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Abstract: Transfer Learning (TL) has received a great deal of attention because of its ability to speed
up Reinforcement Learning (RL) by reusing learned knowledge from other tasks. This paper proposes
a new transfer learning framework, referred to as Transfer Learning via Artificial Neural Network
Approximator (TL-ANNA). It builds an Artificial Neural Network (ANN) transfer approximator to
transfer the related knowledge from the source task into the target task and reuses the transferred
knowledge with a Probabilistic Policy Reuse (PPR) scheme. Specifically, the transfer approximator
maps the state of the target task symmetrically to states of the source task with a certain mapping
rule, and activates the related knowledge (components of the action-value function) of the source task
as the input of the ANNs; it then predicts the quality of the actions in the target task with the ANNs.
The target learner uses the PPR scheme to bias the RL with the suggested action from the transfer
approximator. In this way, the transfer approximator builds a symmetric knowledge path between
the target task and the source task. In addition, two mapping rules for the transfer approximator
are designed, namely, Full Mapping Rule and Group Mapping Rule. Experiments performed on the
RoboCup soccer Keepaway task verified that the proposed transfer learning methods outperform two
other transfer learning methods in both jumpstart and time to threshold metrics and are more robust
to the quality of source knowledge. In addition, the TL-ANNA with the group mapping rule exhibits
slightly worse performance than the one with the full mapping rule, but with less computation and
space cost when appropriate grouping method is used.

Keywords: artificial neural networks; probabilistic policy reuse; reinforcement learning; transfer
approximator; transfer learning

1. Introduction

Reinforcement learning (RL) is a popular learning paradigm for solving sequential
decision-making problems. However, it relies on extensive interactions with the environment to
converge to an acceptable policy, which usually takes quite a long time. Therefore, techniques
like transfer learning (TL) have been developed to facilitate the learning process and improve the
performance in reinforcement learning. Based on the idea that the learned knowledge in a related
source task may aid the learning process in the target task, transfer learning is gaining more and
more attention, especially in some data mining domains like classification, regression and clustering.
However, the work of the transfer learning under the reinforcement learning framework is relatively
less. Therefore, this paper will focus on the transfer learning for reinforcement learning, not on the
classification, regression and clustering problems.

In transfer learning, the target task is related to but different from the source task. Typically,
the target task is more complex than the source task, and they are even characterized by different
space/action spaces. Therefore, the source task knowledge can not be used directly in the target
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task. Typically, an inter-task mapping [1] is necessary; this consists of a state-mapping and an
action-mapping, and it is able to map the source knowledge to the target task for initialization or other
uses. Two issues stand out regarding the inter-task mapping. First, the inter-task mapping is typically
designed by human experts, which can involve a lot of human resources. Second, methods to learn
the inter-task mapping are almost all designed to learn just one-to-one mapping, which can not make
full use of related features. To avoid the trouble of inter-task mapping, some TL methods just assume
that the inter-task mapping is already given or that the source task and target task are from the same
domain where no inter-task mapping is needed, but these assumptions may not hold in many cases.

Apart from the concerns on the inter-task mapping, there is another concern regarding the timing
of transfer. Mostly, the transfer is done at the beginning of the reinforcement learning, which uses the
source knowledge to initialize the target task. Works that done the transfer during the process of the
reinforcement learning are very limited and may need extra parameter training at the same time.

The motivation of this paper is to reduce human involvements in the transfer learning, and to
make a better use of the related features between the source task and the target task. This paper neither
neglects the difference between the source task and the target task, nor assumes that the inter-task
mapping is already given. Moreover, this paper also concerns the transfer learning happening during
the reinforcement learning, but without extra parameter training during the reinforcement learning.

With these motivations, this paper makes a number of contributions by proposing a new transfer
learning framework. This framework builds a transfer approximator to predict the quality of target
task actions based on source task knowledge, and then biases the action selection of the target task
learner with the Probabilistic Policy Reuse (PPR) scheme [2,3].

The main contributions of this work are as follows:

1. The concept of the transfer approximator is proposed. By taking the state from the target task
as the input and predicting the quality of actions in the target task, the transfer approximator
does not need the action mappings across the two tasks. As for the state mapping in the inter-task
mapping, it is replaced by the state feature mapping rules that are different from the state mapping
of the inter-task mapping to some extent.

2. Two mapping rules called full mapping and group mapping are designed. The mapping rule
is used in the transfer approximator for mapping each state feature of the target task into
a set of features in the source task. With such feature mapping rules, much more related
feature information can be used. Differently from the state mapping of the inter-task mapping,
the full mapping rule is totally task independent and human-free. However, it is hard for the
group mapping rule to be task independent, but it can have relatively less human involvement
depending on the grouping method used. For example, there will be nearly no human
involvement if the grouping is done by certain machine learning methods.

3. A new transfer learning framework, called Transfer Learning via Artificial Neural Network
Approximator (TL-ANNA), is proposed. It builds an Artificial Neural Network (ANN) transfer
approximator to transfer the related knowledge from the source task to the target task and reuses
the transferred knowledge based on the PPR scheme. The ANNs are used to predict the quality of
actions in the target task, which allows certain errors in collecting source knowledge and increases
the robustness of transfer learning. The result from the transfer approximator is combined with
the PPR scheme. Without extra parameter training during the RL of the target task, the PPR
scheme provides easy integration between transferred knowledge and learned knowledge.

The rest of the paper is organized as follows. Related literature works are commented in Section 2.
Section 3 outlines the concepts behind the reinforcement transfer learning. Section 4 details the
proposed transfer learning framework. Experiments are presented in Section 5. Section 6 concludes
the proposed methods.
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2. Literature Review

Since the inter-task mapping is important in typical transfer leaning, some research focuses on the
design of the inter-task mapping, such as [4]. However, human designed inter-task mapping involves
too much human effort and can create inaccuracies due to the limitations of human knowledge,
and many researchers have tried to autonomously learn inter-task mapping. The MASTER (Modeling
Approximate State Transitions by Exploiting Regression) method proposed in [5] learns a one-to-one
state mapping and action mapping by minimizing the MSE (Mean Square Error) between the mapped
samples and the predicted samples in the target task. To remove the need of samples in the target task,
Silva et al. [6] proposed the Zero-Shot Autonomous Mapping Learning to learn the state mapping
between tasks described through Object-Oriented Markov Decision Process, where the action mapping
is assumed to be given already. Instead of learning the inter-task mapping, some methods attempt to
create other forms of inter-task mapping. A many-to-many inter-task mapping in the form of ANN
was designed in our previous work [7].

The primary contrast between these previous methods and our work is that we are interested
in relating more state features in the source task with that of the target task to make a better use of
the related knowledge, and reducing the necessity of human involvements in the inter-task mapping,
as well as trying to remove part of the inter-task mapping, such as the action mapping.

Some other research focuses on how to use the source knowledge but is based on some
assumptions about the inter-task mapping. For instance, Wang and Taylor [8] used Gaussian Processes
to summarize demonstrated policy (source knowledge) with the assumption that the inter-task
mapping has been given. Brys et al. [9] encoded the transferred policy as a dynamic potential-based
reward shaping function with the inter-task mapping assuming to exist already. The work [10]
transferred the unchanged part between the source task and the target task, ignoring the need of
the inter task mapping. The online transfer framework proposed in [11] uses advice as transferred
knowledge, but the difference between tasks was not emphasized. The work [12] treated the source
task and the target task as one single problem, so no consideration on the inter-task mapping was
given. To avoid the need of inter-task mapping, Laflamm [13] chose the source task and the target task
from the same domain with the same state and action space, and then compared three existing transfer
learning methods on the Mario AI domain. The work in [14] transfers the shared transition sample
(s, a, r, s′) between tasks by modifying the immediate reward r with the estimated reward function,
which is based on the assumption that the tasks only have different reward functions. The work in [15]
proposed a new method called target transfer Q-Learning to transfer the Q-function when certain
safe conditions are satisfied, where the two Markov Decision Processes (MDPs) have only different
transition function, reward function and discount factor. The transfer learning method proposed in the
work [16] uses the modified learning vector quantization (LVQ) to extract an abstract policy from the
source task, where the state space and action space between tasks are the same.

Differently from above works, this work allows for the difference between the source task and the
target task, and with no ignorance on the fact that the source knowledge can not be used directly in
the target task. That is to say, the state space and the action space in the source task are both different
from those in the target task. Furthermore, no inter-task mapping is assumed to be given to our
transfer learning.

Apart from the inter-task mapping, some research tries to find other ways to relate the source
task knowledge with the target task. The work in [17] uses the Transfer Component Analysis (TCA) to
extract the features shared by visual observations in both simulations and real environments to do
the transferring. By encoding the states as an image and the action space as a multi-channel image,
the work in [18] introduced a novel state-action space representation that remains invariant to the
number of agents in an environment for the policy transfer. The work [19] trained an invariant feature
space to add additional terms to the reward function of the target agent. Successor features were
used in the work [20] to parametrize the reward function with reward features, and the transfer was
done by training the weights for these reward features. Shoeleh and Asadpour [21] added the learned
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skills to the target agent’s action repertoire by expanding the action-value function in the target task.
The TL method proposed in [22] uses an inter-task mapping provided by the Unsupervised Manifold
Alignment (UMA) technique to move back and forth between tasks to determine a policy adjustment
term with the target apprentice learning, and then augments the transferred policy with the policy
adjustment term for the transfer adaption. Kelly and Heywood [23] introduced a symbiotic framework
that hierarchically constructs a policy tree to transfer tasks under genetic programming. Didi and
Nitschke [24] used the neuro-evolution method to evolve policy from the source task to the target
task. The ADAAPT (A Deep Architecture for Adaptive Policy Transfer) method proposed in [25]
combines the weighted learned policies for knowledge transfer, and updates an attention work during
the reinforcement learning to adjust the policy weights.

These methods either use specific representation in the task, or add some changes on the reward
or action-value function, or learn some extra parameters in the target task along with the reinforcement
learning. On the contrary, the proposed methods in this paper use a transfer approximator to find out
the relationship between tasks before the transfer, and transfer knowledge during the reinforcement
learning, without the need of specific representation in tasks or extra parameter learning during
the transfer.

There is another big difference between the proposed methods and the reviewed works. Most
previous transfer learning happens at the initialization period of the reinforcement learning. Some other
works transfer during the reinforcement learning, but they either need extra parameter learning along
with the transfer (e.g., [25]), or transfer with a budge or in certain circumstances [11]. On the contrary,
the PPR scheme ([2,3]) is used in this paper to transfer knowledge, which adjusts the transferring by
decaying probability during the reinforcement learning, and no extra parameter learning is needed
during the transferring.

3. Reinforcement Transfer Learning

3.1. Reinforcement Learning

A Reinforcement Learning (RL) [26] problem is typically formalized as a Markov Decision Process
(MDP) [S ,A, T ,R]. The agent selects an action a ∈ A when it is in the environment’s state s ∈ S .
After taking the action a, it receives an immediate reward r ∈ R, while the environment state transits
into the next state s′ ∈ S with probability T a

ss′ . The agent’s goal is to maximize the total amount of
reward it receives, which is often estimated by action-value function Qπ(s, a), where π : S → A is the
policy that the agent follows. The definition of the action-value function Qπ(s, a) is as follows:

Qπ(s, a) = Eπ

{
∞

∑
k=0

γkrt+k+1

∣∣∣∣∣ st = s, at = a

}
, (1)

where 0 ≤ γ ≤ 1 is the discount rate.
Solving a reinforcement learning task is to find the optimal policy π∗. By solving the Bellman

optimality equation (Equation (2)), the optimal action-value function Q∗ can be obtained and therefore
the optimal policy π∗ as well:

Q∗(s, a) = ∑
s′
T a

ss′

[
r + γ max

a′
Q∗(s′, a′)

]
. (2)

However, in systems where the dynamics of the environment are unknown (R and/or T ) or
where the state space (S) and/or action space (A) contain continuous variables, the Bellman optimality
equation should be solved approximately. The temporal-difference (TD) learning methods with
function approximation are popularly used in solving such RL problems. In this work, the proposed
TL methods are based on the Sarsa(λ) TD method with the CMAC (cerebellar model arithmetic
computer, [27]) function approximator.
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The CMAC is a linear tile-coding function approximator. It discretizes the continuous state space
by laying infinite axis-parallel tilings over state variables and then generalizes them via multiple
overlapping tilings with some offset. Each element of a tiling is called a tile, which is a binary feature.
The value of a tile is 1 when being activated; otherwise, it is 0. The number of tilings and the tile
width are hand-coded since they can influence the generalization. The CMAC maintains Q(s, a) in the
following form:

Q(s, a) =
−→
θ T−→φ a(s) = ∑

i∈I(
−→
φ a(s))

θ(i), (3)

where
−→
φ a(s) is the vector of tile values for all the tiles that are laid for pair (s, a), and

−→
θ is the vector

of tile weights for corresponding tiles. I(
−→
φ a(s)) is the set of tiles that are activated by the pair (s, a),

whose tile values are 1.
For a state space with many state features, one-dimensional tilings are usually used, where each

state feature can independently activate one tile in each tiling. Let θki denote the weight for the tile
activated in the ith tiling by the kth state feature and the action a, and let n denote the number of tilings.
In this paper, the concept of the q-value function can be defined as q(vk, k, a) = ∑n

i=1 θki. Therefore,
for a state with m state features, Equation (3) can be rewritten in the following form:

Q(s, a) =
m

∑
k=1

n

∑
i=1

θki =
m

∑
k=1

q(vk, k, a), (4)

where θki is updated by the TD learner with samples from experience. Therefore, the q-value function
q(vk, k, a) is what the kth state feature contributes to the action-value function Q.

The gradient-descent method is used to adjust the parameter θ. The updating rule is as follows:

−→
θ t+1 =

−→
θ t + αδt

−→e (st ,at), (5)

where −→e is eligibility trace[26], and δt is the usual TD error,

δt = rt+1 + γQt(st+1, at+1)−Qt(st, at). (6)

3.2. Transfer Learning

In the target task without transfer learning, the RL learner initializes all the CMAC parameters
θ(t) with 0. Therefore, the target task learner can not distinguish the actions by the initial action-value
function Q(t)

0 . As the RL learner interacts with the environment to collect samples, the distinctions
between actions become clearer. Therefore, the learning process can be denoted as(

S(t), s(t)0 , A(t), T(t), R(t), Q(t)
0 , π

(t)
0

)
D(t)
==⇒

(
Q(t)

f inal , π
(t)
f inal

)
, (7)

where D(t) is the knowledge received during the learning process. Q(t)
f inal ≈ (Q∗)(t), which is learned

approximately by adjusting parameters θ(t) with D(t), and π
(t)
f inal ≈ (π∗)(t).

In transfer learning, the source task has completed the RL process, as denoted in Equation (8).
The idea of transfer learning is to reuse D(s), or Q(s)

f inal , or π
(s)
f inal to aid the learning process in the

target task: (
S(s), s(s)0 , A(s), T(s), R(s), Q(s)

0 , π
(s)
0

)
D(s)
==⇒

(
Q(s)

f inal , π
(s)
f inal

)
. (8)

There are many ways to realize transfer learning, and most of these methods need the inter-task
mapping to map related knowledge from the source task into the target task. An inter-task mapping
ρ consists of a state mapping χX : s(t) ← s(s) and an action mapping χA : a(t) ← a(s). Typically,



Symmetry 2019, 11, 25 6 of 22

the inter-task mapping is either provided by human experts or learned via certain methods. Inter-task
mapping provided by human experts involves too much human intervention and can bring in errors
due to limitations of human knowledge. Methods to learn an inter-task mapping are usually complex
and may cause much time and space consumption. Therefore, a TL method that can reduce and even
eliminate the human involvement or remove some part of the inter-task mapping is very much worth
studying. The concept of the transfer approximator is proposed in this paper to achieve these goals.

Typically, transfer learning methods with inter-task mapping ρ use the mapped source knowledge
to initialize the parameters in the target task to set a better start point for the RL learner in the target
task. Supposing the knowledge transferred is an action-value function, this class of TL methods can be
formalized as:

Q(t)
0

(
s(t), a(t)

)
= Q(s)

f inal

(
χX(s(t)), χA(a(t))

)
= ρ

(
Q(s)

f inal

)
. (9)

However, it is considered in this paper that the transferred knowledge not only can be used for
initialization before the RL process but also can be helpful for biasing the learning during the RL
process. Therefore, the PPR scheme is used in this paper to integrate transferred knowledge from the
transfer approximator into the learned knowledge during the RL process, which can be formulated as:

Q(t)
(

s(t), a(t)
)
← g

(
f (Q(s)

f inal), Q(t)(s(t), a(t))
)

, (10)

where function f is realized by the transfer approximator in the proposed methods and function g is
fulfilled by the PPR scheme. this class of methods aim at a fuller use of the transferred knowledge by
using it not for initialization but for biasing during the learning process. The details of the proposed
methods are presented in the following section.

4. Transfer Learning via ANN Approximator

In this paper, a novel transfer learning framework is proposed for reinforcement learning. This
framework builds a component, namely transfer approximator, to leverage source knowledge and
biases the action selection in the target task with PPR ( Probabilistic Policy Reuse) [2,3], as shown in
Figure 1.

ANN

PPR

Transfer Approximator

Source Task

.

.

.

Target Task

.

.

.

Value Function 
Approximator

Mapping 

Rule

Figure 1. The proposed TL (Transfer Learning) framework with ANN (Artificial Neural Network)
transfer approximator.
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The main part of the proposed framework is a component which takes the state (s(t)) of the target
task as input and gives the target task a suggested action based on the predicted quality of target task
actions. In this sense, this component is similar with the action-value function approximator of the RL
in the target task, which also takes the state s(t) as the input and gives the agent an action a(t)le based on
the action-value Q(t). Therefore, the name Transfer Approximator is invented in this paper for this
component. The predicted quality of target task actions from the transfer approximator are called
the transferred action-value function Qtr

(
a(t)
)

, which is used to determine an action. This target
task action determined by the transfer approximator is called the transferred action in this paper,
denoted by atr. Since the transferred action atr is already a target task action, it can be used in the
target task directly, and no action mapping is needed even if the action set of the target task is different
from that of the source task. Algorithm 1 demonstrates how an ANN transfer approximator works.
In line 2 of Algorithm 1, a certain mapping rule is needed for the feature mapping. Compared with
the state mapping in the inter-task mapping, the mapping rule used here has less and even no human
involvements and can be more and even totally task independent. Line 4 is used for activating related
source knowledge. Here, the q-value function from Q(s)

f inal is chosen as the related source knowledge.

Each output node of the ANNs predicts a value of Qtr

(
a(t)
)

corresponding to an action in the target
task. The ANNs should be trained before transfer learning with a small set of samples from both the
source task and target task.

Algorithm 1 The process in an ANN transfer approximator

Input: s(t)

Output: atr
1: for each feature v(t)k in s(t) do

2: Map v(t)k into a set of features (F(s)
k ) in the source task

3: for each feature v(s)ik ∈ F(s)
k and each action a(s)j ∈ A

(s) do

4: Activate related source knowledge (q-value function q
(

v(s)ik , i, a(s)j

)
from Q(s)

f inal)
5: end for
6: end for
7: Use all the q-value functions obtained as the inputs of the ANNs
8: Predict the quality of the target task actions (denoted by Qtr) with ANNs
9: atr = arg maxa(t) Qtr

(
a(t)
)

Since there is a learned action a(t)le determined from the value function approximator in the target
task and a transferred action atr determined from the transfer approximator, the PPR scheme can be
used to determine the executing action a(t) for the RL learner in the target task.

As the transfer approximator in this work uses ANNs for prediction, this proposed algorithm is
referred to as Transfer Learning via ANN Approximator (TL-ANNA). It has advantages over most of
the TL algorithms mainly in terms of the following two aspects:

1. With the use of the transfer approximator, TL-ANNA removes the need of the action mapping in
the inter-task mapping. The state feature mapping rule in the transfer approximator can make a
better use of the related knowledge in the source task than the typical one-to-one state mapping
from a inter-task mapping does. Certain state feature mapping rules in the transfer approximator
can even eliminate the human involvement.

2. By combining the PPR scheme with the transfer approximator, TL-ANNA can integrate the source
knowledge during the RL process, not just before the RL process.
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Two state feature mapping rules for the transfer approximator, full mapping and group mapping,
are designed in this paper. The structure of the ANNs varies due to the difference of the mapping
rules. In the following subsections, we will introduce these two state feature mapping rules and the
construction of the ANNs, as well as the biasing action selection scheme.

4.1. State Feature Mapping Rules

Denote the number of state features in the source task and the target task by m and m′, respectively.
The number of actions in the source task and the target task are denoted by l and l′, respectively. Since
the target task is usually more complex than the source task, it can be assumed that m ≤ m′ and l ≤ l′.

As described in Section 3, each state feature activates tiles independently when one-dimensional
tile coding is used. For a tile coding that lays n tilings for a state, each state feature can activate one tile
in each tiling independently and thus n tiles in total for the tile coding. Based on this independence,
the concept of the state feature mapping rule is defined. Given a state s(t) =

[
v(t)1 , v(t)2 , ..., v(t)k , ..., v(t)m′

]
of the target task, the state feature mapping rule can map each feature v(t)k to a set of state features
in the source task and sets all the source task state features in the mapped set with the value of state
feature v(t)k .

The two designed mapping rules are called Full Mapping and Group Mapping. Both mapping
rules only map state features, while the typical inter-task mapping usually consists of state mapping
and action mapping. The transfer approximator removes the necessity of an action mapping. Moreover,
both state feature mapping rules are one-to-many mapping, while most of the state mappings in the
inter-task mappings are just one-to-one mapping. Therefore, more related knowledge in the source
task can be used in the transfer approximator. The full mapping rule is totally task independent, while
the group mapping rule and the inter-task mapping are task related. In addition, the full mapping
rule does not need human involvement, and the group mapping rule may also need no human
involvement in certain circumstances, while many other inter-task mapping involves human effort.
In the group mapping, the grouping not only can be done by human knowledge, but also can be done
by some machine learning methods, such as clustering methods. However, the grouping methods are
considered to be out of the scope of this paper and can be left for the future work.

4.1.1. Full Mapping

In this mapping rule, each state feature in s(t) is mapped into all the state features in the source
task. That is to say, when mapping the kth feature of s(t), all the m state features in the source task are
set with the value of v(t)k . Therefore, a target task state s(t) can be mapped into m′ sets of features, and
each mapped feature set consists of m source task features with all the same values of the corresponding
target task feature. Given an action a(s)j in the source task, each mapped source task feature v(s)ik for
the kth target state feature can activate n tiles in the tilings. Summing the weight of these n tiles, the
corresponding q-value function q

(
v(s)ik , i, a(s)j

)
can be obtained. Therefore, a given target task state s(t)

can activate N f sets of tiles and obtain N f pieces of q-value from the source task, where N f is given in
Equation (11):

N f = m′ ×m× l. (11)

4.1.2. Group Mapping

This mapping rule is based on the idea from our previous work [4]. Assume the state features
from both the source task and the target task can be divided into K groups. Let F(s)

i and F(t)
i denote the

ith group of features in the source and target task, respectively. The features in F(t)
i are all assumed

to be related to all the features in F(s)
i but have no relationship (or little relationship) with features

in other groups of the source task. Therefore, features from group F(t)
i simply need to be mapped

into features in F(s)
i . Supposing that F(t)

i has m′i features and F(s)
i has mi features, a target task feature
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v(t)k ∈ F(t)
i can be mapped into mi source state features. Given an action a(s)j in the source task, target

task feature v(t)k can activate mi sets of tiles. Therefore, a given target task state s(t) can activate Ng sets
of tiles and get Ng pieces of q-value from the source task, where Ng is given in Equation (12):

Ng =
K

∑
i=1

(m′i ×mi)× l. (12)

Note that, when K = 1, the group mapping is equal to the full mapping. Full mapping does not
require any grouping knowledge, which makes it totally task independent. However, full mapping
requires much computation and space in complex tasks. Therefore, with additional knowledge
(grouping knowledge), the full mapping can be changed into group mapping, which would reduce
computation and space consumption. However, the grouping knowledge may come with the price of
extra computing from methods like clustering, or extra human involvement in the grouping.

4.2. Construction of the ANNs

There are many kind of ANNs existing; however, the research on the ANNs is out of the scope
of this paper. This paper adopts a simple structure of ANNs to demonstrate how the proposed
transfer learning framework works, since the scale of training data is relatively small. However,
in more complex problems with too many states and actions, more complex ANNs can be used
and methods for accelerating ANNs [28,29] can be explored, which we will leave for future works.
The BackPropagation (BP) ANNs with one hidden layer are chosen as the architecture of the ANNs
in the transfer approximator. The ANNs take the source knowledge (q-value functions) obtained
through the feature mapping rule as its inputs and predict the transferred action-value function Qtr.
The number of input nodes is Ni, which is given by Equation (13):

Ni =
K

∑
i=1

(m′i ×mi)× l. (13)

K = 1 when full mapping is used. The number of input nodes is equal to the number of the q-value
functions obtained from the source task. The number of output nodes is equal to the number of actions
in the target task. Denote the number of output nodes by No; then,

No = l′. (14)

The predicted value from each output node indicates the quality of the corresponding action in
the target task. In this way, it removes the necessity of the action mapping. The number of hidden
nodes is denoted by Nh.

Suitable ANNs for the transfer approximator can be obtained through Algorithm 2, where T is a
small number and d(t)t is other related information in addition to the state s(t)t , the action a(t)t and the

reward r(t)t .

For each sample (s(t)t , a(t)t , r(t)t , d(t)t ) recorded from the target task, the st is used to generate the

input sample of the ANNs, while (a(t)t , r(t)t , d(t)t ) are used to generate the corresponding output sample
of the ANNs. The process of generating training samples will be detailed in the following.
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Algorithm 2 The process for obtaining the ANNs of transfer approximator

1: tstop ← T
2: Run the target task
3: for each step t do

4: if t < tstop then

5: record the (s(t)t , a(t)t , r(t)t , d(t)t ) tuples
6: else

7: stop the target task
8: end if
9: end for

10: Generate the input samples of the training data
11: Generate the corresponding output samples of the training data
12: Train the ANNs

4.2.1. Generating Input Samples

First, the recorded target task state s(t)t needs to be mapped into the source task with a mapping

rule. Then, Ni q-value functions (q
(

v(s)ik , i, a(s)j

)
) are obtained from the learned action-value function

Q(s)
f inal in the source task. Each q

(
v(s)ik , i, a(s)j

)
value corresponds to an input node.

4.2.2. Generating Output Samples

The outputs of the ANNs indicate the quality of the corresponding actions of the target task.
On the other hand, the reward r(t)t and the additional information d(t)t obtained from the target task

after executing the action a(t)t reflect the effect of the action a(t)t . Suppose the value of the output

node corresponding to the target task action a(t)i for sample t is Oit, and the value ranges of all Oit are

[omin, omax]. Therefore, for a sample tuple (s(t)t , a(t)t , r(t)t , d(t)t ) collected from the target task, the output

Oit is defined by Equation (15), where f (•) is a function of r(t)t and d(t)t , and omin ≤ f
(

r(t)t , d(t)t

)
≤

omax, ∀r(t)t , d(t)t :

Oit =

 f
(

r(t)t , d(t)t

)
, if ai = a(t)t ,

(omax + omin)/2, otherwise.
(15)

After generating the training data, the BP algorithm is adopted to train the ANNs, where the
activate function of each layer is a sigmoid function.

4.3. Biasing the Action Selection with PPR Scheme

With the knowledge from the source task, the transfer approximator can roughly determine
which action should be taken in the target task by predicting the quality of all the actions in the
target task. However, how to use this transferred action to speed up RL in the target task is another
important issue of transfer learning. To address this issue, the Probabilistic Policy Reuse (PPR) scheme
is adopted in this framework, which is based on the π-reuse Exploration Strategy [2]. The Policy Reuse
in Q-Learning algorithm (PRQ-Learning) proposed in [2] is also based on the π-reuse Exploration
Strategy, which reuses past policies from a policy library. In each episode, a past policy is chosen
with a varying probability, and this probability is updated with the reward received in the episode.
The work [30] replaced the Q-learning update rule in the PRQ-Learning with the Sarsa updating rule
to do the inter-task transfer learning. However, the work [3] used the π-reuse Exploration Strategy to
directly transfer from human demonstrations, which is slightly different from that in [2,30]. The way
of integrating the π-reuse Exploration Strategy in this paper is the same as that in work [3]; therefore,
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the PPR is referred to as the π-reuse Exploration Strategy used in the way given in the work [3]. Unlike
the typical TL methods which simply transfer before the RL process, the PPR scheme helps to transfer
during the RL process.

Figure 2 illustrates the difference between the RL without TL, the transfer before the RL process
and the transfer during the RL process. The initial action-value function Q(t)

0 and the final optimal

action-value function Q(t)
f inal are assumed to be located in the Q space as shown in Figure 2. The RL

without TL starts from Q(t)
0 , and explores quite a lot of points in the Q space to collect as many samples

as possible before reaching the final optimal point Q(t)
f inal , as shown by the black line. Typical TL

methods usually transfer before the RL by initializing parameters of the target task with source task
knowledge. Therefore, the TL via initialization can set the start point to ρ

(
Q(s)

f inal

)
, which is closer to

the final optimal point Q(t)
f inal than the start point Q(t)

0 in the RL without TL. Thus, the RL transferred
by this method can shorten the exploration time, as illustrated by the blue line. The transferring during
the RL also starts from the Q(t)

0 as the RL without TL does; however, it uses the transferred knowledge
to bias the learning process during the RL and guides the target learner toward the final optimal policy
more straightforwardly. Therefore, it does not need to explore too much unrelated points in the Q
space, and thereby reaches the final optimal point Q(t)

f inal more quickly. The orange line depicts the TL
via biasing methods.

RL without TL

TL via Initialization

TL via Biasing

Figure 2. The comparison between two TL ideas and no-transfer RL (Reinforcement Learning).

Since parameters in the RL are usually initialized with the same value, all the actions appear to be
the same for the RL learner at the beginning. Determined by using source knowledge, the transferred
action atr is considered to be better than the RL learner’s own learned action a(t)le in the initial period of
the RL process. Through interacting with the environment, the RL learner accumulates more and more
knowledge and therefore determines better and better action a(t)le from its own learned value-function
approximator. The transferred action atr is not always optimal for the target task due to errors in the
transfer approximator and the difference between source task and target task. Thereby, the learned
action a(t)le will turn out to be better than the transferred action atr in the later stage of the RL process.
The PPR scheme uses a decaying probability Φ to adjust the use of the transferred action atr, which
takes all the above concerns into consideration.

The PPR scheme is based on the ε-greedy scheme. The learner explores with the probability of
ε. In addition, it uses the transferred action with the probability of Φ, and uses the learned action
with the rest of the probability. The probability Φ = Φk

D, where 0 < ΦD < 1, and k is the episode
number. Therefore, the RL learner selects the transferred action more often at the beginning period of
its learning and tends to select its own learned action more often as the episodes increase. Algorithm 3
presents the process of biasing action selection with the PPR scheme in the framework.
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Algorithm 3 Biasing Action Selection with PPR Scheme

1: Φ← ΦD
2: Load source task knowledge
3: for each episode do

4: Initialize the start state with s(t)0
5: s(t) ← s(t)0
6: if rand() < ε then

7: a(t) ← random action
8: else

9: if rand() < Φ then

10: send s(t) to the transfer approximator
11: obtain atr from the transfer approximator
12: a(t) ← atr
13: else

14: a(t)le ← arg maxa Q(t)

15: a(t) ← a(t)le
16: end if
17: end if
18: a(t)0 ← a(t)

19: Execute action a(t)0
20: Observe new state s(t)1 and reward r(t)0
21: for each step of the episode do

22: s(t) ← s(t)1
23: Repeat line 6 to line 17
24: a(t)1 ← a(t)

25: Use Sarsa and < s(t)0 , a(t)0 , r(t)0 , s(t)1 , a(t)1 > to update Q(t)

26: Execute action a(t)1
27: Observe new state s(t)2 and reward r(t)1
28: s(t)0 ← s(t)1 , a(t)0 ← a(t)1 , r(t)0 ← r(t)1 , s(t)1 ← s(t)2
29: end for
30: Φ← Φ×ΦD
31: end for

5. Experiments and Results

Different from the transfer learning for the classification, regression and clustering problems,
the transfer learning methods for the reinforcement learning problems should be tested on some
reinforcement learning platform. As a relatively complex RL task, the Keepaway task has been used
for testing many existing TL methods of RL. To verify the effectiveness of these proposed transfer
learning methods, experiments are also performed on the Keepaway task.

5.1. Keepaway Task

Robotic Soccer Games are popularly used in evaluating the reinforcement learning methods,
such as [31]. There are many subproblems of the soccer games, such as the Keepaway [32]. In the
Keepaway task, there are two teams, keepers and takers, fighting for the ball in a limited region. The
keepers try to maintain possession of the ball within the region, while the takers try to gain possession
of the ball or kick it out of bounds. Let x and y denote the number of keepers and takers, respectively.
{K0, ..., Kx−1} denote keepers, where K0 is the keeper with the ball and K1 is the closest keeper to K0,
and K2 the second closest, and so on up to Kx−1. Similarly, {T1, ..., Ty} are takers that are also ordered
by the closeness to the keeper K0.



Symmetry 2019, 11, 25 13 of 22

There are 4x + 2y− 3 state features for each state in the Keepaway task, which can be divided
into six groups with two types (distance and angle). The details of the state features and the six groups
are listed in Table 1.

Table 1. State features in Keepaway.

Group # Meaning Total
Number

Range [ fi, ..., fj] Type

1 distance from a keeper to the center x i = 0
j = x− 1 distance

2 distance from a taker to the center y i = x
j = x + y− 1 distance

3 distance from a keeper to the keeper K0 x− 1 i = x + y
j = 2x + y− 2 distance

4 distance from a taker to the keeper K0 y i = 2x + y− 1
j = 2x + 2y− 2 distance

5 minimal distance from a keeper without
ball to takers x− 1 i = 2x + 2y− 1

j = 3x + 2y− 3 distance

6 minimal angle between a keeper and a
taker whose vertex is at K0

x− 1 i = 3x + 2y− 2
j = 4x + 2y− 4 angle

The keeper with the ball is the agent who makes the decision. There are two types of actions: hold
and pass. Let a0 denote the hold action and ai(i = 1, .., x− 1) denote the action of passing the ball to
keeper Ki(i = 1, .., x− 1). Thus, keeper K0 can choose the action from an action set A = {a0, a1, ..., ax−1}
with x actions.

The goal of keepers is to keep the ball on their own side as long as possible. The learner receives a
reward of +1 for each time step the ball remains in play. In the Keepaway task, episode duration is
usually chosen as the performance measure for the learning.

5.2. TL-ANNA in Keepaway

In these transfer learning experiments, the target task is set as a Keepaway scenario with four
keepers and three takers, denoted as 4vs.3 Keepaway; while the source task is chosen as the Keepaway
scenario with three keepers and two takers, denoted as 3vs.2 Keepaway. Therefore, according to
Table 1, there are 19 state features and four actions in the target task, while 13 state features and three
actions in the source task. That is to say, the source task and the target task have both different state
sets and different action sets.

First, data are collected for sample generation by running the target task (4vs.3 Keepaway) for
several minutes. Every (s(t)t , a(t)t , r(t)t , d(t)t ) tuple is collected at each decision-making step. Since the
reward for each time step is +1, it is hard to tell the difference between two executed actions only by
the reward. To compensate this, it is roughly regarded that the last executed action a(t)l in an episode is

worse than other executed actions, for the duration is the shortest from executing action a(t)l to the end

of the episode. Therefore, the related information d(t)t here is defined as an indicator of whether the

executing action a(t)t is the last executed action a(t)l in the episode, or whether the episode ends after

executing action a(t)t . The value of d(t)t is set with Equation (16):

d(t)t =

{
1, if a(t)t = a(t)l ,

0, otherwise.
(16)
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Two sets of data are collected. The first dataset (denoted by D1) contains 24,354 (s(t)t , a(t)t , r(t)t , d(t)t )

tuples from 2961 episodes running for about 10 minutes. The second dataset (denoted by D2) contains
4388 (s(t)t , a(t)t , r(t)t , d(t)t ) tuples from 557 episodes running for about three minutes.

Second, training samples are generated for the ANNs. Each collected data set is used to generate
a training set. Dataset D1 uses full mapping to generate input samples, and the corresponding training
set is denoted asD f . Dataset D2 uses group mapping to generate input samples, and the corresponding
training set is denoted as Dg. The output samples of the training set D f and Dg are also generated
from dataset D1 and dataset D2, respectively. The way to generate the output samples of the two
training set is the same.

Generate Input Samples with Full Mapping: For a state s(t) =
[

f (t)0 , f (t)1 , ..., f (t)18

]
from the target task,

each of its feature f (t)k is mapped to a feature set Fs
k with all the 13 state features of the source task, which

is Fs
k =

{
f (s)i

∣∣∣ f (s)i = f (t)k , i ∈ [0, 12]
}

. For each feature f (s)i ∈ Fs
k and each action a(s)j ∈

{
a(s)0 , a(s)1 , a(s)2

}
,

lay tilings for the pair < f (s)i , a(s)j > and compute the q-value function q
(

f (t)k , i, a(s)j

)
. Therefore, each

state feature f (t)k from the target task state s(t) can generate 13× 3 = 39 q-value functions from the
source task, and the total number of q-value functions generated for state s(t) is 19× 13× 3 = 741.
Each q-value function corresponds to an input node of the ANNs, so the number of input node Ni for
this set of ANNs is 741.

Generate Input Samples with Group Mapping: Since the state features in Keepaway have an obvious
group partition as presented in Table 1, the state features is divided based on this table. A slight
difference is that the distance from keeper K0 to the center is grouped into a separate group, denoted
as group 0. Therefore, the features of both the source task and target task can be divided into seven
groups as shown in Table 2. For example, group 1 contains two features ( f (s)1 and f (s)2 ) in the source

task, while it contains three features ( f (t)1 , f (t)2 and f (t)3 ) in the target task. Thus, for a target task feature

in group 1, say feature f (t)1 , it will be mapped into a feature set with two features from the source task,

which is Fs
1 =

{
f (s)i

∣∣∣ f (s)i = f (t)1 , i ∈ [1, 2]
}

. Combining with the three actions a(s)j ∈
{

a(s)0 , a(s)1 , a(s)2

}
,

feature f (t)1 can obtain six q-value functions q
(

f (t)1 , i, a(s)j

)
, ∀i ∈ {1, 2}, j ∈ {0, 1, 2}. Input samples for

other target task state features are generated in a similar way. Therefore, the number of input nodes Ni
is (1× 1 + 3× 2× 6)× 3 = 111, equaling the number of q-value functions.

Table 2. Feature grouping in Keepaway.

Group Target Task Features Souce Task Features

0 f (t)0 f (s)0

1 f (t)1 , f (t)2 , f (t)3 f (s)1 , f (s)2

2 f (t)4 , f (t)5 , f (t)6 f (s)3 , f (s)4

3 f (t)7 , f (t)8 , f (t)9 f (s)5 , f (s)6

4 f (t)10 , f (t)11 , f (t)11 f (s)7 , f (s)8

5 f (t)13 , f (t)14 , f (t)15 f (s)9 , f (s)10

6 f (t)16 , f (t)17 , f (t)18 f (s)11 , f (s)12

Generate Output Samples: Since there are four actions
{

a(t)0 , a(t)1 , a(t)2 , a(t)3

}
in the target task,

the number of output nodes No is also 4, so that the transferred action is an target task action and can
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be used directly in the target task without an action mapping. According to Equation (15), the function
f (•) is defined as in Equation (17), where a = 1, b = −1 are set in these experiments:

f
(

r(t)t , d(t)t

)
= ar(t)t + bd(t)t . (17)

The value range of Oi is set to be [0, 1]. Therefore, the rule for generating output samples is set as
Equation (18), where i = 0, 1, 2, 3.

Oit =


1, if a(t)i = a(t)t and a(t)t 6= a(t)l ,

0.5, if a(t)i 6= a(t)t ,

0, if a(t)i = a(t)t and a(t)t = a(t)l .

(18)

Third, train the ANNs with the generated samples. Two sets of ANNs have been built. Both sets
of ANNs are BP networks with the sigmoid function as the activate function. The number of hidden
nodes for both sets of ANNs is set to be

Nh = (Ni + No)/2. (19)

The first set of ANNs are trained with training set D f which is generated with full mapping.
There are 741 input nodes, 374 hidden nodes and four output nodes in these ANNs. Denote these
ANNs by ANN-f. The second ANNs are trained with training set Dg which is generated with group
mapping. There are 111 input nodes, 57 hidden nodes and four output nodes. Denote these ANNs by
ANN-g.

By using different source knowledge obtained after different episodes of learning, different sets of
training data can be generated and therefore different ANNs can be trained. Ten weight files have been
collected, which are learned with {200, 500, 1000, 1500, 1800, 2000, 2500, 3000, 4000, 8000} episodes in
the source task. Therefore, 10 ANN-f and 10 ANN-g have been built. The Neural Network ToolboxTM

software in Matlab (R2015b, The Mathworks, Inc., Natick, MA, USA) is used to train the ANNs. In the
Neural Network ToolboxTM software, techniques like early stopping are automatically provided to
avoid the overfitting problem, and the early stopping technique divides the data into three subsets
to get validation errors to detect the overfitting. The training is performed by Gradient Descent with
Momentum Adaptive LR (traingdx), and the performance is measured by Mean Squared Error (MSE).
The training results of all the ANNs are given in Table 3, which includes the training time and the final
performance of each set of ANNs.

Table 3. The ANN (Artificial Neural Network) training results.

3vs.2 Episodes
Training Time (Seconds) Performance (MSE)

ANN-g ANN-f ANN-g ANN-f

200 15 455 0.0502 0.0518
500 26 425 0.0491 0.0516
1000 4 424 0.0503 0.0515
1500 33 406 0.0498 0.0515
1800 33 390 0.0495 0.0515
2000 14 426 0.0493 0.0514
2500 14 495 0.0500 0.0513
3000 35 434 0.0494 0.0514
4000 25 392 0.0495 0.0514
8000 4 782 0.0499 0.0514

Finally, use the transfer approximator with trained ANNs to transfer knowledge. In the target
task, the RL learner uses Algorithm 3 with the PPR scheme to update its learning. When the



Symmetry 2019, 11, 25 16 of 22

transferred action is needed, the learner passes the state to the transfer approximator. The ANN
transfer approximator outputs the transferred action with Algorithm 1.

5.3. Experiment Settings and Results

Since there are two types of transfer approximator due to two mapping rules, two sets of
experiments have been performed for the proposed TL-ANNA methods. One is with the full mapping
rule, and the other is with the group mapping rule. In both sets of experiments, the parameter ΦD
is set to be 0.997. For comparison, two sets of experiments with two other transfer learning methods
have also been performed in the same experimental condition. The first comparison method is
Transfer via Inter-Task Mapping (TVITM) [1], and the second one is Transfer via Linear Multi-Variable
Mapping (TL-LMVM) [4]. In the TL-LMVM, the variables are grouped before transferring. In this set of
experiments for TL-LMVM, the same state variables grouping method as that of the TL-ANNA is used,
while the action variables are just grouped into one group. The TL-LMVM method uses the transferred
knowledge to initializing the parameters in the target task, where the transferred knowledge for each
variable of the target task are the linear combination of the knowledge associated with variables in the
corresponding group of the source task. The linear parameters are set with those from [4]. Therefore,
there are four sets of experiments in total.

Ten different weight files are collected from the source task after different episodes of learning in
it, as stated in Section 5.2. For each source task weight file, four sets of experiments have been run
with the above four transfer learning methods, respectively. Each set of experiments is run for 10 trials
in the target task, and each trial runs for at least 10,000 episodes. The results of each set of experiments
are averaged over these 10 trials.

These proposed methods would bring extra computational complexity in each transferring update
due to the use of ANN. However, this extra computational complexity is negligible compared to the
sample complexity in reinforcement learning. Thus, the main goal of these proposed methods is to
reduce the sample complexity rather than the computational complexity. To measure the effectiveness
of transfer learning, many metrics can be used [33]. In this work, two key metrics are used to compare
the performance of these four transfer learning methods: jumpstart and the time to threshold.

Jumpstart measures the initial performance that has been improved by transfer learning. Since
the episode duration is the performance measure of Keepaway, the initial performance refers to the
initial episode duration in these experiments. To reduce errors, the average duration of the first
1000 episodes is calculated as the initial episode duration for comparison. In the 4vs.3 Keepaway
learning task without transfer learning, the initial episode duration is 5.14± 0.10 s (averaged over
10 trials). The initial episode duration of all four sets of experiments with different transfer learning
methods and different source knowledge are summarized in Figure 3. All the results are averaged over
10 independent trials, and the error bar shows the corresponding averaged initial episode duration
and the standard deviation.

In order to gauge the statistically significant difference of the jumpstart metric among the four
methods, the Welch’s t-test with 95% confidence is used. Seven sets of Welch’s t-test have been
performed: (1) TL-ANNA (full mapping) vs. no transfer; (2) TL-ANNA (group mapping) vs. no
transfer; (3) TL-ANNA (full mapping) vs. TL-LMVM; (4) TL-ANNA (group mapping) vs. TL-LMVM;
(5) TL-ANNA (full mapping) vs. TVITM; (6) TL-ANNA (group mapping) vs. TVITM; and (7)
TL-ANNA (full mapping) vs. TL-ANNA (group mapping). Each set contains 10 Welch’s t-test
for there are 10 cases with different source weight files. The first two sets of tests show that both two
TL-ANNA methods have significantly longer initial episode duration than the no-transfer learner
in all cases, which also indicates no negative transfer occurs. In addition, test sets (3)–(6) show that
both two TL-ANNA methods have significantly higher jumpstart than the two comparison methods,
TL-LMVM and TVITM, in all cases. That is to say, both proposed methods can set a better start point
for the RL learners. Moreover, the last set of Welch’s t-test shows that the TL-ANNA with full mapping
has significantly higher jumpstart than the TL-ANNA with group mapping for 9 cases out of all these



Symmetry 2019, 11, 25 17 of 22

10 cases, and only in the case with 8000 episodes of source task learning has no statistical difference.
This is probably due to the fact that state features in full mapping can be mapped to all the related
source state features. While in the group mapping case, it is hard to group all the related features
into the same group very accurately, so the mapping in group mapping may lose part of the related
knowledge compared with that of full mapping. Thus, the transfer ability of the group mapping
TL-ANNA is slightly weaker than that of the full mapping TL-ANNA in the normal cases. However,
the quality of the source task knowledge can also have some influence on the performance of the
transfer learning. From Figure 3, it can be seen that the jumpstart of the two comparison methods,
TL-LMVM and TVITM, vary a lot by the source task knowledge. In addition, the TL-ANNA with
group mapping tends to have higher jumpstart as the learning in the source task set to be longer.
While the jumpstarts of the TL-ANNA with full mapping are not influenced too much by the choose
of the source task knowledge. This may be the reason for the exception one in the last set of Welch’s
t-test results.
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Figure 3. The comparisons for jumpstart among the four transfer learning methods. The error bars
show the averaged initial episode duration over 10 trials and their standard deviations when using
different source knowledge and transfer learning methods. The source knowledge is collected in the
3vs.2 Keepaway after different episodes of learning.

Time to threshold measures how fast the learning reaches a threshold with the transfer learning,
which can reflect the improvement in reducing the sample complexity. The average episode duration
over 1000 episodes reaches about 9.2 s after 30 h of training without transfer learning. Therefore,
set the threshold as 9.0 s, and the learning time necessary to reach this threshold is referred as the
time to threshold. The learning in the target task is considered to be sufficient when the keepers can
maintain an average episode duration of 9.0 s over 1000 episodes. In learning without transfer learning,
the average time to reach the threshold of 9.0 s over 10 trials is 20.54± 3.88 h. Figure 4 presents the
average time to threshold over 10 trials for each set of transfer learning experiments with different
methods and different source task knowledge.

Seven sets of Welch’s t-test are also performed as in the analysis of the jumpstart to detect the
significant difference for the time to threshold results among the four different sets of experiments (at the
95% confidence level, each set has 10 tests.). The tests show that both the TL-ANNA with full mapping
and the TL-ANNA with group mapping have significantly shorter time to threshold than the learner
without transfer in all these 10 cases, which again indicates that no negative transfer occurs in these
proposed methods. Moreover, the TL-ANNA with full mapping reaches the threshold in a significantly
shorter time than both the TL-LMVM and the TVITM do in all cases. The TL-ANNA with group mapping
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reaches the threshold in a significantly shorter time than the TL-LMVM does in all cases, while it has
significantly shorter time to threshold than the TVITM in eight cases, and has no statistical difference
only in the two cases with 1800 episodes and 2000 episodes of source task learning. The TL-ANNA
with full mapping reaches the threshold significantly faster than the TL-ANNA with group mapping
in nine cases, and only the case with 1500 episodes of source task learning has no statistical difference.
From Figure 4, it can be noticed again that both the TL-LMVM and the TVITM are influenced by the
quality of the source task knowledge very much, while both two TL-ANNA methods are more robust to
the quality of the source task knowledge, especially the TL-ANNA with full mapping.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Source Task Episodes

0

5

10

15

20

25

30

35

40

A
v
e

ra
g

e
d

 T
im

e
 t

o
 T

h
re

s
h

o
ld

 (
H

o
u

rs
)

Comparision for Time to Threshold

TL-LMVM

TVITM

TL-ANNA(g)

TL-ANNA(f)

Figure 4. The comparisons for time to threshold among the four transfer learning methods.
The threshold is set to be 9.0 s of episode duration. The error bars show the averaged time to this
threshold over 10 trials and their standard deviations when using different source knowledge and
transfer learning methods. The source knowledge is collected in the 3vs.2 Keepaway after different
episodes of learning.

Among so many tested cases, only one or two cases can not tell the significant difference between
these proposed methods and the comparison methods. Therefore, these proposed TL methods can be
generally regarded as better than the other two TL methods, and the TL-ANNA with full mapping
is better than the TL-ANNA with group mapping. However, both the results presented in Figures 3
and 4 have not considered the time required for collecting samples in the target task and the time
required for training the ANNs. In our case, the time for collecting samples is in minutes, and the time
for training the ANNs (Table 3) is either in seconds (for group mapping case) or in minutes (for full
mapping case), while the time shortened by TL-ANNA is in hours. Therefore, it can be considered that
the time needed for preparing the transfer learning can be ignored, whereas, even if there are cases
where the time needed before the transfer learning is close to the time been shorten by the transfer
learning, there is still benefit from the TL-ANNA that the TL-ANNA removes the need of the action
mapping and even reduce the human involvement with certain state feature mapping rule. However,
for tasks that have totally dissimilar action sets, the effects of the TL-ANNA have not been tested
yet, therefore good performance can not be guaranteed in such cases. Furthermore, the TL-ANNA
methods are more robust to the quality of the source knowledge, which can reduce the time spent on
the selection of the source knowledge. On the other hand, the robustness to the quality of the source
knowledge also means that the proposed methods are more robust to the negative transfer, though it is
hard to guarantee that there will be no negative transfer when transfer between two unrelated tasks.
Therefore, attention still needs to be paid on the selection of the source task to avoid negative transfer,
but less energy can be paid on selecting the quality of the source knowledge. In addition, the full
mapping TL-ANNA works slightly better than the group mapping TL-ANNA, possibly due to the fact
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that more source knowledge can be conserved in the full mapping case than the group mapping case.
However, the full mapping case costs much more in terms of computation and space than the group
mapping one, including in the training for the ANNs. Usually, the reducing of the computation and
space in the TL-ANNA with the group mapping comes in the price of extra computation for grouping
with methods like clustering or extra human involvement in the grouping.

Another thing needs to be noted is that there are some errors brought into the ANNs by the roughly
determined training data. However, the experimental results show that such errors do not effect too
much of the effectiveness of the proposed methods. As for to what extent that the proposed transfer
learning framework can tolerate the errors from the ANNs, it is still not sure and can be left for future
work. In cases that the training data are accurately determined to reflect the relationship between the
source task and the target task, more training time for the ANNs can be expected to be more beneficial
for the performance of the transfer learning, such as reducing more time for the reinforcement learning
in the target task. However, too much training time for the ANNs could add up more time to the whole
learning process, which makes the time shorten by the transfer learning appear to be not that much
worthwhile. Since the proposed methods are affected more by the quality of the source task than by the
errors in the ANNs, it is not recommended to spend too much time on training the ANNs.

To show the difference of the learning process with different transfer learning methods in more
detail, Figure 5 illustrates the learning process for one of these ten groups of experiments. The source
task knowledge for this group of experiments is collected after learning for 2000 episodes in the 3vs.2
Keepaway task.

Figure 5. The learning process for four TL methods and the no-TL learning. The source task knowledge
is obtained after learning for 2000 episodes in the 3vs.2 Keepaway. Each line is averaged over 10 trials,
and the shadow indicates the standard variation.

Finally, a set of experiments are also performed to test the effect of the parameter ΦD in the
proposed transfer learning methods. This set of experiments uses the group mapping TL-ANNA
method to transfer from 3vs.2 Keepaway to 4vs.3 Keepaway with different values of ΦD, and all the
runs use the source task weight file obtained after learning for 2000 episodes in the 3vs.2 Keepaway.
Six extra different ΦD values ranging from 0.99 to 0.9999 are tested (initial experiments show that the
transfer learning performance is much worse when ΦD ≤ 0.9), and the experiments for each ΦD value
are run for four trials. The initial episode duration and the time to threshold (also a threshold of 9.0 s)
for each group of experiments with different ΦD values are presented in Figure 6, where each result is
averaged over four trials, except that results for ΦD = 0.9970 are averaged over 10 trials.
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As shown by Figure 6, the parameter ΦD does have a great deal of influence on the performance
of transfer learning. Approximately, the bigger the ΦD is, the more likely this transfer learning can
help the RL learner acquire a longer initial episode duration and reach the threshold in a shorter time.
However, as the ΦD approaches 1, the effects would turn worse. In short, the choice of ΦD should be
big enough but not too close to 1.
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Figure 6. The comparisons for the effect of different ΦD values. The blue line denotes the averaged initial
episode duration (Jumpstart). The green line presents the time to threshold. All values are averaged over
four trials, except that the values for ΦD = 0.997 are averaged over 10 trials. The error bars also indicate
the corresponding standard deviations. The TL method used is TL-ANNA with group mapping, and the
source knowledge is collected in the 3vs.2 Keepaway after 2000 episodes of learning.

6. Conclusions

In this work, a new transfer learning framework has been proposed to transfer knowledge from
the source task to the target task with a transfer approximator and the PPR scheme. The transfer
approximator can use full mapping or group mapping to map the state in the target task into the source
task. Through the ANNs, the transfer approximator can suggest a transferred action to bias the learning
in the target task, where the transferred action is a target task action, so no action mapping is needed
in this framework. With a good deal of experiments performed on the Keepaway task, it has been
verified that the proposed TL-ANNA methods outperform the other two transfer learning methods,
TL-LMVM and TVITM. In addition, the TL-ANNA with full mapping usually works slightly better
than the TL-ANNA with group mapping, and the fact that full mapping is totally task independent
makes the TL-ANNA with full mapping more promising. However, the TL-ANNA with full mapping
costs more in terms of computation and space, particularly in tasks with too many state features.
Though less computation and space consumption, the TL-ANNA with group mapping may require
extra computation from grouping methods like clustering or extra human involvement in grouping.
Therefore, users should balance the two methods based on their requirements and task properties.
In addition, the performance of TL-ANNA is very robust to the quality of source knowledge, while
other transfer learning methods seldom have this property. However, the proposed TL-ANNA can
be influenced by the parameter ΦD. By following the strategy given in this paper when choosing the
value for ΦD, the performance of TL-ANNA can avoid being worsened by the parameter ΦD.

However, there are still many aspects that can be explored in future works. First, other forms of
the state feature mapping rules for the transfer approximator may exist. Second, the grouping method
such as clustering could be explored, so as to make the group mapping rule less human involved.
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Third, other methods to generate the training data or even more accurate output samples for the ANNs
may be worth being explored to improve the performance of the proposed transfer learning methods.
Fourth, methods for finding a more suitable number of hidden nodes in the ANNs and achieving a
better performance of the ANNs could be explored. Fifth, the BP ANNs could also be replaced by
other forms of ANNs or even other supervised learning methods. Sixth, more layers of ANNs and
even deep learning techniques could be applied to test the performance of the proposed framework.
Seventh, other methods to combine with the PPR scheme could be studied. Eighth, methods that can
reduce the computational complexity could be examined in the future. Lastly, other schemes to reuse
the transferred action could be explored.
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29. Połap, D.; Woźniak, M.; Wei, W.; Damaševičius, R. Multi-threaded learning control mechanism for neural
networks. Future Gener. Comput. Syst. 2018, 87, 16–34. [CrossRef]

30. Fernández, F.; García, J.; Veloso, M. Probabilistic policy reuse for inter-task transfer learning. Robot. Auton. Syst.
2010, 58, 866–871. [CrossRef]

31. Shi, H.; Lin, Z.; Hwang, K.S.; Yang, S.; Chen, J. An Adaptive Strategy Selection Method With Reinforcement
Learning for Robotic Soccer Games. IEEE Access 2018, 6, 8376–8386. [CrossRef]

32. Stone, P.; Kuhlmann, G.; Taylor, M.E.; Liu, Y. Keepaway soccer: From machine learning testbed to benchmark.
In Robot Soccer World Cup; Springer: Berlin/Heidelberg, Germany, 2005; pp. 93–105.

33. Taylor, M.E.; Stone, P. Transfer learning for reinforcement learning domains: A survey. J. Mach. Learn. Res.
2009, 10, 1633–1685.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.patrec.2016.08.009
http://dx.doi.org/10.1109/TPDS.2016.2626289
http://dx.doi.org/10.1016/j.future.2018.04.050
http://dx.doi.org/10.1016/j.robot.2010.03.007
http://dx.doi.org/10.1109/ACCESS.2018.2808266
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Literature Review
	Reinforcement Transfer Learning 
	Reinforcement Learning
	Transfer Learning

	Transfer Learning via ANN Approximator
	State Feature Mapping Rules
	Full Mapping
	Group Mapping

	Construction of the ANNs
	Generating Input Samples
	Generating Output Samples

	Biasing the Action Selection with PPR Scheme

	Experiments and Results
	Keepaway Task
	TL-ANNA in Keepaway
	Experiment Settings and Results

	Conclusions
	References

