error
codeword to represent the secret bits (011)2. To embed the secret bits (110)2 into the second LSBs of
the pixels, the Hamming codeword consisting of the second LSBs C2 = (1110010)2 is classified as the
6th-bit-error codeword, then the MSBs of the 5th, 6th and 7th pixels are modified to (110)2 to record
the type of the original C2. Since C2 represents the secret bits (110)2, nothing needs to be done to
encode C2.

Symmetry 2019, 11, x FOR PEER REVIEW 9 of 18

If = ∅FP and RP still has enough pixels, the data hider uses the data hiding key to pseudo-
randomly divide RP into 7-pixel groups as { }= 1 2 7, ,...,j j j jRP RP RPG .

For each group, the first and second LSBs of all the pixels are used to form Hamming codewords
and the six MSBs of the 2nd–7th pixels are used to record the original information of Hamming codes
for image recovery. To protect the information of the error prediction map, the MSB of the first pixel
cannot be modified.

Step 3 For each 7-pixel group, the 7-bit Hamming codeword is extracted from the first LSBs of all
the pixels in the group to embed three secret bits. By using the parity check matrix H, the 7-
bit Hamming codeword is classified as one of the eight types of 7-bit Hamming codewords
(the eight types are the non-bit-error Hamming codeword and the seven ith-bit-error
codewords (≤ ≤1 7i)). For image recovery, the MSBs of the 2nd, 3rd and 4th pixels are
modified to record the original type of the codeword (As given in Section 2.2, the non-bit-
error codeword is represented by (000)2, the 1st-bit-error codeword is represented by (001)2
and so on). Finally, the 7-bit Hamming codeword is encoded to represent the three secret bits
by using the Hamming code-based encoding scheme in Section 2.2.

Step 4 After all the groups have been processed in Step 3, the second LSB layer can be used to embed
secret bits. For each 7-pixel group, the 7-bit Hamming codeword is extracted from the second
LSBs of all the pixels in the group. The procedure of data embedding is the same as the
procedure in Step 3, except that the original codeword is recorded by the MSBs of the 5th,
6th and 7th pixels.

Figure 4 shows an example how the secret bits are embedded to the first LSBs and the second
LSBs of all the pixels in the 7-pixel group. To embed the secret bits (011)2 into the first LSBs of the
pixels, the Hamming codeword consisting of the first LSBs C1 = (1001000)2 is classified as the 5th-bit-
error codeword, then the MSBs of the 2nd, 3rd and 4th pixels are modified to (101)2 to record the type
of the original C1. Then the 5th bit and the 3rd bit of C1 are flipped to encode C1 into a 3rd-bit-error
codeword to represent the secret bits (011)2. To embed the secret bits (110)2 into the second LSBs of
the pixels, the Hamming codeword consisting of the second LSBs C2 = (1110010)2 is classified as the
6th-bit-error codeword, then the MSBs of the 5th, 6th and 7th pixels are modified to (110)2 to record
the type of the original C2. Since C2 represents the secret bits (110)2, nothing needs to be done to
encode C2.

Figure 4. Example of embedding secret bits into the first and the second LSBs.

According the procedure of data embedding, the embedding capacity is determined by the
number of the 7-pixel groups. When the number of the pixels in FP is not larger than one-seven of

Figure 4. Example of embedding secret bits into the first and the second LSBs.

According the procedure of data embedding, the embedding capacity is determined by the
number of the 7-pixel groups. When the number of the pixels in FP is not larger than one-seven of the
number of the modifiable pixels, the number of the 7-pixel groups is at the maximum value bMPN/7c,
where MPN is the number of the modifiable pixels. Therefore, if the size of all the information of

Symmetry 2019, 11, 51 10 of 17

the error prediction map is not larger than bMPN/7c, the error prediction map does not affect the
embedding capacity. In most cases, the size of the error prediction map are too small to affect the
embedding capacity, due to the precise prediction of the MSBs of the modifiable pixels.

For an image with the size of M× N, there are at most b (M−2)× (N−2)/2cmodifiable pixels.
So the maximum number of the 7-pixel groups is bb (M−2)× (N−2)/2c/7c. For each group,
the computation complexity of embedding three secret bits is O(1). Therefore, the computation
complexity of data embedding in the proposed method is O(MN).

After embedding data, the marked encrypted image is sent to the receiver. To extract the secret
data, the data hiding key and the parity check matrix H should be shared with the receiver in advance.

3.3. Image Recovery and Data Extraction

The receiver can obtain different data from the marked encrypted image by using different keys.

3.3.1. Obtain the Marked Decrypted Image

If the receiver only has the encryption key, the receiver can obtain the marked decrypted image,
which is very similar to the original image. The secret data still exist in the marked decrypted image
and can be obtained by using the data hiding key. The procedure of generating the marked decrypted
image is as follows:

Step 1 Extract the l-bit size information from the first l MSBs of the modifiable pixels of the marked
encrypted image and then extract the encrypted error prediction map according to the
size information.

Step 2 Decrypt the marked encrypted image and the error prediction map.
Step 3 For each modifiable pixel P, calculate the estimated pixel value Pe by the four neighboring

non-modifiable pixels of P according to Equation (3).
Step 4 Calculate the prediction error PE = |P− Pe|.
Step 5 Flip the MSB of P to generate a new pixel value Pf and calculate the prediction error

PEf = |Pf − Pe|.
Step 6 According to the error prediction map, if P is not denoted as the error prediction pixel, the MSB

of P is recovered by PE and PEf according to Equation (6). Otherwise, the MSB of P is recovered
by PE and PEf according to Equation (7).

Step 7 Repeat Steps 3–6 until all the MSBs of the modifiable pixels have been recovered.

Figure 5 shows an example of MSB recovery of the modifiable pixel P. By flipping the MSB
of P, Pf is generated. The four neighboring pixels of P are non-modifiable pixels which cannot be
modified in the procedure of data embedding. By the four neighboring pixels, the estimated value Pe is
calculated. Then the two prediction errors PE and PEf are calculated. Since P is not an error prediction
pixel according to the error prediction map and PE > PEf, Pf is the original pixel value according to
Equation (6).

To obtain the marked decrypted image, the MSBs of the modifiable pixels are recovered without
recovering the modified LSBs of the modifiable pixels. However, compared with the MSB, the LSB
have very little impact on the pixel value. In most cases, the modified LSBs cannot affect the results
of the MSB recovery. Therefore, without recovering LSBs, the MSBs of the modifiable pixels are still
highly likely to be recovered correctly. The generated marked decrypted image is very similar to the
original image and it contains the secret data which can be extracted by the data hiding key.

3.3.2. Data Extraction

By using the data hiding key and the parity check matrix H, the receiver can obtain the secret
data from the encrypted image or from the marked decrypted image. The procedure for obtaining the
secret data is:

Symmetry 2019, 11, 51 11 of 17

Step 1 Use the data hiding key to divide all the modifiable pixels into the 7-pixel groups.
Step 2 For each 7-pixel group, extract the 7-bit Hamming codeword from the first LSBs of all the

pixels in the group. By using the parity check matrix H, the 7-bit Hamming codeword can
be classified as a non-bit-error codeword or an ith-bit-error codeword (1 ≤ i ≤ 7). Since the
Hamming codeword has been encoded to represent the three secret bits in the procedure of
data embedding. Therefore, the three secret bits can be directly obtained according to the
Hamming codeword.

As given in Section 2.2, the non-bit-error codeword represents the three secret bits (000)2 and the
1st-bit-error codeword, 2nd-bit-error codeword, . . . and 7th-bit-error codeword represent the three
secret bits (001)2, (010)2, . . . , (111)2.

Step 3 If all of the groups are processed in Step 2 and not all the embedded bits are extracted,
extract the embedded bits from the second LSB layer of each group until all of the embedded
bits have been extracted. The process of extraction is the same as Step 2.

Figure 6 shows an example of extracting secret bits from the first and the second LSBs of all
the pixels in the 7-pixel group. The Hamming codeword C1 is extracted from the first LSBs of all
the pixels. By using the parity check matrix H, C1 is classified as a 3rd-bit-error codeword. So the
embedded secret bits are (011)2. The codeword C2 is extracted from the second LSBs of all the pixels.
C2 is classified as 6th-bit-error codeword and the embedded secret bits are (110)2.

Symmetry 2019, 11, x FOR PEER REVIEW 11 of 18

By using the data hiding key and the parity check matrix H, the receiver can obtain the secret
data from the encrypted image or from the marked decrypted image. The procedure for obtaining
the secret data is:

Step 1 Use the data hiding key to divide all the modifiable pixels into the 7-pixel groups.
Step 2 For each 7-pixel group, extract the 7-bit Hamming codeword from the first LSBs of all the

pixels in the group. By using the parity check matrix H, the 7-bit Hamming codeword can be
classified as a non-bit-error codeword or an ith-bit-error codeword (≤ ≤1 7i). Since the
Hamming codeword has been encoded to represent the three secret bits in the procedure of
data embedding. Therefore, the three secret bits can be directly obtained according to the
Hamming codeword.

As given in Section 2.2, the non-bit-error codeword represents the three secret bits (000)2 and the
1st-bit-error codeword, 2nd-bit-error codeword, … and 7th-bit-error codeword represent the three
secret bits (001)2, (010)2, …, (111)2.

Step 3: If all of the groups are processed in Step 2 and not all the embedded bits are extracted, extract
the embedded bits from the second LSB layer of each group until all of the embedded bits
have been extracted. The process of extraction is the same as Step 2.

Figure 6 shows an example of extracting secret bits from the first and the second LSBs of all the
pixels in the 7-pixel group. The Hamming codeword C1 is extracted from the first LSBs of all the
pixels. By using the parity check matrix H, C1 is classified as a 3rd-bit-error codeword. So the
embedded secret bits are (011)2. The codeword C2 is extracted from the second LSBs of all the pixels.
C2 is classified as 6th-bit-error codeword and the embedded secret bits are (110)2.

Figure 5. Example of most significant bit (MSB) recovery by MSB prediction.

Figure 6. Example of extracting the embedded secret bits.

3.3.3. Image Recovery

Figure 5. Example of most significant bit (MSB) recovery by MSB prediction.

Symmetry 2019, 11, x FOR PEER REVIEW 11 of 18

By using the data hiding key and the parity check matrix H, the receiver can obtain the secret
data from the encrypted image or from the marked decrypted image. The procedure for obtaining
the secret data is:

Step 1 Use the data hiding key to divide all the modifiable pixels into the 7-pixel groups.
Step 2 For each 7-pixel group, extract the 7-bit Hamming codeword from the first LSBs of all the

pixels in the group. By using the parity check matrix H, the 7-bit Hamming codeword can be
classified as a non-bit-error codeword or an ith-bit-error codeword (≤ ≤1 7i). Since the
Hamming codeword has been encoded to represent the three secret bits in the procedure of
data embedding. Therefore, the three secret bits can be directly obtained according to the
Hamming codeword.

As given in Section 2.2, the non-bit-error codeword represents the three secret bits (000)2 and the
1st-bit-error codeword, 2nd-bit-error codeword, … and 7th-bit-error codeword represent the three
secret bits (001)2, (010)2, …, (111)2.

Step 3: If all of the groups are processed in Step 2 and not all the embedded bits are extracted, extract
the embedded bits from the second LSB layer of each group until all of the embedded bits
have been extracted. The process of extraction is the same as Step 2.

Figure 6 shows an example of extracting secret bits from the first and the second LSBs of all the
pixels in the 7-pixel group. The Hamming codeword C1 is extracted from the first LSBs of all the
pixels. By using the parity check matrix H, C1 is classified as a 3rd-bit-error codeword. So the
embedded secret bits are (011)2. The codeword C2 is extracted from the second LSBs of all the pixels.
C2 is classified as 6th-bit-error codeword and the embedded secret bits are (110)2.

Figure 5. Example of most significant bit (MSB) recovery by MSB prediction.

Figure 6. Example of extracting the embedded secret bits.

3.3.3. Image Recovery

Figure 6. Example of extracting the embedded secret bits.

Symmetry 2019, 11, 51 12 of 17

3.3.3. Image Recovery

If the receiver has the encryption key, the data hiding key and the parity check matrix, H,
the original version of the marked encrypted image can be recovered without any error. The procedure
for recovering the image is:

Step 1 Use the data hiding key to divide all the modifiable pixels into the 7-pixel groups.
Step 2 For each group, extract the 7-bit Hamming codeword C1 from the first LSBs of all the pixels in

the group and use the parity check matrix H to classify C1 into a non-bit-error codeword or
an ith-bit-error codeword (1 ≤ i ≤ 7).

Step 3 Extract the MSBs of the 2nd–4th pixels in the group. The three MSBs represent the original
type of C1. If C1 matches the original type represented by the three MSBs, C1 is unmodified
and does not need to be recovered. Otherwise, C1 is recovered to its original type as follow:

If C1 is a non-bit-error codeword, C1 is recovered to the kth-bit-error codeword by flipping
the kth bit of C1 (1 ≤ k ≤ 7).

If C1 is an ith-bit-error codeword, C1 is recovered to the non-bit-error codeword by
flipping the ith bit of C1 or the kth-bit-error codeword by flipping the ith and kth bits of C1.

Step 4 Extract the 7-bit Hamming codeword C2 from the second LSBs of all the pixels in the group
and the MSBs of the 5th–7th pixels in the group which represent the original type of C2.
Then C2 is recovered to its original version the same as Step 3.

Step 5 Repeat Steps 2–4 until all the first and second LSBs have been recovered.
Step 6 Recover all of the MSBs of the modifiable pixels of the decrypted image. The recovery

of the MSBs is the same as the procedure of obtaining the marked decrypted image in
Section 3.3.1. Since the LSBs are recovered, all of the modified MSBs can be recovered free of
errors. Therefore, the original image has been retrieved with no error.

Figure 7 shows an example of recovering the LSBs and MSBs of the modifiable pixels in the group.
First, the Hamming code C1 = (1011100)2 is extracted from the first LSBs of all the pixels and its original
type information (101)2 is extracted from the MSBs of P2, P3 and P4. By using the parity check matrix
H, C1 is classified as a 3rd-bit-error codeword. According to the original type information (101)2,
C1 is a 5th-bit-error codeword, so the 3rd and 5th bits of C1 are flipped to recover the original LSBs.
Then, the Hamming code C2 = (1110010)2 is extracted from the second LSBs of all the pixels and its
original type information (110)2 is extracted from the MSBs of P5, P6 and P7. Since C2 is a 6th-bit-error
codeword which matches the original type information (110)2, the bits of C2 are unmodified in the
procedure of data embedding and do not need to be recovered. After recovering the first and second
LSBs, the MSBs of P2, P3, . . . , P7 are recovered by the neighboring non-modifiable pixels and the error
prediction map.

Symmetry 2019, 11, 51 13 of 17

Symmetry 2019, 11, x FOR PEER REVIEW 13 of 18

Figure 7. Example of image recovery.

4. Experimental Results

In this section, we evaluate the performance of the proposed method. The evaluations include
capacity, visual quality and execution time. The results are compared with the existing RDHEI
methods described in References [15,18,27]. Figure 8 shows the six ×512 512 standard grayscale test
images [30]. The experimental programs were implemented in MATLAB 2012 and run on a computer
with 3.6 GHZ Intel i7-4790 CPU and 8 GB memory using the Windows 7 OS.

(a) (b) (c)

(d) (e) (f)

Figure 8. The six test images. (a) Airplane; (b) Baboon; (c) Barbara; (d) Lena; (e) Peppers; (f) Zelda.

Figure 9 shows the images of Lena generated by the proposed method. Figure 9b shows the
marked encrypted image with 0.2126 bpp. The image is almost noise-like and the content is secure.

Figure 7. Example of image recovery.

4. Experimental Results

In this section, we evaluate the performance of the proposed method. The evaluations include
capacity, visual quality and execution time. The results are compared with the existing RDHEI methods
described in References [15,18,27]. Figure 8 shows the six 512× 512 standard grayscale test images [30].
The experimental programs were implemented in MATLAB 2012 and run on a computer with 3.6 GHZ
Intel i7-4790 CPU and 8 GB memory using the Windows 7 OS.

Symmetry 2019, 11, x FOR PEER REVIEW 13 of 18

Figure 7. Example of image recovery.

4. Experimental Results

In this section, we evaluate the performance of the proposed method. The evaluations include
capacity, visual quality and execution time. The results are compared with the existing RDHEI
methods described in References [15,18,27]. Figure 8 shows the six ×512 512 standard grayscale test
images [30]. The experimental programs were implemented in MATLAB 2012 and run on a computer
with 3.6 GHZ Intel i7-4790 CPU and 8 GB memory using the Windows 7 OS.

(a) (b) (c)

(d) (e) (f)

Figure 8. The six test images. (a) Airplane; (b) Baboon; (c) Barbara; (d) Lena; (e) Peppers; (f) Zelda.

Figure 9 shows the images of Lena generated by the proposed method. Figure 9b shows the
marked encrypted image with 0.2126 bpp. The image is almost noise-like and the content is secure.

Figure 8. The six test images. (a) Airplane; (b) Baboon; (c) Barbara; (d) Lena; (e) Peppers; (f) Zelda.

Symmetry 2019, 11, 51 14 of 17

Figure 9 shows the images of Lena generated by the proposed method. Figure 9b shows the
marked encrypted image with 0.2126 bpp. The image is almost noise-like and the content is secure.
Figure 9c shows the marked decrypted image generated from Figure 9b with PSNR = 57.73; this image
is highly similar to Figure 9a. Figure 9d is the recovered image, which is identical to Figure 9a.

Symmetry 2019, 11, x FOR PEER REVIEW 14 of 18

Figure 9c shows the marked decrypted image generated from Figure 9b with PSNR = 57.73; this image
is highly similar to Figure 9a. Figure 9d is the recovered image, which is identical to Figure 9a.

(a) (b)

(c) (d)

Figure 9. The experimental images. (a) Original image, Lena; (b) Marked encrypted image with bpp
= 0.2126; (c) Marked decrypted image with PSNR = 57.79 dB; (d) Recovered image.

Table 1 shows the embedding rates of the proposed scheme and the three existing methods.
Since data extraction errors may occur in Reference [15,18], their embedding rates were multiplied
with a weighted value, that is, −1 ()H p , where p is the error rate and H is the binary entropy function
[31]. Compared with the competitors, the proposed method can achieve a stable and relatively higher
capacity. That means that the number of error prediction pixels is small and that there are sufficient
modifiable MSBs to support data embedding.

Table 1. Comparison of the embedding rates (bpp).

 Liao and Shu [15] Wu and Sun [18] Xiao et al. [27] Proposed
Airplane 0.0552 0.0858 0.2794 0.4252
Baboon 0.0474 0.0696 0.0468 0.4252
Barbara 0.0536 0.0815 0.1670 0.4252

Lena 0.0537 0.0858 0.2398 0.4252
Peppers 0.0495 0.0858 0.2136 0.4252

Zelda 0.0558 0.0858 0.2670 0.4252

For different embedding rates, the results of the PSNR of the marked decrypted images are
shown in Figure 10. For the smooth images (Airplane, Lena, Peppers and Zelda), the PSNR values of
the proposed method were greater than 55 dB at 0.25 bpp. For the complex images (Baboon, Barbara),
the PSNR values still were greater than 45 dB at 0.25 bpp. These results showed that the proposed
scheme outperformed the other RDHEI methods. This is because, in the proposed method, only a
few of the LSBs were modified to embed data and most of the modified MSBs can be recovered
correctly. The reason why the PSNR values of the complex images are worse than the PSNR values
of the smooth images is that: to obtain the marked decrypted images, for each modifiable pixels, the
MSB is recovered without recovering the modified LSBs in advance. In the complex images, more
modifiable pixels are estimated inaccurately, so the modified LSBs of these pixels are more likely to
affect the results of the comparison between two prediction errors of each estimated pixel. That
results in more errors in the MSB recovery of the decrypted marked images.

Figure 9. The experimental images. (a) Original image, Lena; (b) Marked encrypted image with
bpp = 0.2126; (c) Marked decrypted image with PSNR = 57.79 dB; (d) Recovered image.

Table 1 shows the embedding rates of the proposed scheme and the three existing methods.
Since data extraction errors may occur in Reference [15,18], their embedding rates were multiplied
with a weighted value, that is, 1 − H(p), where p is the error rate and H is the binary entropy
function [31]. Compared with the competitors, the proposed method can achieve a stable and relatively
higher capacity. That means that the number of error prediction pixels is small and that there are
sufficient modifiable MSBs to support data embedding.

Table 1. Comparison of the embedding rates (bpp).

Liao and Shu [15] Wu and Sun [18] Xiao et al. [27] Proposed

Airplane 0.0552 0.0858 0.2794 0.4252
Baboon 0.0474 0.0696 0.0468 0.4252
Barbara 0.0536 0.0815 0.1670 0.4252

Lena 0.0537 0.0858 0.2398 0.4252
Peppers 0.0495 0.0858 0.2136 0.4252

Zelda 0.0558 0.0858 0.2670 0.4252

For different embedding rates, the results of the PSNR of the marked decrypted images are shown
in Figure 10. For the smooth images (Airplane, Lena, Peppers and Zelda), the PSNR values of the
proposed method were greater than 55 dB at 0.25 bpp. For the complex images (Baboon, Barbara),
the PSNR values still were greater than 45 dB at 0.25 bpp. These results showed that the proposed
scheme outperformed the other RDHEI methods. This is because, in the proposed method, only a few
of the LSBs were modified to embed data and most of the modified MSBs can be recovered correctly.
The reason why the PSNR values of the complex images are worse than the PSNR values of the smooth
images is that: to obtain the marked decrypted images, for each modifiable pixels, the MSB is recovered
without recovering the modified LSBs in advance. In the complex images, more modifiable pixels are
estimated inaccurately, so the modified LSBs of these pixels are more likely to affect the results of the

Symmetry 2019, 11, 51 15 of 17

comparison between two prediction errors of each estimated pixel. That results in more errors in the
MSB recovery of the decrypted marked images.Symmetry 2019, 11, x FOR PEER REVIEW 15 of 18

(a) (b) (c)

(d) (e) (f)

Figure 10. PSNR of the marked decrypted images. (a) Airplane; (b) Baboon; (c) Barbara; (d) Lena; (e)
Peppers; (f) Zelda.

Considering that the cloud must receive and process large numbers of encrypted images from
different content owners, the efficiency of data embedding is very important. Figure 11 shows the
average execution time of the four methods for embedding data in 100 images. The images were
selected randomly from BossBase-1.01 [32]. Figure 11 shows that, for the same payloads, the average
execution time of the proposed method was less than the average execution times of the other three
methods. There are three reasons the proposed method can embed data more efficiently than the
other methods. First, in the proposed method, the secret bits can be embedded into any pixel group
without addressing any special case, while the other methods need to find the available regions in
the image for data embedding ([18,27]). Second, the proposed method needs to modify only 5 bits, at
most, to embed 3 secret bits, while the other methods must modify more pixels to embed only 1 bit
([15,18]). Third, the proposed method embeds secret bits by a simple matrix multiplication, while the
other methods need to perform complex operations such as data compression and bit-map
embedding ([27]).

Figure 11. Comparison of average image embedding time in 100 images.

5. Conclusions

In this paper, we proposed a novel, real-time, error-free RDHEI method based on the (7, 4)
Hamming code and MSB prediction. By using (7, 4) Hamming code-based encoding, the secret bits

Figure 10. PSNR of the marked decrypted images. (a) Airplane; (b) Baboon; (c) Barbara; (d) Lena;
(e) Peppers; (f) Zelda.

Considering that the cloud must receive and process large numbers of encrypted images from
different content owners, the efficiency of data embedding is very important. Figure 11 shows the
average execution time of the four methods for embedding data in 100 images. The images were
selected randomly from BossBase-1.01 [32]. Figure 11 shows that, for the same payloads, the average
execution time of the proposed method was less than the average execution times of the other three
methods. There are three reasons the proposed method can embed data more efficiently than the other
methods. First, in the proposed method, the secret bits can be embedded into any pixel group without
addressing any special case, while the other methods need to find the available regions in the image for
data embedding ([18,27]). Second, the proposed method needs to modify only 5 bits, at most, to embed
3 secret bits, while the other methods must modify more pixels to embed only 1 bit ([15,18]). Third,
the proposed method embeds secret bits by a simple matrix multiplication, while the other methods
need to perform complex operations such as data compression and bit-map embedding ([27]).

Symmetry 2019, 11, x FOR PEER REVIEW 15 of 18

(a) (b) (c)

(d) (e) (f)

Figure 10. PSNR of the marked decrypted images. (a) Airplane; (b) Baboon; (c) Barbara; (d) Lena; (e)
Peppers; (f) Zelda.

Considering that the cloud must receive and process large numbers of encrypted images from
different content owners, the efficiency of data embedding is very important. Figure 11 shows the
average execution time of the four methods for embedding data in 100 images. The images were
selected randomly from BossBase-1.01 [32]. Figure 11 shows that, for the same payloads, the average
execution time of the proposed method was less than the average execution times of the other three
methods. There are three reasons the proposed method can embed data more efficiently than the
other methods. First, in the proposed method, the secret bits can be embedded into any pixel group
without addressing any special case, while the other methods need to find the available regions in
the image for data embedding ([18,27]). Second, the proposed method needs to modify only 5 bits, at
most, to embed 3 secret bits, while the other methods must modify more pixels to embed only 1 bit
([15,18]). Third, the proposed method embeds secret bits by a simple matrix multiplication, while the
other methods need to perform complex operations such as data compression and bit-map
embedding ([27]).

Figure 11. Comparison of average image embedding time in 100 images.

5. Conclusions

In this paper, we proposed a novel, real-time, error-free RDHEI method based on the (7, 4)
Hamming code and MSB prediction. By using (7, 4) Hamming code-based encoding, the secret bits

Figure 11. Comparison of average image embedding time in 100 images.

Symmetry 2019, 11, 51 16 of 17

5. Conclusions

In this paper, we proposed a novel, real-time, error-free RDHEI method based on the (7, 4)
Hamming code and MSB prediction. By using (7, 4) Hamming code-based encoding, the secret bits
can be embedded efficiently into the LSBs of the encrypted image. We designed the MSB prediction
scheme and the error prediction map for error-free recovery of the original image. The embedded data
exist in both the marked encrypted image and the marked decrypted image and can be obtained by
only the data hiding key. The receiver can retrieve the original image with no error. The proposed
method’s data embedding is efficient and has low computational complexity. The experimental results
proved that the proposed method had good performance in terms of capacity, the fidelity of the marked
image and the execution time for embedding data. Therefore, the proposed method is well-suited for
real-time RDHEI applications in the cloud.

Author Contributions: C.-C.C. and K.C. proposed the idea of the paper; K.C. designed and performed the
experiments and wrote the paper.

Funding: This research was funded by the Natural Science Foundation of Fujian Province, China, grant number
2017J05104 and the National Natural Science Foundation of China, grant number 61701191.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses or interpretation of data; in the writing of the manuscript or in the decision to
publish the results.

References

1. Qin, C.; Chen, X.; Luo, X.; Zhang, X.; Sun, X. Perceptual image hashing via dual-cross pattern encoding and
salient structure detection. Inform. Sci. 2018, 423, 284–302. [CrossRef]

2. Qin, C.; Ji, P.; Zhang, X.; Dong, J.; Wang, J. Fragile image watermarking with pixel-wise recovery based on
overlapping embedding strategy. Signal Process. 2017, 138, 280–293. [CrossRef]

3. Qin, C.; Chang, C.C.; Chiu, Y.P. A Novel Joint Data-Hiding and Compression Scheme Based on SMVQ and
Image Inpainting. IEEE Trans. Image Process. 2014, 23, 969–978. [CrossRef]

4. Shi, Y.Q.; Ni, Z.; Zou, D.; Liang, C.; Xuan, G. Lossless data hiding: Fundamentals, algorithms and applications.
In Proceedings of the IEEE International Symposium on Circuits and Systems, Vancouver, BC, Canada,
23–26 May 2004; pp. 33–36.

5. Tian, J. Reversible data embedding using a difference expansion. IEEE Trans. Circuits Syst. Video Technol.
2003, 13, 890–896. [CrossRef]

6. Qiu, Y.; Qian, Z.; Yu, L. Adaptive reversible data hiding by extending the generalized integer transformation.
IEEE Signal Process. Lett. 2016, 23, 130–134. [CrossRef]

7. Ni, Z.; Shi, Y.Q.; Ansari, N.; Su, W. Reversible data hiding. IEEE Trans. Circuits Syst. Video Technol. 2006,
16, 354–362. [CrossRef]

8. Nguyen, T.S.; Chang, C.C.; Huynh, N.T. A novel reversible data hiding scheme based on difference-histogram
modification and optimal EMD algorithm. J. Vis. Commun. Image Represent. 2015, 33, 389–397. [CrossRef]

9. Li, X.; Li, J.; Li, B.; Yang, B. High-fidelity reversible data hiding scheme based on pixel-value-ordering and
prediction-error expansion. Signal Process. 2013, 93, 198–205. [CrossRef]

10. Qu, X.; Kim, H.J. Pixel-based pixel value ordering predictor for high-fidelity reversible data hiding.
Signal Process. 2015, 111, 249–260. [CrossRef]

11. Hong, W.; Chen, T.; Shiu, C. Reversible data hiding for high quality images using modification of prediction
errors. J. Syst. Softw. 2009, 82, 1833–1842. [CrossRef]

12. Carpentieri, B.; Castiglione, A.; Santis, A.D.; Palmieri, F.; Pizzolante, R. One-pass lossless data hiding and
compression of remote sensing data. Future Gener. Comput. Syst. 2019, 90, 222–239. [CrossRef]

13. Zhang, X. Reversible data hiding in encrypted images. IEEE Signal Process. Lett. 2011, 18, 255–258. [CrossRef]
14. Hong, W.; Chen, T.; Wu, H. An improved reversible data hiding in encrypted images using side match.

IEEE Signal Process. Lett. 2012, 19, 199–202. [CrossRef]
15. Liao, X.; Shu, C. Reversible data hiding in encrypted images based on absolute mean difference of multiple

neighboring pixels. J. Vis. Commun. Image Represent. 2015, 28, 21–27. [CrossRef]

http://dx.doi.org/10.1016/j.ins.2017.09.060
http://dx.doi.org/10.1016/j.sigpro.2017.03.033
http://dx.doi.org/10.1109/TIP.2013.2260760
http://dx.doi.org/10.1109/TCSVT.2003.815962
http://dx.doi.org/10.1109/LSP.2015.2504464
http://dx.doi.org/10.1109/TCSVT.2006.869964
http://dx.doi.org/10.1016/j.jvcir.2015.10.008
http://dx.doi.org/10.1016/j.sigpro.2012.07.025
http://dx.doi.org/10.1016/j.sigpro.2015.01.002
http://dx.doi.org/10.1016/j.jss.2009.05.051
http://dx.doi.org/10.1016/j.future.2018.07.051
http://dx.doi.org/10.1109/LSP.2011.2114651
http://dx.doi.org/10.1109/LSP.2012.2187334
http://dx.doi.org/10.1016/j.jvcir.2014.12.007

Symmetry 2019, 11, 51 17 of 17

16. Qin, C.; Zhang, X. Effective reversible data hiding in encrypted image with privacy protection for image
content. J. Vis. Commun. Image Represent. 2015, 31, 154–164. [CrossRef]

17. Bhardwaj, R.; Aggarwal, A. An improved block based joint reversible data hiding in encrypted images by
symmetric cryptosystem. Pattern Recognit. Lett. 2018, in press. [CrossRef]

18. Wu, X.; Sun, W. High-capacity reversible data hiding in encrypted images by prediction error. Signal Process.
2014, 104, 387–400. [CrossRef]

19. Dragoi, I.C.; Coanda, H.G.; Coltuc, D. Improved Reversible Data Hiding in Encrypted Images Based
on Reserving Room After Encryption and Pixel Prediction. In Proceedings of the 25th European Signal
Processing Conference (EUSIPCO), Kos Island, Greece, 28 August–2 September 2017; pp. 2186–2190.

20. Puteaux, P.; Puech, W. An Efficient MSB Prediction-Based Method for High-Capacity Reversible Data Hiding
in Encrypted Images. IEEE Trans. Inf. Forensics Secur. 2018, 13, 1670–1681. [CrossRef]

21. Zhang, X. Separable reversible data hiding in encrypted image. IEEE Trans. Inf. Forensics Secur. 2012,
7, 826–832. [CrossRef]

22. Qin, C.; Zhang, W.; Cao, F.; Zhang, X.; Chang, C.C. Separable reversible data hiding in encrypted images via
adaptive embedding strategy with block selection. Signal Process. 2018, 153, 109–122. [CrossRef]

23. Qin, C.; He, Z.; Luo, X.; Dong, J. Reversible data hiding in encrypted image with separable capability and
high embedding capacity. Inform. Sci. 2018, 465, 285–304. [CrossRef]

24. Qian, Z.; Zhang, X. Reversible data hiding in encrypted image with distributed source encoding. IEEE Trans.
Circuits Syst. Video Technol. 2016, 26, 636–646. [CrossRef]

25. Zhang, X.; Qian, Z.; Feng, G.; Ren, Y. Efficient reversible data hiding in encrypted images. J. Vis. Commun.
Image Represent. 2014, 25, 322–328. [CrossRef]

26. Li, M.; Xiao, D.; Zhang, Y.; Nan, H. Reversible data hiding in encrypted images using cross division and
additive homomorphism. Signal Process. Image Commun. 2015, 39, 234–248. [CrossRef]

27. Xiao, D.; Xiang, Y.; Zheng, H.; Wang, Y. Separable reversible data hiding in encrypted image based on pixel
value ordering and additive homomorphism. J. Vis. Commun. Image Represent. 2017, 45, 1–10. [CrossRef]

28. Yi, S.; Zhou, Y.; Hua, Z. Reversible data hiding in encrypted images using adaptive block-level prediction-error
expansion. Signal Process. Image Commun. 2018, 64, 78–88. [CrossRef]

29. Xiong, L.; Xu, Z.; Shi, Y.Q. An integer wavelet transform based scheme for reversible data hiding in encrypted
images. Multidimens. Syst. Signal Process. 2018, 29, 1191–1202. [CrossRef]

30. Computer Vision Group Test Image Database. Available online: http://decsai.ugr.es/cvg/dbimagenes/
g512.php (accessed on 15 October 2018).

31. Yi, S.; Zhou, Y. Binary-block embedding for reversible data hiding in encrypted images. Signal Process. 2017,
133, 40–51. [CrossRef]

32. Bas, P.; Filler, T.; Pevny, T. “Break our steganographic system”: The ins and outs of organizing BOSS.
In Proceedings of the 13th International Workshop on Information Hiding, Prague, Czech Republic,
18–20 May 2011; pp. 59–70.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.jvcir.2015.06.009
http://dx.doi.org/10.1016/j.patrec.2018.01.014
http://dx.doi.org/10.1016/j.sigpro.2014.04.032
http://dx.doi.org/10.1109/TIFS.2018.2799381
http://dx.doi.org/10.1109/TIFS.2011.2176120
http://dx.doi.org/10.1016/j.sigpro.2018.07.008
http://dx.doi.org/10.1016/j.ins.2018.07.021
http://dx.doi.org/10.1109/TCSVT.2015.2418611
http://dx.doi.org/10.1016/j.jvcir.2013.11.001
http://dx.doi.org/10.1016/j.image.2015.10.001
http://dx.doi.org/10.1016/j.jvcir.2017.02.001
http://dx.doi.org/10.1016/j.image.2018.03.001
http://dx.doi.org/10.1007/s11045-017-0497-5
http://decsai.ugr.es/cvg/dbimagenes/g512.php
http://decsai.ugr.es/cvg/dbimagenes/g512.php
http://dx.doi.org/10.1016/j.sigpro.2016.10.017
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	(7, 4) Hamming Code-Based Encoding and MSB Prediction
	The Hamming Code
	Hamming Code-Based Encoding
	MSB Prediction
	Error Prediction Map

	The Proposed Method
	Image Encryption
	Data Embedding
	Image Recovery and Data Extraction
	Obtain the Marked Decrypted Image
	Data Extraction
	Image Recovery

	Experimental Results
	Conclusions
	References

