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Abstract

:

The aim of this paper is to investigate certain properties such as convexity of order μ, close-to-convexity of order 1+μ/2 and starlikeness of normalized Mittag–Leffler function. We use some inequalities to prove our results. We also discuss the close-to-convexity of Mittag–Leffler functions with respect to certain starlike functions. Furthermore, we find the conditions for the above-mentioned function to belong to the Hardy space Hp. Some of our results improve the results in the literature.






Keywords:


analytic functions; Mittag–Leffler functions; starlike functions; convex functions; Hardy space




MSC:


30C45; 33E12












1. Introduction


The one parameter Mittag–Leffler function Eαz defined by


Eα(z)=∑m=0∞zmΓαm+1



(1)




was introduced by Mittag–Leffler [1]. This function of complex variable is entire. The series defined by Equation (1) converges in C when Reα>0. Consider that the function Eα,κ(z) which generalizes the function Eα(z) is defined by


Eα,κz=∑m=0∞zmΓαm+κ,α,κ∈C,z∈C.



(2)







It was introduced by Wiman [2] and was named as Mittag–Leffler type function. The series in Equation (2) converges in C when Reα>0 and Reκ>0. Furthermore, the functions defined in (1) and (2) are entire of order 1/Reα and of type 1, for more details, see [3]. The function Eα,κz and its analysis with its generalizations is increasingly becoming a rich research area in mathematics and its related fields. A number of researchers studied and analyzed the function given in (2) (see Wiman [2,4,5]). One can find this function in the study of kinetic equation of fractional order, Lévy flights, random walks, super-diffusive transport as well as in investigations of complex systems. In a similar manner, the advanced studies of these functions reflect and highlight many vital properties of these functions. The function Eα,κz generalizes many functions such as


E1,1(z)=ez,E1,2(z)=ez−1z,E2,1(z)=coshz,E2,2(z)=sinhzz.











The interested readers are suggested to go through [6,7,8,9].



Let A be the family of all functions g having the form


gz=z+∑m=2∞amzm,



(3)




and are analytic in D=z:z<1 and S denote the family of univalent functions from A. The families of functions which are convex, starlike and close-to-convex of order μ, respectively, are defined as:


Cμ=g:g∈AandRe1+zg″zg′z>μ,z∈D;0≤μ<1,S∗μ=g:g∈AandRezg′zgz>μ,z∈D;0≤μ<1,








and


Kμ=g:g∈AandReg′zh′z>μ,z∈D;0≤μ<1;h∈C.











It is clear that C∗0=C, S∗0=S∗ and K0=K. Consider the class H of all analytic functions in D and μ<1, Baricz [10] introduced the classes


Pημ=p:p∈H,p0=1,Reeiηpz−μ>0,z∈D,η∈R








and


Rημ=f:f∈AandReeiηf′z−μ>0,z∈D,η∈R.











For η=0, we have the classes of analytic functions P0α and R0α respectively. Also for η=0 and α=0, we have the classes P and R.



For the functions g∈A given by (1) and h∈A given by


h(z)=z+∑m=2∞bmzm,








then the convolution (Hadamard product) of g and h is defined as:


g∗h(z)=z+∑m=2∞ambmzm,z∈D.











It is clear that the function Eα,κz is not in class A. Recently, Bansal and Prajapat [11] considered the normalization of the function Eα,κz given as


Eα,κz=ΓκzEα,κz=z+∑m=1∞Γκzm+1Γαm+κ,α,κ∈C,Re(α)>0,κ≠0,−1,⋯.











In this article, we investigate some geometric properties of function Eα,κz with real parameters α and κ.



We need the following results in our investigations.



Lemma 1

([12]). If g∈Aand


zg″z<1−μ4,z∈D;0≤μ<1,








then


Reg′z>1+μ2,z∈D;0≤μ<1.













Lemma 2

([13]). Let κ∈Csuch that Re(κ)>0,c∈Cand c≤1,c≠−1.If h∈Asatisfies


cz2β+1−z2βzh″(z)βh′(z)≤1,z∈D,








then


Cβ(z)=β∫0ztβ−1h′(t)dt1/β,z∈D








is analytic and univalent in D.





Lemma 3

([14]). Let gz=z+a2z2+…+amzm+…, be analytic in Dand in addition 1≥2a2≥…≥mam≥…≥0or 1≤2a2≤…≤mam≤…≤2,then gzis in class Kwith respect to the function z→−log1−z.Also if the function gz=z+3a3+…+a2m−1z2m−1+…,which is odd and analytic in Dand satisfies in addition 1≥3a3≥…≥2m+1a2m+1≥…≥0or 1≤3a3≤…≤2m+1a2m+1≤…≤2,then gz∈Sin D.





Lemma 4

([15]). If g(z)=∑m=1∞amzm−1,such that a1=1and am≥0,∀m≥2,is analytic in Dand if {am}m=1∞is a sequence which is decreasing, i.e., am+2+am−2am+1≥0and am−am+1≥0,∀m≥1,then


Re∑m=1∞amzm−1>12,∀z∈D.













Lemma 5

([15]). If am≥0,{mam}and {mam−(m+1)am+1}both are non-increasing, then the function g defined by (3) is in S∗.






2. Starlikeness, Convexity, Close-to-Convexity


Theorem 1.

Letα≥32andκ≥32.Then,


ReEα,κzz>12,forz∈D.













Proof. 

For the proof of this result, we have to show that


{am}m=1∞=ΓκΓα(m−1)+κm=1∞








is a decreasing sequence. Consider


am−am+1=ΓκΓα(m−1)+κ−ΓκΓαm+κ=ΓκΓαm+κ−Γα(m−1)+κΓα(m−1)+κΓαm+κ>0,








where ∀m≥1,α≥32 and κ≥32. Now, to show that {am}m=1∞ is decreasing, we prove that am+am+2≥2am+1.



Take


am−2am+1+am+2=ΓκΓα(m+1)+κ+ΓκΓα(m−1)+κ−2ΓκΓαm+κ=ΓκΓαm+κΓα(m+1)+κ−2Γα(m−1)+κΓα(m+1)+κ+Γα(m−1)+κΓαm+κΓα(m−1)+κΓαm+κΓα(m+1)+κ=ΓκΓα(m+1)+κΓαm+κ−2Γα(m−1)+κ+Γα(m−1)+κΓαm+κΓα(m−1)+κΓαm+κΓα(m+1)+κ.











The above expression is non negative ∀m≥1,α≥32 and κ≥32, which shows that {am}m=1∞ is decreasing and convex sequence. Now, from the Lemma 4, we have


Re∑m=1∞bmzm−1>12,z∈D,








which is equivalent to


ReEα,κzz>12,z∈D.








 □





Theorem 2.

Letα≥2.67andκ≥1.Then,Eα,κzis starlike in the open unit discD.





Proof. 

To show that Eα,κz is starlike in D, we prove that {mam} and {mam−(m+1)am+1} both are non-increasing in view of Lemma 5. Since am≥0 for the normalized Mittag–Leffler function under the given conditions, consider


mam−(m+1)am+1=mΓκΓα(m−1)+κ−(m+1)ΓκΓαm+κ=ΓκmΓαm+κ−(m+1)Γα(m−1)+κΓα(m−1)+κΓαm+κ>0








for m≥1,α≥2.67 and κ≥1. Now,


mam−2(m+1)am+1+(m+2)=mΓκΓα(m−1)+κ−2(m+1)ΓκΓαm+κ+(m+2)ΓκΓα(m+1)+κ=Γκ−2(m+1)Γα(m−1)+κΓα(m+1)+κ+mΓαm+κΓα(m+1)+κ+(m+2)Γα(m−1)+κΓαm+κΓα(m−1)+κΓαm+κΓα(m+1)+κ=ΓκΓα(m+1)+κmΓαm+κ−2(m+1)Γα(m−1)+κ+(m+2)Γα(m−1)+κΓαm+κΓα(m−1)+κΓαm+κΓα(m+1)+κ.











The above relation is non-negative ∀m≥1,α≥2.67 and κ≥1. Thus, from Lemma 5, Eα,κz is starlike in D. □





Theorem 3.

Letα≥3.323andκ≥1.Then,


ReEα,κ′z>12,z∈D.













Proof. 

Consider


Eα,κz=z+∑m=2∞ΓκzmΓα(m−1)+κ,Eα,κ′z=1+∑m=2∞mΓκΓα(m−1)+κzm−1,Eα,κ′z=1+∑m=2∞Amzm−1.











Here, Am=mΓκΓα(m−1)+κ. By taking the same computations as in Theorem 2, we get the proof. □





Theorem 4.

Ifα≥1andκ≥1,thenz→Eα,κzis inKwith respect to the function−log1−z.





Proof. 

Set


Eα,κz=z+∑∞m=2am−1zm,








and we have am−1>0 for all m≥2 and a1=ΓκΓα+κ≤1. For the proof of this result, we use Lemma 3. Therefore, we have to show that mam−1m≥2 is decreasing. Now,


mam−1−m+1am=ΓκmΓα(m−1)+κ−m+1Γαm+κ,=ΓκmΓαm+κ−m+1Γα(m−1)+κΓα(m−1)+κΓαm+κ>0.











By restricting parameters, we note that mam−1−m+1am>0 for all m≥2. Thus, mam−1m≥2 is a decreasing sequence—hence the result. □





Theorem 5.

Ifα≥1andκ≥1,thenz→zEα,κz2is inKrespect to the function12log1+z1−z.





Proof. 

Set


zEα,κz2=z+∑∞m=2A2m−1z2m−1.











Here, A2m−1=am−1=ΓκΓα(m−1)+κ for all m≥2. In addition, it is clear that a1≤1. Mainly, we have to show that 2m−1am−1m≥2 is decreasing. Now,


2m−1am−1−2m+1am=Γκ2m−1Γα(m−1)+κ−2m+1Γαm+κ,=Γκ2m−1Γαm+κ−2m+1Γα(m−1)+κΓα(m−1)+κΓαm+κ>0.











By using conditions on parameters, we observe that 2m−1am−1−2m+1am>0 for all m≥2. Thus, 2m−1am−1m≥2 is a decreasing sequence. By applying Lemma 3, we have the required result. □





Theorem 6.

Ifα≥1andκ≥3.214319744, then Eα,κz∈S∗in D.





Proof. 

Let pz=zEα,κ′zEα,κz,z∈D. Then, the function p is analytic in D with p0=1. To prove Eα,κz is starlike in D, we just prove that Repz>0 in z∈D. For this, it is enough to show pz−1<1 for z∈D. By using the inequalities


ΓκΓαm+κ≤1κm,α≥1,κ≥1,m∈N,mκm≤2m−1κκ+1m−1,κ≥1,m∈N,








we have


Eα,κ′z−Eα,κzz=∑∞m=1ΓκΓαm+κmzm≤∑∞m=12m−1κκ+1m−1≤1κ∑∞m=12κ+1m−1=κ+1κκ−1,κ>1.



(4)







Furthermore, using reverse triangle inequality and the inequality κm≤κm, we obtain


Eα,κzz=1+∑∞m=1ΓκΓαm+κzm≥1−∑∞m=1ΓκΓαm+κ≥1−∑∞m=11κm≥1−1κ∑∞m=11κ+1m−1=κ2−κ−1κ2κ>0.



(5)







By combining (4) and (5), we get


zEα,κ′zEα,κz−1≤κκ+1κ−1κ2−κ−1.



(6)







Therefore, Eα,κz∈S∗ in D if κκ+1κ−1κ2−κ−1≤1. In other words, we have to show that κ3−3κ2−κ+1≥0. The inequality is satisfied for κ≥3.214319744. Hence, Eα,κz is starlike in D. □





Remark 1.

Recently, Bansal and Prajpat [11] proved thatEα,κzis starlike, ifα≥1andκ≥(3+17)/2≈3.56155281.The above result improves the result in [11].





Theorem 7.

Ifα≥1andκ≥3.56155281,thenEα,κz∈CinD.





Proof. 

Let pz=1+zEα,κ″zEα,κ′z,z∈D. Then, pz is analytic in D with p0=1. To show that Eα,κz is convex in D, it is enough to prove that pz−1<1,z∈D. By using the inequalities


ΓκΓαm+κ≤1κm,α≥1,κ≥1,m∈N,2mm+1κm≤4m−1κκ+1m−1,κ≥1,m∈N,








we have


zEα,κ″z=∑∞m=1ΓκΓαm+κmm+1zm≤∑∞m=14m−12κκ+1m−1≤2κ∑∞m=14κ+1m−1=2κ+1κκ−3,κ>3.



(7)







Furthermore, using the inequality mκm≤2m−1κm, then we have


Eα,κ′z=1+∑∞m=1m+1ΓκΓαm+κzm≥1−∑∞m+1m=1ΓκΓαm+κ≥1−∑∞m=11κm≥1−2κ∑∞m=12κ+1m−1=κ2−3κ−2κκ−1κ>0.



(8)







From (7) and (8), we get


zEα,κ″zEα,κ′z≤2κ2−1κ−1κ2−3κ−2.



(9)







This implies that Eα,κz∈C in D if 2κ2−1κ−1κ2−3κ−2≤1. To prove our result, we have to show that κ3−6κ2+7κ+6≥0. The inequality is satisfied for κ≥3.5615528. Hence, Eα,κz is convex in D. □





Consider the integral operator Fγ:D→C, where γ∈C,γ≠0,


Fγz=γ∫z0tγ−2Eα,κtdt,z∈D.











Here, Fγ∈A. We prove that Fγ∈S in D.



Theorem 8.

LetM∈R+such thatEα,κz≤MinD. If


γ−1+κκ+1κ−1κ2−κ−1+Mγ≤1,








thenFγ∈SinD.





Proof. 

A calculation gives


zFγ″zFγ′z=zEα,κ′zEα,κz+zγ−1γEα,κz+γ−2,z∈D.











Since Eα,κz∈A, then by Schwarz Lemma, triangle inequality and (6), we obtain


1−z2zFγ″zFγ′z≤1−z2γ−1+zEα,κ′zEα,κz−1+zγ−1γEα,κzz≤1−z2γ−1+κκ+1κ−1κ2−κ−1+Mγ.











By using Lemma 2, Fγ∈S in D. □





Theorem 9.

Letα≥1,μ∈0,1andz∈D.

	(i)

	
Ifκ>11−3μ+μ2−12μ+1721−μ,thenEα,κz∈K1+μ2.




	(ii)

	
Ifμ<1−(κ+2)κ+α0κ+α0−1+κ+1κκ+1κ+α0κ+α0−1,thenEα,κzz∈Pμ.




	(iii)

	
If1−μκ3+2μ−3κ2−κ+1−μ>0,thenEα,κz∈S∗μ.




	(iv)

	
If1−μκ3+6μ−8κ2+7−7μκ+8−6μ>0,thenEα,κz∈Cμ.











Proof. 

(i) Using (7) and Lemma 1, we get


zEα,κ″z≤2κ+1κκ−3<1−μ4,








where 0≤μ<1−8κ+1κκ−3 and κ>11−3μ+μ2−12μ+1721−μ. This shows that Eα,κz∈K1+μ2.



(ii) To prove Eα,κzz∈Pμ, we have to show that g(z)−1<1, where g(z)={Eα,κz/z}−μ1−μ. By using triangle inequality with


ΓκΓαm+κ≤1κm,m∈N,κm>κκ+α0m−1,κ>0;m∈N∖{1,2},








(see [16]), where


α0≈1.302775637…








is the largest root of the equation


α2+α−3=0,








we have


g(z)−1=11−μ∑m=1∞ΓκΓαm+κzm≤11−μ∑m=1∞1κm≤11−μ1κ+1κκ+1+∑m=3∞1κκ+α0m−1=11−μ(κ+2)κ+α0κ+α0−1+κ+1κκ+1κ+α0κ+α0−1.








This implies that Eα,κzz∈Pμ, for 0<μ<1−(κ+2)κ+α0κ+α0−1+κ+1κκ+1κ+α0κ+α0−1.



(iii) We use the inequality zEα,κ′zEα,κz−1<1−μ to show the starlikeness of order μ for the function Eα,κz. By using (4) and (5), we have


zEα,κ′zEα,κz−1≤κκ+1κ−1κ2−κ−1<1−μ.











This implies that


μ<1−κκ+1κ−1κ2−κ−1.











This completes the proof.



(iv) We use the inequality zEα,κ″zEα,κ′z<1−μ to show that Eα,κz∈Cμ. By using (7) and (8), we have


zEα,κ″zEα,κ′z≤2κ2−1κ−3κ2−3κ−2<1−μ.











This implies that


μ<1−2κ2−1κ−3κ2−3κ−2,








hence the result. □





Substituting μ=0 in Theorem 9, we obtained the following results.



Corollary 1.

Letα≥1,z∈D.

	(i)

	
Ifκ>11+172,thenEα,κz∈K12.




	(ii)

	
If(κ+2)κ+α0κ+α0−1+κ+1κκ+1κ+α0κ+α0−1<1,thenEα,κzz∈P.




	(iii)

	
Ifκ3−3κ2−κ+1>0,thenEα,κz∈S∗.




	(iv)

	
Ifκ3−8κ2+7κ+8>0,thenEα,κz∈C.











Remark 2.

It is clear thatEα,κz∈K12whenα≥1,κ>7.56155andEα,κz∈Cwhenα≥1,κ>6.796963.It concludes that our results improve the results of ([17], corollary 2.1).






3. Hardy Space of Mittag–Leffler Function


Consider the class H of analytic functions in D=z:z<1 and H∞ denote the space bounded functions on H. Let g∈H, set


Mqr,g=12π∫02πgreiθqdθ1/q,0<q<∞,maxgz:z≤r,q=∞.











If Mqr,g is bounded for r∈0,1, then g∈Hq. It is clear that


H∞⊂Hp⊂Hq,0<p<q<∞.











For some details, see [18]. It is also known [18] that, if Reg′z>0 in D, then


g′∈Hp,p<1,g∈Hp/1−p,0<p<1.











Hardy spaces of certain special functions are studied in [10,19,20].



Lemma 6

([21]). P0μ∗P0η⊂P0γ,where γ=1−21−μ1−ηand μ,η<1.The value γ can not be improved.





Lemma 7

([22]). For μ,η<1and γ=1−21−μ1−η,we have R0μ∗R0η⊂R0γ,or equivalently P0μ∗P0η⊂P0γ.





Lemma 8

([23]). If the function g, convex of order μ, where μ∈0,1, is not of the form


gz=l+dz1−zeiς2μ−1,μ≠1/2,l+dlog1−zeiς,μ=1/2,








for d,l∈C, and ς∈R,then the following statements are true:

	(i)

	
There existδ=δg>0such thatg′∈Hδ+1/21−μ.




	(ii)

	
Ifμ∈0,1/2,then there existsτ=τg>0such thatg∈Hτ+1/1−2μ.




	(iii)

	
Ifμ≥1/2,theng∈H∞.











Theorem 10.

Letμ∈0,1, 1−μκ3+6μ−8κ2+7−7μκ+8−6μ>0.

	(i)

	
Ifμ∈0,1/2,thenEα,κz∈H1/1−2μ.




	(ii)

	
Ifμ≥1/2,thenEα,κz∈H∞.











Proof. 

By using the definition of the hypergeometric function


2F1a,b,c;z=∑∞m=0ambmcmzmm!,








we have


l+dz1−zeiς1−2μ=l+dz2F11,1−2α,1;zeiς,=l+d∑∞m=01−2αmm!eiςmzm+1,








for l,d∈C,μ≠1/2 and for real ς. On the other hand,


l+dlog1−zeiγ=l−dz2F11,1,2;zeiς,=l−d∑∞m=01m+1eiςmzm+1.











Therefore, the function Eα,κz is not of the form of l+dz1−zeiγ2μ−1forμ≠1/2 and l+dlog1−zeiγforμ=1/2. We know that, by part (iv) of Theorem 9, Eα,κz∈Cμ. Therefore, by using Lemma 8, we have the required result. □





Theorem 11.

Let(κ+2)κ+α0κ+α0−1+κ+1κκ+1κ+α0κ+α0−1<1andf∈D.Then, convolutionEα,κ∗fis inH∞∩R.





Proof. 

Let hz=Eα,κz∗gz. Then, h′z=Eα,κzz∗g′z. Using the Corollary 1 part ii, we have Eα,κzz∈P. As g∈R; therefore, by using Lemma 6 h∈R. Now, the function Eα,κzz is complete; therefore, hz is complete. This implies that hz is bounded. Thus, we have the required result. □





Theorem 12.

Letμ<1−(κ+2)κ+α0κ+α0−1+κ+1κκ+1κ+α0κ+α0−1,μ∈0,1andz∈D.Ifg∈Pη,thenEα,κz∗g∈Rγ,whereγ=1−21−μ1−η.





Proof. 

Let hz=Eα,κz∗gz. Then, it is clear that h′z=Eα,κzz∗g′z. Using Theorem 9 part (ii), we have Eα,κzz∈Pμ. As g∈R, therefore, by using Lemma 6 and the fact that g′∈Pη, we have h′z∈Pγ, where γ=1−21−μ1−η. Consequently, h∈Rγ. □





Corollary 2.

Letμ∈0,1andμ<1−(κ+2)κ+α0κ+α0−1+κ+1κκ+1κ+α0κ+α0−1.Ifg∈Rη,η=1−2μ/2−2μ,thenEα,κz∗g∈R0.





Corollary 3.

Letμ∈0,1and(κ+2)κ+α0κ+α0−1+κ+1κκ+1κ+α0κ+α0−1<1.Ifg∈R1/2, thenEα,κz∗g∈R0.






4. Applications


Now, we present some applications of the above theorems. It is clear that


E1,2z=ez−1,E1,3z=2ez−z−1z,E1,4z=6ez−3z2,−6z−6z2.











From Theorem 9, we get the following:



Corollary 4.

(i)If0≤μ<μ0,whereμ0≈0.26759,thenE1,2z∈Pμ.



(ii)If0≤μ<μ1,whereμ1≈0.55988,thenE1,3z∈Pμ.



(iii)If0≤μ<μ2,whereμ2≈0.68904,thenE1,4z∈Pμ.





Corollary 5.

If0≤μ<μ3,whereμ3≈0.39393,thenE1,4z∈S∗μ.





Corollary 6.

(i)Let0≤μ<μ4, whereμ4≈0.2675930.Ifg∈Rη,η=1−2μ/2−2μ,thenE1,2z∗g∈R0.



(ii)Let0≤μ<μ5, whereμ5≈0.55987780.Ifg∈Rη,η=1−2μ/2−2μ,thenE1,3z∗g∈R0.



(iii)Let0≤μ<μ6, whereμ6≈0.68904320.Ifg∈Rη,η=1−2μ/2−2μ,thenE1,4z∗g∈R0.






5. Conclusions


In this paper, we have studied certain geometric properties of Mittag-Leffler functions such as starlikeness, convexity and close-to-convexity. We have also found the Hardy spaces of Mittag-Leffler functions. Further, we have improved some results in the literature.
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